Towards formal analysis of key control in group key agreement protocols

Anshu Yadav and Anish Mathuria DA ‐IICT, Gandhinagar

Outline

- Burmester-Desmedt key agreement –Pieprzyk-Wang attack
- Delicata-Schneider (DS) proof model [FAST'05], [Int. J. Inf. Secur. '07]
- Using DS model to find/model key control attacks

Group key agreement

- • Basic techniques
	- –2-party Diffie-Hellman
	- Public but authentic channels
- \bullet Contributory property
	- $-$ the final value of the key is dependent on $\,$ the ephemeral inputs of all parties

Key Control Attacks: Pieprzyk-Wang'04

- Insiders: Actual members of the group which are agreeing on a key
- Two types of attack
	- $-$ Strong key control: the malicious insiders force $\,$ the key to be a pre-defined value of their choosing
	- – $-$ Selective key control: the malicious insiders $\,$ remove the *contributions* of some, but not all, honest parties

Burmester-Desmedt Protocol [Eurocrypt'94]

Suppose n members, M_1 , M_2 , ..., M_n , are arranged in a ring. Every member M_{i} chooses its private ephemeral value r_{i} randomly.

Phase 1 uses only communication between adjacent members

Example:

Phase 2 uses broadcast communications

Example (contd.):

$$
K_i^R = z_{i+1}^{r_i}; \quad K_i^L = z_{i-1}^{r_i}
$$

$$
X_i = K_i^R / K_i^L
$$

32 23
i+1 $G K_i = (K_i^L)^5 X_i^4 X_{i+1}^3 X_{i+2}^2 X_{i+1}$

Pieprzyk-Wang Attack: Strong Key Control

Assume M_4 is dishonest and M_2 is the intended victim. Goal: Fix the key computed by M_2 to be the desired value K' = g^{r4} .

M 4 broadcasts a corrupted message derived from other received messages

Attacker model

• Initial knowledge of adversary modeled using
two sets

Set $\mathsf E\colon \mathsf x\in\mathsf E\Rightarrow$ attacker knows $\mathsf x$ Set P: y \in P \Rightarrow attacker knows g^y, but not y

- Attacker deduction
	- $-$ Given m_1 , m_2 \in P , add m_1 + m_2 to P
	- $-$ Given $\mathsf m\in\mathsf P$ and $\mathsf n\in\mathsf E$, add $\mathsf m\mathsf n$ to $\mathsf P$ and $(\mathsf m\mathsf n^{\text{-}1})$ to $\mathsf P$
	- $-$ Given m \in P, add (-m) to P

Message-template example

- $E = \{x, y\}$; $P = \{1, a, b\}$. Note: '1' is identity element
- Consider how the value $e^{(2+a-\theta)xy+(1+a)xy}$ can be expressed. Let $(2+a-b)xy+(1+a)xy^2$ *g* $+a-b$) xy+(1+

$$
F = \{ \{x \rightarrow 1, y \rightarrow 1\}, \{x \rightarrow 1, y \rightarrow 2\} \}
$$

h($\{x \rightarrow 1, y \rightarrow 1\}$) = {1 →2, a →1, b →-1}
h($\{x \rightarrow 1, y \rightarrow 2\}$) = {1 →1, a →1, b →0}

• Then
$$
v(F, h) = \sum_{f \in F} \left(\sum_{p \in P} h_{f, p} \cdot p \right) \left(\prod_{e \in E} e^{f_e} \right)
$$

$$
= (2 + a - b)xy + (1 + a)xy^2
$$

Proving secrecy

• The message-template v(F, h) represents any message generable by an attacker

$$
v(F,h) = \sum_{f \in F} \left(\sum_{p \in P} h_{f,p} \cdot p \right) \left(\prod_{e \in E} e^{f_e} \right)
$$

• A value m is realisable if there exists functions F and h such that $v(F, h) = m$

Using DS to find Pieprzyk-Wang attack

• We consider whether there exist realisable values z_1 and z_2 such that

> (K 2 $\mathsf{L})^4$ X_2 3 X_3 2 X'_4 = $g^{r1r2+r2r3+2r3r4+z1}$ = g^{z2}

• For secrecy to fail, the following equality must hold

 $r_1r_2 + r_2r_3 + 2r_3r_4 + z_1 = z_2$

• $\,$ z $\,$ = v(F $\,$, h $\,$) is defined over ${\sf P}_1$ = {1, ${\sf r}_1$, ${\sf r}_2$, ${\sf r}_3$, ${\sf x}_1$, ${\sf x}_2$, ${\sf x}_3$ }, ${\sf E}_1$ = { ${\sf r}_4$ } \quad (${\sf X}_i$ = $g^{\sf x i}$) F_1 = { f_{11} , f_{12} }; f_{11} = { $\mathsf{r}_4 \mathbin{\rightarrow} \mathsf{p}_1$ }, f_{12} = { $\mathsf{r}_4 \mathbin{\rightarrow} \mathsf{s}_1$ } $\mathsf{h}_1\left(\mathsf{f}_{11}\right)$ = $\{1\to\mathsf{n}_0$, $\mathsf{r}_1\to\mathsf{n}_1$, $\mathsf{r}_2\to\mathsf{n}_2$, $\mathsf{r}_3\to\mathsf{n}_3$, $\mathsf{x}_1\to\mathsf{n}_4$, $\mathsf{x}_2\to\mathsf{n}_5$, $\mathsf{x}_3\to\mathsf{n}_6\}$ $\mathsf{h}_1\left(\mathsf{f}_{12}\right)$ = $\{1$ \rightarrow l $_0$, r_1 \rightarrow l $_1$, r_2 \rightarrow l $_2$, r_3 \rightarrow l $_3$, x_1 \rightarrow l $_4$, x_2 \rightarrow l $_5$, x_3 \rightarrow l $_6\}$ $z_1 = (n_0 + n_1r_1 + n_2r_2 + n_3r_3 + n_4x_1 + n_5x_2 + n_6x_3)r_4^{p1} + (l_0 + l_1r_1 + l_2r_2 + l_3r_3)$ $I_3r_3 + I_4x_1 + I_5x_2 + I_6x_3)r_4$ s1

Using DS to find Pieprzyk-Wang attack

- z_2 = v(F₂, h₂) is defined over $P_2 = \{1\}$, $E_2 = \{r_4\}$ $F_2 = {f_{21}}; f_{21} = {r_4 \rightarrow q_1}; h_2 (f_{21}) = {1 \rightarrow m_0}$ $z_2 = m_0 r_4$ ^{q1}
- $r_1r_2 + r_2r_3 + 2r_3r_4 + (n_0 + n_1r_1 + n_2r_2 + n_3r_3 + n_4x_1 + n_5x_2 + n_6x_3)r_4^{p1}$ + $(|_0 + |_1r_1 + |_2r_2 + |_3r_3 + |_4x_1 + |_5x_2 + |_6x_3)r_4$ $^{\text{sl}}$ = $\text{m}_{\text{0}}\text{r}_{\text{4}}^{\text{q1}}$
- Solution:

Putting x_{1} = $r_{1}r_{2}$ – $r_{1}r_{4}$; x_{2} = $r_{2}r_{3}$ – $r_{1}r_{2}$; x_{3} = $r_{3}r_{4}$ – $r_{2}r_{3}$ and then solving ${\sf n}_0$ = ${\sf p}_1$ = ${\sf m}_0$ = ${\sf q}_1$ = 1; ${\sf n}_1$ = -4; ${\sf l}_4$ = -4 ; ${\sf l}_5$ = -3; ${\sf l}_6$ = -2; rest are 0.

- $z_1 = r_4 4r_1r_4 2x_3 3x_2 4x_1$ and $z_2 = r_4$
- This gives ${\mathsf X}_4'$ = $g^{\mathsf{r4}}/({\mathsf z}_1^{\mathsf 4\mathsf{r}_4} {\mathsf X}_3)$ $^2\mathsf{X}_2$ 3 $\mathsf{X_1}^{\mathsf{4}}$) and the resulting key as g^{r4}

Dutta-Barua (DB) Protocol [IEEE Trans. Inf. Theory, 08]

- The final key is the same as BD protocol but the key computation is different
- \bullet Session key = K $_1$ R K_{2} R_{\ldots} K $_n$ R = $g^{(r_1r_2+r_2r_3+r_3r_4+\cdots r_n r_1)}$ $+r_2 r_3 + r_3 r_4 + \cdots$

$$
K_{i+1}^{R} = K_{i}^{R} X_{i+1}
$$

\n
$$
K_{i+2}^{R} = K_{i+1}^{R} X_{i+2}
$$

\n
$$
\vdots
$$

\n
$$
K_{n-1}^{R} = K_{n-2}^{R} X_{n-1}
$$

\n
$$
K_{n}^{R} = K_{n-1}^{R} X_{n}
$$

\n
$$
K_{1}^{R} = K_{n}^{R} X_{1}
$$

\n
$$
\vdots
$$

\n
$$
K_{i-1}^{R} = K_{i-2}^{R} X_{i-1}
$$

• Additional step:

 M_{i} checks if $\,K_{i-1}^R = K_i^L\,$ to detect presence of dishonest insider $K_{i-1}^R = K$

• Example: M_4 sends bad value X_4^\prime to M_2

Analysis results for DB

- • Single dishonest insider
	- – $-$ misbehaving in 1^st phase -> selective control
	- misbehaving only in 2nd phase -> <mark>no key</mark> control
- \bullet Two adjacent dishonest insiders — misbehaving in 2nd phase -> strong control

Attack on DB: Strong key control

 M_1 and M_2 are dishonest and all other participants are the intended victims. Goal: Fix the computed key to be the desired value K' = g r.

In the second phase, M_1 and M_2 broadcast corrupted $\mathsf{X'}_1$ and $\mathsf{X'}_2$, derived from other messages.

 M_1 and M_2 compute:

$$
X'_{1} = K' / (g^{r_{2}r_{3} + r_{3}r_{4} + r_{4}r_{5} + 2r_{5}r_{1}})
$$

$$
X'_{2} = g^{r_{2}r_{3}} / (g^{r_{1}r_{5}} X'_{1})
$$

Note that : $X'_1 X'_2 = g^{r_2 r_3 - r_1 r_5} = X_1 X_2$ $g^{r_2 r_3 - r_1 r_5} =$

Verification step by honest members

Key computation by honest members

 \bullet • Key computation by M_3

$$
GK_3 = K_3^R K_4^R K_5^R K_1^R K_2^R
$$

= $K_3^R K_4^R K_5^R (K_5^R X_1) K_2^R$
= $g^{r_3r_4+r_4r_5+r_5r_1+r_5r_1+r_2r_3} (K'/g^{r_2r_3+r_3r_4+r_4r_5+2r_5r_1}) = K$

Conclusions

- • Novel application of DS model
	- –– Detecting key control attacks
	- Proving security against key control attacks
- \bullet • Key control attacks against Dutta-Barua protocol

Thank you … Questions

Remarks

- Consider the following equation
	- r1r2 + r2r3 + 2r3**r4** + $(n_0 + n_1r_1 + n_2r_2 + n_3r_3 + n_4x_1 + n_5x_2 + n_6x_3)r_4$ p1 + $(I_0 + I_1r_1 + I_2r_2 + I_3r_3 + I_4x_1 + I_5x_2 + I_6x_3)r_4^{s1} = m_0r_4^{q1}$
- To balance 2 r_3r_4 and $m_0r_4^{q1}$, r_4 must be mapped to 1 (p $_1$ = 1)
- r_1r_2 + r_2r_3 is independent of r_4 so to cancel it, r_4 must be mapped to $\,$ O (s $_{1}$ = 0) $\,$
- Different mappings for set E_1 require different functions in F_1 . For the above case, 2 functions are enough.