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®-Hiding Assumption

» ®-Hiding Assumption: For an RSA modulus N = pg and a
prime e,

“it is hard to decide whether e divides
O(N)=(p—1)(q—-1),"

» ®-Hiding problem can be solved efficiently using the idea of
Coppersmith if e > N0-25



Multi-Prime ®-Hiding Assumption

» Multi-Prime RSA: N = p1 -+« pm, with p; (for 1 < i < m)
primes of same bitsize.

» Multi-Prime ®-Hiding Assumption has been proposed by Kiltz
et al in Crypto 2010

» Considered Multi-Prime RSA with modulus N = p1 - - pm.
The prime e is chosen such that e divides
pl_la-"7pm—1 -1

» Multi-Prime ®-Hiding Assumption, which states that

“it is hard to decide whether e divides p; — 1 for all but one
prime factor of N".



Cryptanalysis of Multi-Prime ®-Hiding Assumption

» Kiltz et al. present a cryptanalysis of the Multi-Prime
®-Hiding Assumption using the idea of Herrmann et al.
(Asiacrypt 2008)

» Note that if e divides all p; —1for1 </i<m, N=1mode.
> It gives a polynomial time distinguisher.

» To decide if e is Multi-Prime ®-Hidden in N, consider the
system of equations ex; + 1 =0 mod p1,exo +1 =
Omod py,...,exm_1+1=0mod py,_1.



dea of Kiltz et al

» Kiltz et al. construct a polynomial equation
m—1 m—1 m—1
em 1 (H x,-) +~--+e<2x,-> +1=0mod Hp,-
i=1 i=1 i=1
by multiplying all given equations.

> Then they linearize the polynomial and solve it using a result
due to Herrmann and May.

» However, the work of Herrmann and May provides an
algorithm with runtime exponential in the number of unknown
variables.

» So for large m, the idea will not be efficient.



Idea of Herrmann

> In Africacrypt 2011, Herrmann improved the attack of Kiltz et
al.

» Suppose we have (ex; +1)(ex2 + 1)(ex3 + 1) = 0 mod p1p2ps.

> Instead of considering the polynomial equation

e3X1X2X3—|-62(X1X2—|-X]_X3—|-X2X3)+6(X1+X2+X3)—|—1 = 0 mod p1paps,
Herrmann considered the polynomial equation
e’x + ey +1 = 0 mod p1p2ps,

where x = exyxox3 + x1x0 + x1x3 + xox3 and y = x3 + xo + x3
are the unknowns.

» One positive side is that it has only two variables x, y instead
of the original three xi, x2, x3.

» On the negative side, the size of the variable x is increased by
a factor of e compared to the original unknown variables
X1, X2, X3.



Idea of Herrmann

In the general case, instead of considering the polynomial
em_l)/mfl + em_z)/mf2 4+ -+ + ey; + 1 over the variables
Yi,---5Ym—1 With root

m—1
()/17-~~,)/m1 <HXI7"')ZXf>7
i=1

Herrmann considered the polynomial €2x + ey + 1 over the
variables x, y with root

(x0,0) = [ €™ 3Hx, +Zx,pox,

J>i

to obtain the improvement over the work of Kiltz et al.



Our ldea

v

The variable yp is much smaller than xp.

» Herrmann already mentioned that one may get better bound
for these unbalanced variables.

> However this option has not been analyzed systematically in
the literature till date.
> In this work we analyzed this issue carefully.



Reduction of Lossiness

In the following Table, we present the impact of our result on the
work of Kiltz et al.

Value Lossiness in the work of Kiltz et al.

of m Before the work of Herrmann After the work of Herrmann After our work
4 806 778 768
5 872 822 778

Table: Impact of our results on the lossiness of Kiltz et al. for different
values of m, with 2048 bit N and for 80 bit security.



Howgrave-Graham: 1997

Lemma

Let h(x1,x2) € Z[x1, x2] be the sum of at most w monomials.
Suppose that h(xf ), (0)) =0 (mod N™) where

\xl \gX,|x2 )] < X and

N
|\h(x1X1,x2X2)|| < ﬁ

Then h(xl(o),xz(o)) = 0 over the integers.



Lenstra, Lenstra and L. Lovasz: 1982

Lemma
Let L be an integer lattice of dimension w. The LLL algorithm
applied to L outputs a reduced basis of L spanned by {vi,...,v,}
with

vl < [lvall < 297 det(L)M/ (D)

in polynomial time of dimension w and the bit size of the entries of
L.



Our Result

Our approach is exactly the same as Herrmann except that we use
extra shifts over the variable y.

Theorem

Let N = p;---pm be a Multi-Prime RSA modulus where p; are of
same bit size for1 < i < m. Let e be a prime such that e > N#f‘s.
Then one can solve Multi-Prime hidden ® problem in polynomial

time if there exist two non-negative real numbers 11, 1> such that

V(71,72,0, m) :37'17'22m — Tg’m + 37125m —6T1Tom + 37'22m + 9 0m+
6717 +311m—3mm+36m—911 +3m +m—-3<0.



Idea of the proof

» To decide if e is Multi-Prime ®-hidden in N, consider the
system of equations

ext+1=0mod p1,...,exn_1+1=0mod py_1

» Now consider the polynomial g(x,y) = e?x + ey + 1.
> It is clear that g(xo,y0) = 0 mod P where

(X07)/0 e 3 HXI +ZXI)<_[7ZXI

J>i
» From g(x,y), one can obtain a polynomial f(x,y) of the form
X + a1y + az such that f(xp, yo) = 0 mod P.
> Take two integers X = N 72 and Y = NY.

> It can be shown that X, Y is an upper bound on xp, yp
respectively.



Idea of the proof

» Now consider the set of polynomials
8hi(x,y) =y (x, y) Nmds kO,

fork=0,...,u,i=0,...,u— k+ t where u is a positive
integer and s, t are non-negative integers.

» Note that gk7,-(x0,y0) = 0 mod P?, where P = Hm_ll Pi

i=
» Now we construct the lattice L spanned by the coefficient
vectors of the polynomials gy i(xX, yY').



Idea of the proof

» One can check that the dimension of the lattice L is
u u—k+t

w—z Z 1%—+tu

» The determinant of L is

u u—k+t
det(L) = H H Xk . Yi . NmaX{S—k,O} — XSX YSYNSN’ (1)

k=0 i=0

u u—k+t
where sy = Z Z kwtf E

k=0 i=0
u u—k+t 2 u3

Y = Z Z ~ - Ka

u u— k+t
ts?  s°

2
sy = Z Z max{s—kO}NE—i—?—E
k=0 i=



Idea of the proof

» Using Lattice reduction on L by LLL algorithm, one can find
two non-zero vectors by, by such that

w 1
[1ba|| < |[b2f| < 24 (det(L))=-T.

» The vectors by, by are the coefficient vector of the
polynomials h1(xX,yY), ha(xX,yY) with

I OX yY)Il = [lbal] - and  [[h (X, y Y[ = [[ba]],

where hi(x, y), ha(x, y) are the integer linear combinations of
the polynomials gy i(x, y).

> Hence h(x0,Y0) = h2(x0, y0) = 0 mod P*.



Idea of the proof

» To find two polynomials hi(x,y), ha(x,y) which share the
root (xo, yo) over integers, using previous Lemmas we get the

condition
2% (det(L))T <
Vw'

» Note that w is the dimension of the lattice which we may
consider as small constant with respect to the size of P and
the elements of L.

» Thus, neglecting 2% and \/w, we get det(L) < (P®)~~ L.



Idea of the proof

> In general, it is considered that the condition det(L) < (P*®)*
is sufficient to find two polynomials hi(x, y), h2(x, y) such
that h1(xo, ¥0) = h2(x0, ¥0) = 0.

» Under the assumption that gcd(hy, ho) = 1, we can collect the
root (xo, yo) using resultant method.

» Let t = myu and s = T u where 71, 7> are non-negative reals.

» Now putting the value of t,s in the condition det(L) < P**,
we get the required condition.



Comparison of our upper bounds of § with Kiltz et al. and
Herrmann

Value Upper bound on §

of m Our result Herrmann Kiltz et al.
3 0.1283 0.1283 0.1283
4 0.0835 0.0833 0.0787
5 0.0608 0.0596 0.0535
6 0.0475 0.0454 0.0388
7 0.0387 0.0360 0.0295
8 0.0327 0.0295 0.0232
9 0.0283 0.0247 0.0188
10 0.0248 0.0211 0.0154

Table: Comparison of upper bound on § between our result and those of
Herrmann and Kiltz et al.



Comparison with Tosu and Kunihiro

» Tosu and Kunihiro (ACISP 2012) have studied Multi-Prime
®-Hiding Problem.

» They have mentioned that their bound is same as Herrmann
Method for m = 3,4,5.

» Hence for m = 4,5, our method is better.
» Also for larger m, our method is better.
» For an example take m = 10 with 4096 bit modulus.

» Attack of Tosu and Kunihiro works when size of e is more
than 314.

» However, in our case lower bound on size of e is
(0.1 — 0.0248) x 4096 = 308.
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