Some results on Related Key-IV pairs of Grain

Subhadeep Banik, Subhamoy Maitra and Santanu Sarkar

Applied Statistics Unit Indian Statistical Institute, Kolkata s.banik_r@isical.ac.in

Some results on Related Key-IV pairs of Grain

Grain Family of Stream Ciphers

Grain Family

- Proposed by Hell et al in 2005
- Part of E-stream's hardware portfolio
- Bit-oriented, Synchronous stream cipher
- The first version (v0) of the cipher was crypatanalysed
 - A Distinguishing attack by Kiaei et. al (Ecrypt : 071).
 - A State Recovery attack by Berbain et.al (FSE 2006).
- After this, the versions Grain v1, Grain 128, Grain 128a were proposed.

Grain Family of Stream Ciphers

General Structure of the Grain Family

Figure: Structure of Grain v1

Some results on Related Key-IV pairs of Grain

Grain at a glance

	Grain v1	Grain-128	Grain-128a
n	80	128	128
m	64	96	96
Pad	FFFF	FFFFFFF	FFFFFFE
$f(\cdot)$	$y_{t+62} \oplus y_{t+51} \oplus y_{t+38}$	$y_{t+96} \oplus y_{t+81} \oplus y_{t+70}$	$y_{t+96} \oplus y_{t+81} \oplus y_{t+70}$
	$\oplus y_{t+23} \oplus y_{t+13} \oplus y_t$	$\oplus y_{t+38} \oplus y_{t+7} \oplus y_t$	$\oplus y_{t+38} \oplus y_{t+7} \oplus y_t$
	$x_{t+62} \oplus x_{t+60} \oplus x_{t+52}$		
	$\oplus x_{t+45} \oplus x_{t+37} \oplus x_{t+33}$		
	$x_{t+28} \oplus x_{t+21} \oplus x_{t+14}$	$y_t \oplus x_t \oplus x_{t+26} \oplus$	$y_t \oplus x_t \oplus x_{t+26} \oplus$
	$x_{t+9} \oplus x_t \oplus x_{t+63}x_{t+60} \oplus$	$x_{t+56} \oplus x_{t+91} \oplus x_{t+96} \oplus$	$x_{t+56} \oplus x_{t+91} \oplus x_{t+96} \oplus$
	$x_{t+37}x_{t+33} \oplus x_{t+15}x_{t+9}$	$x_{t+3}x_{t+67} \oplus x_{t+11}x_{t+13}$	$x_{t+3}x_{t+67} \oplus x_{t+11}x_{t+13}$
g(·)	$x_{t+60}x_{t+52}x_{t+45} \oplus x_{t+33}$	$\oplus x_{t+17}x_{t+18} \oplus x_{t+27}x_{t+59}$	$\oplus x_{t+17}x_{t+18} \oplus x_{t+27}x_{t+59}$
	$x_{t+28}x_{t+21} \oplus x_{t+63}x_{t+60}$	$\oplus x_{t+40}x_{t+48} \oplus x_{t+61}$	$\oplus x_{t+40}x_{t+48} \oplus x_{t+61}$
	$x_{t+21}x_{t+15} \oplus x_{t+63}x_{t+60}$	$x_{t+65} \oplus x_{t+68} x_{t+84}$	$x_{t+65} \oplus x_{t+68} x_{t+84}$
	$x_{t+52}x_{t+45}x_{t+37} \oplus x_{t+33}$		$\oplus x_{t+88}x_{t+92}x_{t+93}x_{t+95}$
	$x_{t+28}x_{t+21}x_{t+15}x_{t+9} \oplus$		$\oplus x_{t+22}x_{t+24}x_{t+25}\oplus$
	$x_{t+52}x_{t+45}x_{t+37}x_{t+33}$		x _{t+70} x _{t+78} x _{t+82}
	x _{t+28} x _{t+21}		
	$y_{t+3}y_{t+25}y_{t+46} \oplus y_{t+3}$		
	$y_{t+46}y_{t+64} \oplus y_{t+3}y_{t+46}$	$x_{t+12}x_{t+95}y_{t+95} \oplus x_{t+12}$	$x_{t+12}x_{t+95}y_{t+94} \oplus x_{t+12}$
$h(\cdot)$	$x_{t+63} \oplus y_{t+25}y_{t+46}x_{t+63} \oplus$	$y_{t+8} \oplus y_{t+13}y_{t+20} \oplus x_{t+95}$	$y_{t+8} \oplus y_{t+13}y_{t+20} \oplus x_{t+95}$
	$y_{t+46}y_{t+64}x_{t+63} \oplus y_{t+3}$	$y_{t+42} \oplus y_{t+60}y_{t+79}$	$y_{t+42} \oplus y_{t+60}y_{t+79}$
	$y_{t+64} \oplus y_{t+46}y_{t+64} \oplus y_{t+64}$		
	$x_{t+63} \oplus y_{t+25} \oplus x_{t+63}$		
	$x_{t+1} \oplus x_{t+2} \oplus x_{t+4} \oplus$	$x_{t+2} \oplus x_{t+15} \oplus x_{t+36} \oplus$	$x_{t+2} \oplus x_{t+15} \oplus x_{t+36} \oplus$
zt	$x_{t+10} \oplus x_{t+31} \oplus x_{t+43}$	$x_{t+45} \oplus x_{t+64} \oplus x_{t+73}$	$x_{t+45} \oplus x_{t+64} \oplus x_{t+73}$
	$x_{t+56} \oplus h$	$\oplus x_{t+89} \oplus y_{t+93} \oplus h$	$\oplus x_{t+89} \oplus y_{t+93} \oplus h$

Keystream generating routines

• Key Loading Algorithm (KLA)

- *n*-bit key $K \to NFSR$
- *m*-bit (m < n) *IV* \rightarrow LFSR[0]...LFSR[m-1]
- p = n m bit pad $P \rightarrow \text{LFSR}[m]...\text{LFSR}[n-1]$

• Key Schedule Algorithm (KSA)

• For 2n clocks, output of h' is XOR-ed to the LFSR and NFSR update functions

•
$$y_{t+n} = f(Y_t) + z_t$$
 and $x_{t+n} = y_t + z_t + g(X_t)$

• Pseudo Random bitstream Generation Algorithm (PRGA)

• The feedback is discontinued

•
$$y_{t+n} = f(Y_t)$$
 and $x_{t+n} = y_t + g(X_t)$

•
$$z_t = h'(X^t, Y^t)$$

Cryptanalytic Results on Grain

- After the KSA the LFSR may become all zero (Zhang and Wang: Eprint 2009/109) and if so it will remain in this state forever.
 - **③** Start with a random PRGA initial state $B_0||0^n$. $(B_0 \in \{0,1\}^n)$
 - 2 Since KSA is invertible, run KSA backwards to get the state B||S||T $(B \in \{0,1\}^n, S \in \{0,1\}^m, T \in \{0,1\}^{n-m})$
 - **(3)** If T = P, then B, S is one such weak Key-IV.
 - Probability of Success : Once in 2^{n-m} trials.
- For such weak Key-IVs: Distinguisher in Grain
 - Grain v0 : 2^{12.6} Keystream bits
 - **2** Grain v1 : 2^{44.2} Keystream bits
 - 3 Grain v1 : 2⁸⁶ Keystream bits
- If the LFSR does not become all zero then the internal state has a period which is a multiple of 2ⁿ - 1 (Hu et al. CACR 2011)

Cryptanalytic Results on Grain

- Cube Attack on Grain-128 : Dinur/Shamir (FSE 2011)
- Fault Attack Grain-128 : Berzati et al. (IEEE HOST 2009), Karmakar et. al. (Africacrypt 2011)
- Slide Attack on Grain v1 : De Canniere et. al. (Africacrypt 2008)

Related Key-IV Pairs

Related Key-IV Pairs: Basic Idea

Given a Key-IV (K, IV) in Grain, one can efficiently obtain another Key-IV (K', IV') so that the generated output key-streams are

- almost similar in the initial part or
- exact shifts of each other throughout the key-stream generation.

We call these Key-IV pairs "related".

Related Key-IV pair in Grain: Algorithm Idea

- Both the KSA and PRGA routines in the grain family are reversible.
- The inital state vector of the **PRGA** is of 2*n* bits.
- Take any $S_0 \in_R \{0,1\}^{2n}$ and compute $S_0^K = \mathsf{KSA}^{-1}(S_0)$.
- If S_0^K is of the form K||IV||P then S_0 is a valid initial state of the **PRGA**.
- Since pad *P* is of *p*-bits, performing this experiment 2^{*p*} times is expected to yield one valid state.

Related Key-IV pair in Grain

- Consider two initial states $S_0, S_{0,\Delta}$ such that $S_0 \oplus S_{0,\Delta} = y_{n-1}$
- Then by the analysis of the differential trails, the following can be observed
 - In Grain v1, the states produce identical output bits in 75 out of initial 96 keystream bits, at rounds

 $k \in [0,95] \setminus \{15,33,44,51,54,57,62,69,72,73,75,76,80,82,\\83,87,90,91,93,94,95\}$

• In Grain-128, the states produce identical output bits in 112 out of initial 160 keystream bits, at rounds

 $k \in [0, 159] \setminus \{32, 34, 48, 64, 66, 67, 79, 80, 81, 85, 90, 92, 95, 96, 98, \\99, 106, 107, 112, 114, 117, 119, 122, 124, 125, 126, \\128, 130, 131, 132, 138, 139, 142, 143, 144, 145, 146, \\148, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159\}$

• Similar results in Grain-128a.

How to obtain related Key-IV pairs

Figure: Construction of the Related Key-IV function.

It is expected that 2^p invocations of this routine will yield a valid related Key-IV pair.

Example

Grain	Key	IV	S
v1	bf6689cead5ece39758c	bdfa0025ac44a4fe	52f71a93959ff900ffa9
			15c61a47522fffaf8a77
	e166bc5aa1952733ab2a	aed6838b948399a0	52f71a93959ff900ffa9
			15c61a47522fffaf8a76
128	60287a5ecf99724716a83bf81a9735cf	62b6f21aa5d6511f43cb51f0	7bb026436bc29b585e676e90961830e0
			7e86e48d2370eeda43ddd098a4b3e7d2
	dc260a0042112620772443311b933f08	c026cf1526950adee08fbe14	7bb026436bc29b585e676e90961830e0
			7e86e48d2370eeda43ddd098a4b3e7d3
128 <i>a</i>	54fd23a7e54f8fb096a45189b65f0fff	5a7fb7b76c303592b74422c3	36a0589046e177ae325a4b60154084cd
			fc74e3c99cad9a2f2fcbf394d44f15fd
	1c21c39e9404b1c347ee8dc594f3d040	9db86204107b9ac4d401cc2d	36a0589046e177ae325a4b60154084cd
			fc74e3c99cad9a2f2fcbf394d44f15fc

Single Key-IV with multiple Differentials

Figure: Construction of the Related Key-IV function.

- **1** Fix a randomly chosen Key-IV pair (**K**, **IV**).
- It is expected that a trial with 2^p randomly chosen differentials of weight at most 3, will yield a valid related Key-IV pair.

Example: Grain v1

Key	IV	S
bde8d3c319ff4d234706	f363180e262b6cc5	a74e7c7799b00f3c94e1
		bf0315b589691f82085a
b223a57ce1578708677a	371d2d93363b014b	a74e7c7799b00f3c94e1
		bf0315b589681582085a

 $\Delta=\{y_{47},y_{52},y_{54}\}$ and 55 of the first 80 keystream bits produced by both the Key-IV pairs are equal.

Key-IV pairs producing Shifted Keystream

- Each Key-IV in Grain is expected to have another related Key-IV that produces shifted Keystream
- Idea of the algorithm
 - Start with a Key-IV K || IV and run **KSA** to get S_0 initial PRGA state
 - Check if any i^{th} state of the PRGA S_i is also a valid PRGA initial state
 - That is check if $S_i^{\kappa} = \mathbf{KSA}^{-1}(S_i) = K_i ||IV_i||P$
 - If yes then K, IV and K_i, IV_i produce *i*-round shifted keystream
- It is expected that $i \approx 1 \rightarrow 2^p$ will yield one related pair.

How to obtain related Key-IV pair

Figure: Construction of the Related Key-IV function.

Example

Grain	Key-IV	Key-IV	Shift
v1	4567b66f51b956542319	f0f9d3bc4f2d0001e11d	72343
	96b81c6c97ed8853	67e95df014caf50a	$\approx 2^{16.14}$
128	fca5c3705794a26266f58d06f7e87b9f	990aa66d1d816db4d81cf42ab62937b2	236757088
	cf74e27475fc36e159069606	54345cb47fed0997dc1a73d4	$\approx 2^{27.82}$
128a	2b953abc7427e1c260b2995039766123	01f8cda5aa35dece20154a986e24e4d8	2642097831
	81a25f710a9a24aed1644d9f	4bf4f64d462d379453928a7a	$\approx 2^{31.30}$

Shifted Keystreams with small shifts

- Idea first given by De Cannière et al. [Africacrypt 08]
- After the first round of KSA, state is $B_1 || C_1$.
- If $C_1 = IV_1 || P$ for $IV_1 \in \{0, 1\}^m$, then $B_1 || C_1 = K_1 || IV_1 || P$ is another valid initial state of the KSA.
- If KSA starts with $B_1 || C_1$ instead of $B_0 || C_0$, it may produce one bit-shifted key-stream.
- Added sufficiency condition : The 1^{st} output bit produced by $B_0||C_0$ during the PRGA must be 0. This ensures that the 1^{st} PRGA state of $B_1||C_1$,equals 2^{nd} PRGA state using (B_0, C_0) .

Shifted Keystreams with small shifts

Conditions

- Both $C_1 = IV_1 || P$ and $z_0 = 0$ for 1 bit shifted stream \rightarrow Probability $\frac{1}{4}$.
- Similarly for *i*-bit-shifted streams the 2*i* conditions

A
$$C_i = IV_i || P$$
 for $i = 1, 2, ..., i$
B $z_{i-1} = 0$ for $i = 1, 2, ..., i$

- Probability $(\frac{1}{4})^i$ for randomly chosen Key-IVs.
- Can be improved to $(\frac{1}{2})^i$ by characterizing Key-IVs that satisfy [A].

Algorithm

Input: B_0, C_0 Output: B_i, C_i , for i = 1 to u

for
$$i = 1$$
 to u do
 $y^{[i]} \leftarrow f(Y^{[i-1]})$ where $Y^{[i-1]} = y_0^{[i-1]}, y_1^{[i-1]}, \dots, y_{n-1}^{[i-1]}$
 $x^{[i]} \leftarrow y_0^{[i-1]} + g(X^{[i-1]})$ where $X^{[i-1]} = x_0^{[i-1]}, x_1^{[i-1]}, \dots, x_{n-1}^{[i-1]}$
 $z^{[i]} \leftarrow \bigoplus_{a \in A} x_a^{[i-1]} + h(X^{[i-1]}, Y^{[i-1]})$
 $B_i = (x_0^{[i]}, x_1^{[i]}, \dots, x_{n-2}^{[i]}, x_{n-1}^{[i]}) \leftarrow (x_1^{[i-1]}, x_2^{[i-1]}, \dots, x_{n-1}^{[i-1]}, x^{[i]} + z^{[i]})$
 $C_i = (y_0^{[i]}, y_1^{[i]}, \dots, y_{n-2}^{[i]}, y_{n-1}^{[i]}) \leftarrow (y_1^{[i-1]}, y_2^{[i-1]}, \dots, y_{n-1}^{[i-1]}, y^{[i]} + z^{[i]})$
end

Algorithm 1: Obtaining Grain KSA Relations

The Solution

- Solve together algebraic equations of the form $y^{[i]} + z^{[i]} = 1$ for i = 1, 2...
- Using SAGE computer algebra software, solutions for upto i = 1, 2, ..., 12 could be found for Grain v1, 128.
- Attack does not work on Grain-128a because of the nature of the pad *P* used in the cipher.

Example

Grain	Key-IV	Key-IV	Shift
v1	8ca87875d334c9de694a	87875d334c9de694abbc	12
	5246f9d65f5eaef9	6f9d65f5eaef9fff	
128	b8d3dac27cbfeae545a508e9e551c095	3dac27cbfeae545a508e9e551c095753	12
	bba4d4a0465a4448627e22ed	4d4a0465a4448627e22edfff	

THANK YOU