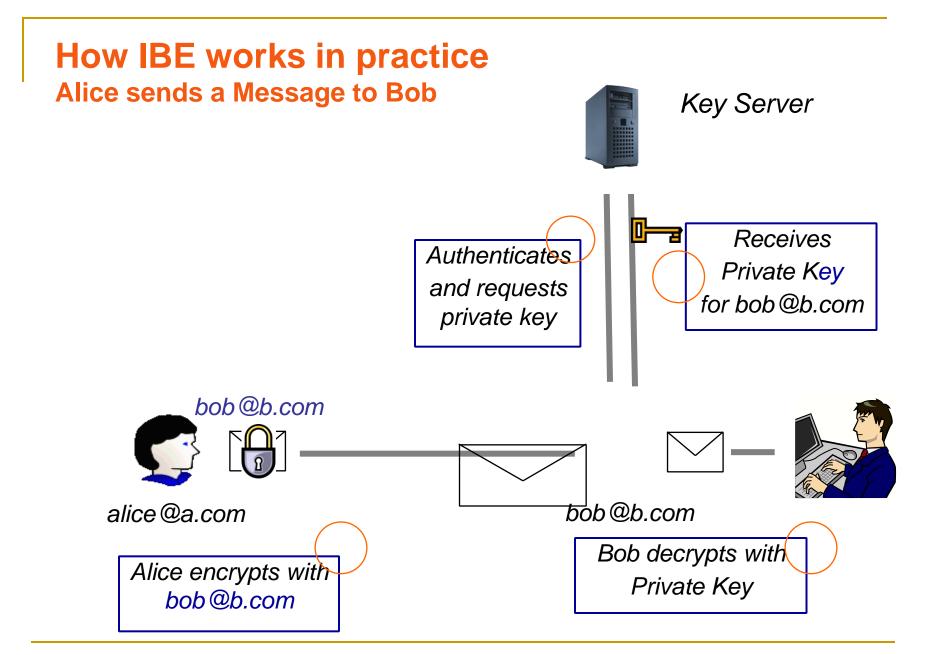
Lattice (H) IBE in the standard model with short public parameter

Kunwar Singh NIT Trichy



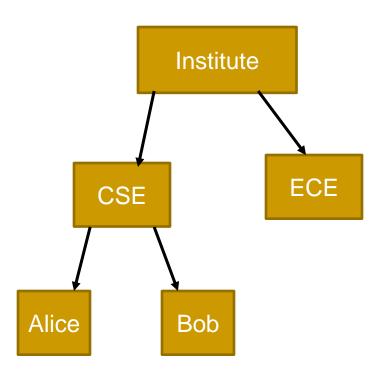
Hierarchical IBE (HIBE)

HIBE primitive [HL02, GS02]

- PKG (root) delegates the capability for providing private key generation and identity authentication to lower level entities.
- is the hierarchical extension of IBE schemes.
- There are no lower level public parameters. Only the PKG has public parameters.
- Alice can obtain her private key from her "local" key generation centre.

CSE : Lower level KGC

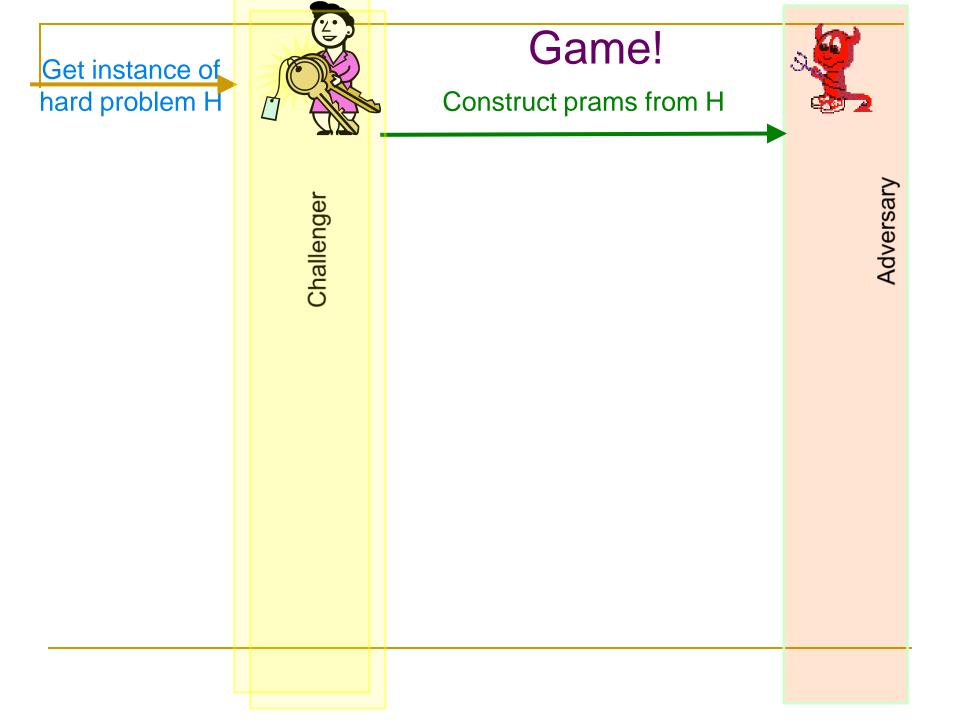
ID_{Alice} = (Institute,CSE,Alice)

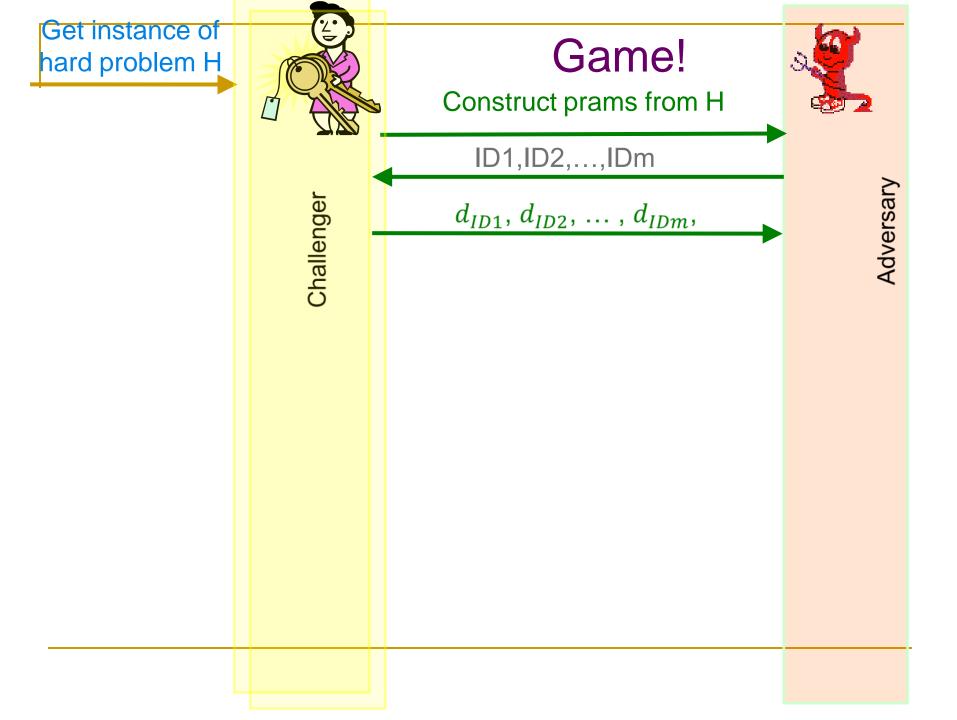


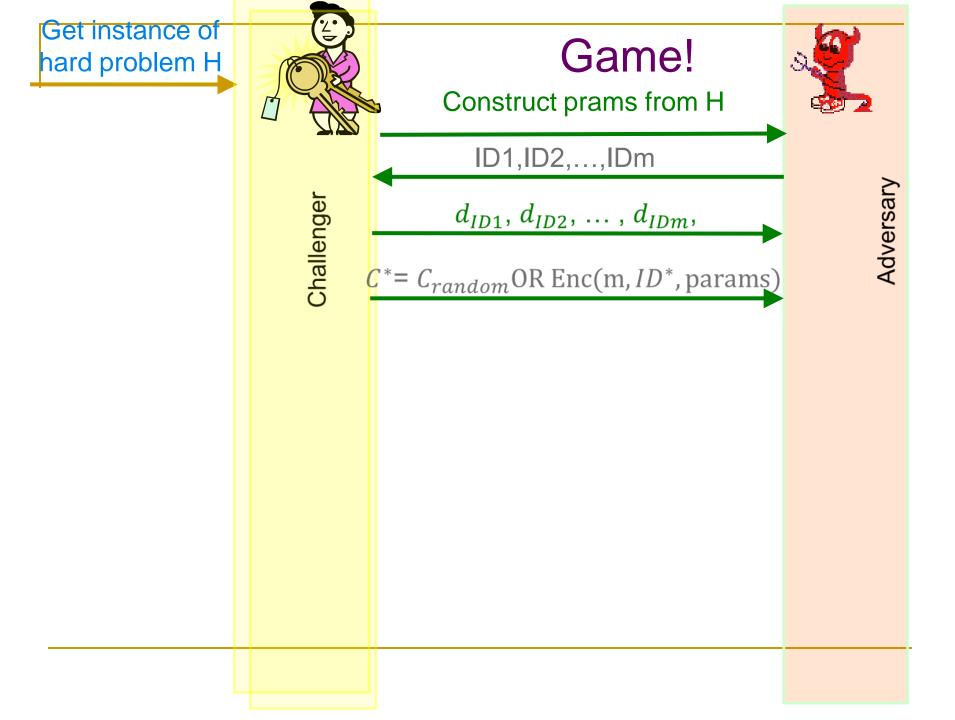
HIBE Scheme

- Setup(λ ,d): Outputs PP and MSK.
- Derive(ID, ID_{prefix of ID-ID}, PP): Outputs d_{ID}.
- Encrypt(ID_R,m,PP): Outputs ciphertext C.
- Decrypt(C, d_{IDr}, PP): Outputs m.

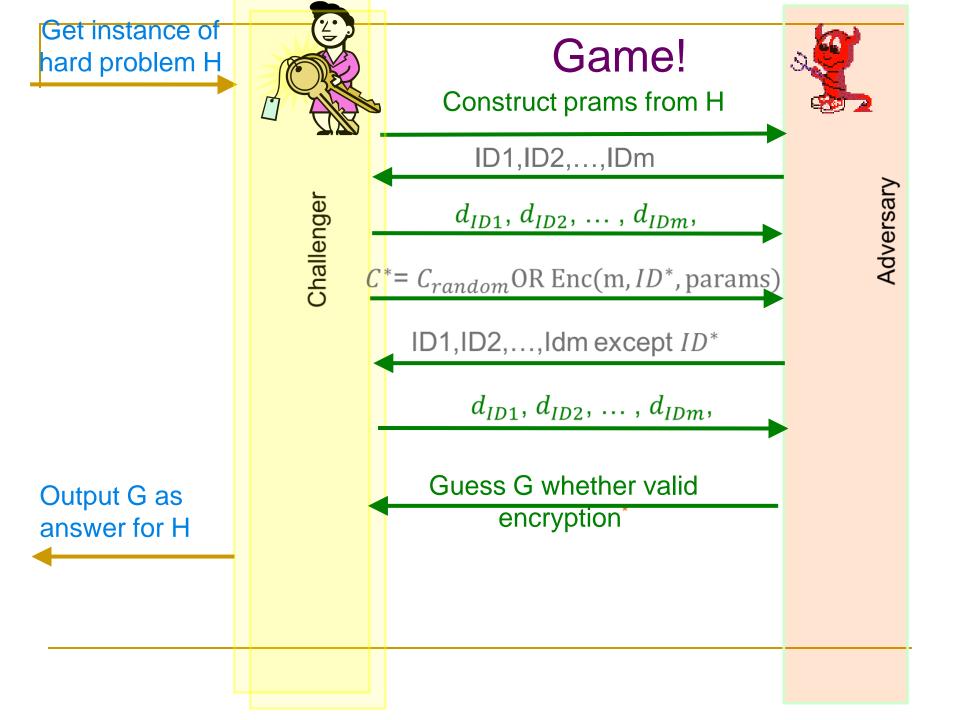
IBE: is special case of HIBE when depth is one.







Get instance of Game! hard problem H Construct prams from H ID1,ID2,...,IDm Adversary **Challenger** $d_{ID1}, d_{ID2}, \ldots, d_{IDm},$ C*= C_{random}OR Enc(m, ID*, params) ID1,ID2,...,Idm except ID* $d_{ID1}, d_{ID2}, \ldots, d_{IDm},$



Lattices

Motivations:

- Alternating option
- Strong hardness guarantees
- Efficient operations, parallelizable
- No quantum algorithm (yet)
- Fully Homomorphic Encryption (Secure Computation)

Lattices

Definition : A Lattice is set of integer linear combination of n linearly independent vectors.

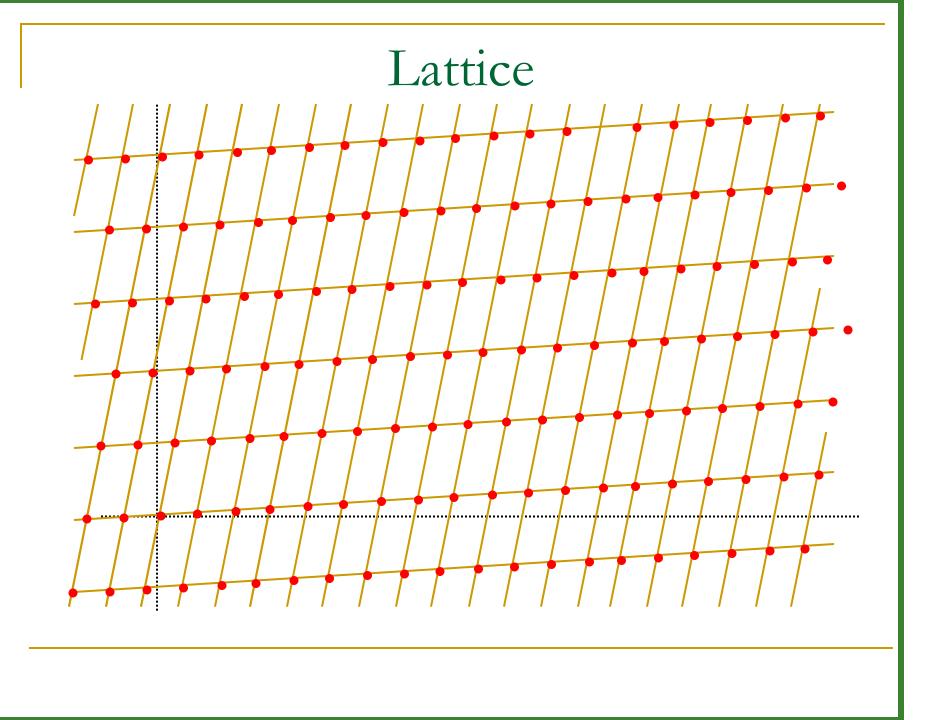
 $L = \{b_1 x_1 + \ldots + b_n x_n | x_i \text{ integers} \}$

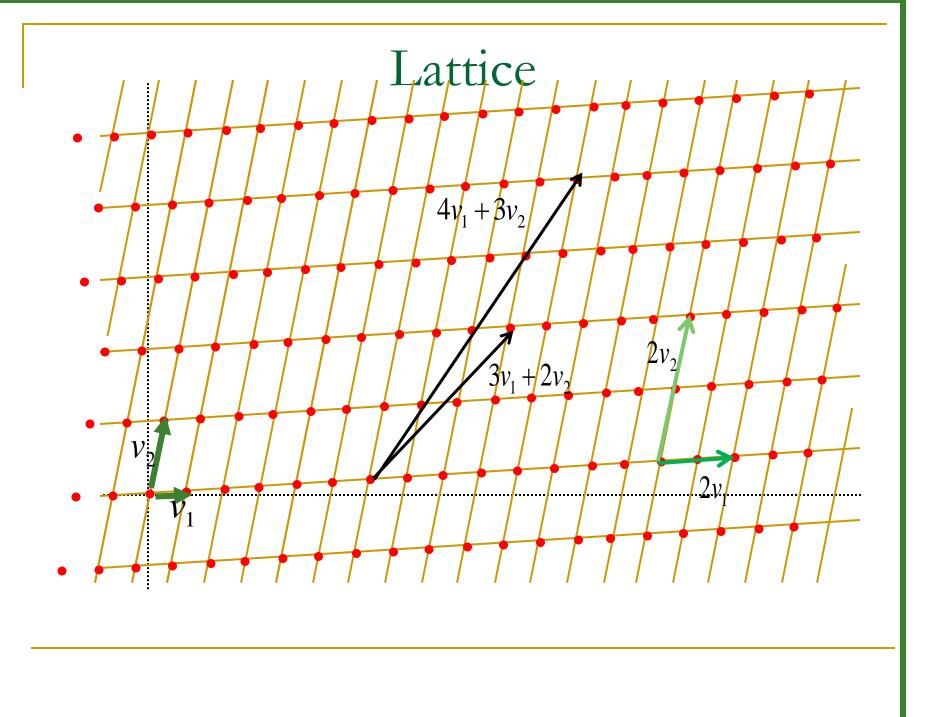
The vectors b_1, \ldots, b_n are a bases for L.

Equivalently, a lattice L is a set of points in n-dimension with periodic structure.

- Rank is number of independent vectors. Dimension is size of vector
- Full rank lattice, Rank = Dimension
- Lattices are represented by bases. Bases are not unique, but they can be obtained from each other by integer transforms of determinant ±1. Each Lattice has many basis.

$$\begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$$





Hard Problems in Lattice

- Shortest vector Problem (SVP): Find a shortest nonzero vector in lattice.
- Closest vector problem (CVP): Given a vector $w \in R^n$ that is not in L. Find a vector $v \in L$ that is closest to w.

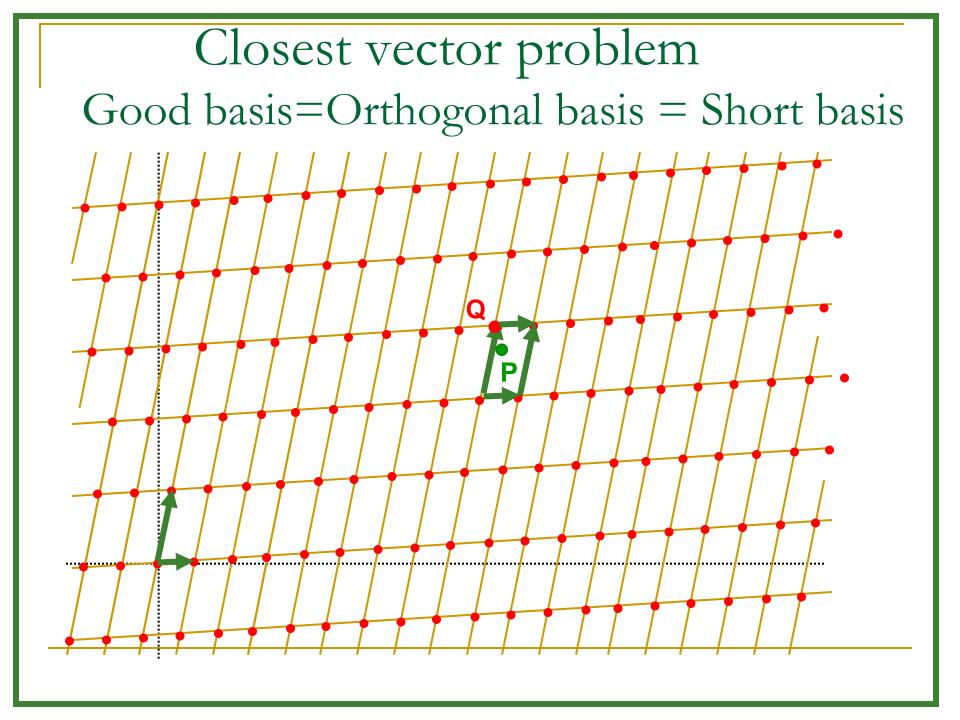
Babai's closest vertex algorithm: Let $L \subset R^n$ has a basis v_1, \ldots, v_n

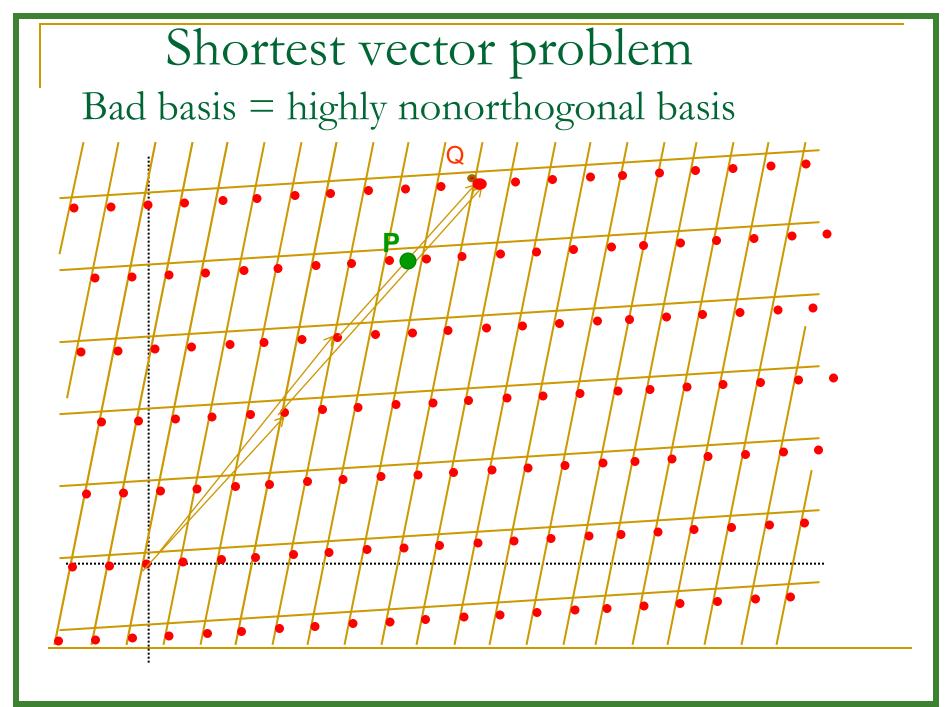
 v_n and let $w \in R^n$ be an arbitrary vector.

Write $w = t_1 v_1 + ... + t_n v_n$ with $t_1, ..., t_n \in R$ Set $a_i = [t_i]$ for i = 1,...,n.

Return the vector $a_1 v_1 + \dots + a_n v_n$.

- If the vectors in the basis are reasonably orthogonal to one another, then the algorithm solves some version of apprCVP.
- If basis are highly nonorthogonal, then the vector returned by algorithm is generally far from the closest lattice vector.





So cryptosystem based on lattice

- Make bad basis public key
- Make good basis private key
- Encrypt using bad basis, decrypt using good basis
- Recovering good basis from bad basis is hard !

Regev' Learning With Error (LWE)Problem

Search: Given an arbitrary number of 'approximate' random linear equation on $s \in Z_{17}^4$.

 $14s_{1} + 15s_{2} + 5s_{3} + 2s_{4} \approx 8 \pmod{17}$ $13s_{1} + 14s_{2} + 14s_{3} + 6s_{4} \approx 16 \pmod{17}$ $6s_{1} + 10s_{2} + 13s_{3} + 1s_{4} \approx 3 \pmod{17}$ \vdots \vdots \vdots

Find: $s \in Z_q^n$ is hard, when $n \ge 500$, q is polynomial in n.

More precisely:

- Fix a size parameter n ≥ 1, a modulus q ≥ 2 and an 'error' probability ditribution (Gaussian) X on Z.
- An oracle (who knows s) generates a uniform vector $a \in Z_q^n$ and noise $e \in Z$ according to χ .
- The Oracle outputs (a, s > + e).
- This procedure is repeated arbitrary number of times with s and fresh a and e.
- Find s is hard.

Decision version:

Distinguish between following two oracles:

Oracle 1: Outputs samples of the form $(a, \langle a, s \rangle + e)$, where s is fixed, *a* is uniform in \mathbb{Z}_q^n and $e \in \mathbb{Z}$ is fresh sample from \mathcal{X} .

Oracle 2: Outputs truly uniform samples from $Z_q^n \times Z_q$.

- The Small Integer Solution (SIS) problem: Given an integer q, a matrix $A \in Z_q^{n \times m}$, a real β , find a nonzero integer vector $e \in Z^m$ such that $Ae = 0 \mod q$ and $||e|| \le \beta$.
- The Inhomogeneous Small Integer Solution (ISIS) problem: Given an integer q, syndrome u, a matrix $A \in Z_q^{n \times m}$, a real β , find a nonzero integer vector $e \in Z^m$ such that $Ae = u \mod q$ and $||e|| \le \beta$.

LWE based Public Key Cryptosystem

System Parameter: Integers n (the security parameter), m (number of equations), q modulus, and a real $\alpha > 0$ (noise parameter).

- Private Key: is a vector $s \in_R Z_q^n$
- Public Key: consists of m samples $(a_i, b_i)_{i=1}^m$ from the LWE distribution with secret s. $a_i \in_R Z_q^n$ and $b_i \in Z_q$. OR $A \in_R Z_q^{n \times m}$ and $b = s^t A + e \in Z_q^m$.
- Encryption: To encrypt each bit of message, do the following. Choose a string $x \in_R \{0,1\}^m$.

Compute $u = \sum x_i a_i = Ax$, $u' = bit \left\lfloor \frac{q}{2} \right\rfloor + b^t x$.

• Decryption: Compute $u'-s^t u = bit \lfloor \frac{q}{2} \rfloor + ex$. Output is 0 if $u'-s^t u$ is closer to 0 than $\lfloor \frac{q}{2} \rfloor$ and 1 otherwise.

Dual Public Key Cryptosystem [GPV08]

System Parameter: Integers n (the security parameter), m (number of equations), q modulus, and a real $\alpha > 0$ (noise parameter).

- Private Key: is a vector $x \in_R \{0,1\}^m$.
- Public Key: is $A \in_R Z_q^{n \times m}$ and b = Ax.

- Encryption: To encrypt each bit of message, do the following. Choose a $s \in_R Z_q^n$. Compute $u = s^t A + e$, $u' = bit \left\lfloor \frac{q}{2} \right\rfloor + s^t b + e'$.
- Decryption: Compute $u'-ux = bit \lfloor \frac{q}{2} \rfloor + e'-ex$. Output is 0 if u'-ux is closer to 0 than $\lfloor \frac{q}{2} \rfloor$ and 1 otherwise.

Correctness:

• Error = $\sum x_i a_i = ex$. Error is atmost m normal error terms each with standard deviation αq and mean zero.

Sum of normal distribution is also normal distribution with mean zero and variance $(\sigma^2) = m\alpha^2 q^2 \le \frac{q^2}{(\log n)^3}$, since $\alpha = \frac{1}{\sqrt{n}(\log n)^2}$. $\frac{q}{4} = \frac{(\log n)^{3/2}}{4} \times \frac{q}{(\log n)^{3/2}} \ge 10\sigma$

Hence probability that error term is greater than q/4 is negligible.

LWE based IBE [GPV 08]

Random Oracle $H: \{0,1\}^* \to Z_q^n$ that maps identities to public key of the dual cryptosystem. u = H(id): public key.

- IBE Setup: Generate a trapdoor function f_A with trapdoor T. The master public key is A, master secret key is T (Algo TrapGen(q,n)). $f_A(e) = Ae \mod q$
- IBE Extract (A,T,id): Let u = H(id) and choose a decryption key $e \leftarrow f_A^{-1}(u)$ using preimage sampler with trapdoor T. Store (id,e) and return e.
- Encryption: Dual Encryption.
- Decryption: Dual Decryption.

Lattice IBE in the Standard Model for selective ID (ABB10)

- Master Secret Key : short basis for A₀.
- Two uniformly random $n \times m$ matrices A_1 and B in $Z_q^{n \times m}$ and a uniformly random n-vector $u \in Z_q^n$. $H: \{0,1\}^* \to Z_q^{n \times m}$.

Encryption Matrix $F_{id} = [A_0|A_1 + H(id)B]$

- Secret key for Id is short vector x such that $F_{id}x = u$.
- Sample left Algorithm (A_0, M_1, T, u) : Let $F_{id} = [A_0|M_1]$, The algorithm outputs x such that $F_{id}x = u$.

Simulation: Challenger Identity = Id*.

- Challenger does not have basis for A_0 but have basis for B.
- Choose $A_1 = A_0 R H(id^*)B$, where R is low norm.
- $F_{id} = [A_0 | A_0 R + (H(id) H(id^*))B]$
- Sample Right Algorithm (A_0, B, R, T_B, u) : Let $F_{id} = [A_0|A_0R + B]$. The algorithm outputs short vector x such that $F_{id}x = u$.

Adaptively Secure Lattice IBE in the Standard Model (ABB10)

- Waters showed how to convert the selectively secure IBE to an adaptively secure IBE.
- Using Waters technique,

$$F_{id} = \left[A_0 \middle| B + \sum_{i=1}^l b_i A_i \right]$$

where $id = (b_1, ..., b_l)$ in $\{1, -1\}^l$

Our Adaptively Secure Lattice IBE in the Standard Model with short Public Parameter

- ABB[10] requires I $n \times m$ matrices.
- Independent work by Chaterjee and Sarkar[05] and Naccache provided a variant of Waters IBE to reduce public parameters.
- The Idea is to divide an I-bit identity into I' block of I/I' so that size of public parameters can be reduced from I $n \times m$ to I' $n \times m$ matrices.
- Identity $id = (b_1, ..., b_l)$ where each b_i an $I/I' = \beta$ bit string.

Encryption Matrix:
$$F_{id} = \left| A_0 \right| B + \sum_{i=1}^{l'} b_i A_i$$

$$R_{id} = \sum_{i=1}^{l'} b_i R_i \in \left\{ -l'(2^\beta - 1), \dots, l'(2^\beta - 1) \right\}$$
where
$$R_i \in \left\{ -1, 1 \right\}^{m \times m}$$

To satisfy some requirements like error term should be less than q/4 etc.

New
$$q = q \left(2^{\beta} \frac{l'}{l}\right)^2 = q \left(\frac{2^{\beta}}{\beta}\right)^2$$

- When public parameters are reduced by factor β the value of q is increased by $\left(\frac{2^{\beta}}{\beta}\right)^2$ or number of bits in q is increased by $\left(\beta \log(\beta)\right)^2$.
- Cost of key generation, encryption and decryption is same as ABB[10].
- In our scheme computational cost increases because of increase in value of q.

Space-Time Trade-off

- Relative decrease in amount of space $=\frac{l-l'}{l}$.
- Relative increase in time

$$= \frac{Z_{q'} - Z_q}{Z_q} = \frac{(\beta - \log \beta)^2}{|Z_q|}$$

• For l = 160 and $|Z_q| = 512$.

2'	Relative decrease in space	Relative increase in time
8	95	48
16	90	8.71
32	80	1.40
64	60	0.27

Our Adaptively Secure Lattice Hierachical IBE in the Standard Model with short Public Parameters

- ABB[10] constructed selective -ID secure lattice HIBE.
- Using Waters idea, we convert selective-ID secure lattice HIBE to adaptively secure lattice HIBE.
- Then using blocking technique we reduce public parameters.

Setup(I, λ): TrapGen(q,n) generate a matrix A_0 and a short basis T.

- Select l''l+1 uniformly random $n \times m$ matrices $A_{l,1}, \dots, A_{l,l''}$ and B.

Select a uniformly random n-vector u. Derive: Encryption matrix $F_{id/id_l} = \left[A_0 \left| \sum_{i=1}^{l''} A_{1,i} b_{1,i} + B \right| ... \left| \sum_{i=1}^{l''} A_{l,i} b_{l,i} + B \right] \right]$

or
$$F_{id/id_l} = \left[F_{id/id_{l-1}} \left| \sum_{i=1}^{l^{"}} A_{l,i} b_{l,i} + B \right] \text{ where } id/id_l = (id_1, ..., id_l)$$

and $id_i = (b_{i,1}, ..., b_{i,l^{"}})$

Using SampleLeftAlgorithm, secret key for ID is answered.

Encryption:

$$C_0 = s^T u_0 + x + bit \lfloor q/2 \rfloor$$
$$C_1 = s^T F_{id} + \left[\frac{y}{z}\right]$$

Decryption:
$$C_0 - e_{id}^T C_1 \approx bit$$

Security

Simulation:

- Challenger does not have short basis for A₀ but have short basis for B.
- Choose $A_{k,i} = A_0 R_{k,i} + h_{k,i} B$.
- Encryption matrix for $id / id_l = (id_1, ..., id_l)$ is

$$F_{id/id_{l}} = \left[A_{0} \left|\sum_{i=1}^{l''} A_{1,i} b_{1,i} + B\right| \dots \left|\sum_{i=1}^{l''} A_{l,i} b_{l,i} + B\right]$$

Substituting the value of matrix $A_{k,i}$

$$F_{id/id_l} = \left[A_0 \middle| A_0 R_{id} + B h_{id}\right]$$

where $R_{id} = \sum_{i=1}^{l''} R_{1,i} b_{1,i} \left| \dots \right| \sum_{i=1}^{l''} R_{l,i} b_{l,i}$ and $h_{id} = (1 + \sum_{i=1}^{l''} h_{1,i} b_{1,i}) \left| \dots \right| (1 + \sum_{i=1}^{l''} h_{l,i} b_{l,i})$

Abort Resistant Hash Function

Definition: Let $H = \{\hbar : X \to Y\}$ be family of hash functions from X to Y where $0 \in Y$. For a set of Q+1 inputs $\bar{x} = (x_0, ..., x_Q) \in x^{Q+1}$, define the non-abort probability of \bar{x} as the quantity.

$$\alpha(\bar{x}) = \Pr[\hbar(x_0) = 0 \land \hbar(x_1) \dots \land \hbar(x_Q) \neq 0]$$

$$\hbar_{id} = \hbar(id_1, \dots, id_l) = (1 + \sum_{i=1}^{l''} h_{1,i}b_{1,i}) |\dots| (1 + \sum_{i=1}^{l''} h_{l,i}b_{l,i})$$

Lemma: Let q be prime and 0<Q<q. Then the hash function family defined is $\left(Q, \frac{1}{q}\left(1-\frac{Q}{q^{l}}\right), \frac{1}{q^{l}}\right)$ resistant.

Theorem for the Security of Our Scheme: Suppose there exixts a probabilistic algorithm A (Adversary) that wins the IND-ID-CPA game with advantage ε , making no more than $Q \ge q^l/2$ adaptive chosen queries. Then there is a probabilistic algorithm B that solves LWE problem in about the same time as A and with $\varepsilon' \ge \frac{\varepsilon}{4a^l}$.

Thank You!