Lattice (H) IBE in the standard model with short public parameter

Kunwar Singh
NIT Trichy

How IBE works in practice

 Alice sends a Message to Bob
Key Server

Hierarchical IBE (HIBE)

HIBE primitive [HL02, GS02]

- PKG (root) delegates the capability for providing private key generation and identity authentication to lower level entities.
- is the hierarchical extension of IBE schemes.
- There are no lower level public parameters. Only the PKG has public parameters.
- Alice can obtain her private key from her "local" key generation centre.

CSE : Lower level KGC

$$
\text { ID }{ }_{\text {Alice }}=(\text { Institute,CSE,Alice })
$$

HIBE Scheme

- Setup($\lambda, \mathrm{d})$: Outputs PP and MSK.
- Derive(ID, ID prefix of ID-ID, PP$)$: Outputs d_{ID}.
- Encrypt(ID $\left.\mathrm{R}_{\mathrm{R}}, \mathrm{m}, \mathrm{PP}\right)$: Outputs ciphertext C.
- Decrypt(C, $\left.\mathrm{d}_{\mathrm{IDr},}, \mathrm{PP}\right)$: Outputs m.

IBE: is special case of HIBE when depth is one.

Get instance of

Get instance of hard problem H

Get instance of hard problem H

Guess G whether valid encryption

Lattices

Motivations:

- Alternating option

Strong hardness guarantees
Efficient operations, parallelizable
\% No quantum algorithm (yet)

* Fully Homomorphic Encryption (Secure Computation)

Lattices

Definition : A Lattice is set of integer linear combination of n linearly independent vectors.

$$
\mathrm{L}=\left\{\mathrm{b}_{1} \mathrm{x}_{1}+\ldots+\mathrm{b}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}} \mid \mathrm{x}_{\mathrm{i}} \text { integers }\right\}
$$

The vectors b_{1}, \ldots, b_{n} are a bases for L.
Equivalently, a lattice L is a set of points in n -dimension with periodic structure.

- Rank is number of independent vectors. Dimension is size of vector
- Full rank lattice, Rank = Dimension
- Lattices are represented by bases. Bases are not unique, but they can be obtained from each other by integer transforms of determinant ± 1. Each Lattice has many basis.

$$
\left[\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
3 & 4 \\
2 & 3
\end{array}\right]
$$

Lattice

Hard Problems in Lattice

- Shortest vector Problem (SVP): Find a shortest nonzero vector in lattice.
- Closest vector problem (CVP): Given a vector $\mathrm{w} \in R^{n}$ that is not in L. Find a vector $\mathrm{v} \in \mathrm{L}$ that is closest to w .
Babai's closest vertex algorithm: $L e t \subset R^{n}$ has a basis v_{1}, \ldots,
v_{n} and let $\mathrm{w} \in R^{n}$ be an arbitrary vector.
Write $\mathrm{w}=\mathrm{t}_{1} \mathrm{v}_{1}+\ldots+\mathrm{t}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}$ with $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}} \in R$
Set $a_{i}=\left[t_{i}\right]$ for $i=1, \ldots, n$.
Return the vector $a_{1} v_{1}+\ldots+a_{n} v_{n}$.
- If the vectors in the basis are reasonably orthogonal to one another, then the algorithm solves some version of apprCVP.
- If basis are highly nonorthogonal, then the vector returned by algorithm is generally far from the closest lattice vector.

Closest vector problem

Good basis=Orthogonal basis $=$ Short basis

Shortest vector problem

Bad basis = highly nonorthogonal basis

So cryptosystem based on lattice

Make bad basis public key Make good basis private key Encrypt using bad basis, decrypt using good basis
Recovering good basis from bad basis is hard!

Regev' Learning With Error (LWE)Problem

Search: Given an arbitrary number of 'approximate' random linear equation on $s \in Z_{17}^{4}$.

$$
\begin{gathered}
14 s_{1}+15 s_{2}+5 s_{3}+2 s_{4} \approx 8(\bmod 17) \\
13 s_{1}+14 s_{2}+14 s_{3}+6 s_{4} \approx 16(\bmod 17) \\
6 s_{1}+10 s_{2}+13 s_{3}+1 s_{4} \approx 3(\bmod 17) \\
\vdots \\
\vdots \\
\vdots
\end{gathered}
$$

Find: $s \in Z_{q}^{n}$ is hard, when $\mathrm{n} \geq 500$, q is polynomial in n .

More precisely:

- Fix a size parameter $\mathrm{n} \geq 1$, a modulus $\mathrm{q} \geq 2$ and an 'error' probability ditribution (Gaussian) χ on Z.
- An oracle (who knows s) generates a uniform vector $a \in Z_{q}^{n}$ and noise $e \in Z$ according to χ.
- The Oracle outputs ($a, a\langle a, s\rangle+e$).
- This procedure is repeated arbitrary number of times with s and fresh a and e.
Find s is hard.

Decision version:

Distinguish between following two oracles:
Oracle 1: Outputs samples of the form ($a,\langle a, s\rangle+e$), where s is fixed, a is uniform in Z_{q}^{n} and $e \in Z$ is fresh sample from χ.
Oracle 2: Outputs truly uniform samples from $Z_{q}^{n} \times Z_{q}$.

- The Small Integer Solution (SIS) problem: Given an integer q, a matrix $A \in Z_{q}^{n \times n}$, a real β,find a nonzero integer vector $e \in Z^{m}$ such that $A e=0$ mod q and $\|e\| \leq \beta$.
- The Inhomogeneous Small Integer Solution (ISIS) problem: Given an integer q, syndrome u, a matrix $A \in Z_{q}^{n \times m}$, a real β,find a nonzero integer vector $e \in Z^{m}$ such that $A e=u \bmod q$ and $\|e\| \leq \beta$.

LWE based Public Key Cryptosystem

- System Parameter: Integers n (the security parameter), m (number of equations), q modulus, and a real $\alpha>0$ (noise parameter).
- Private Key: is a vector $s \epsilon_{R} Z_{q}^{n}$
- Public Key: consists of m samples $\left(a_{i}, b_{i}\right)_{i=1}^{m}$ from the LWE distribution with secret s. $a_{i} \in_{R} Z_{q}^{n}$ and $b_{i} \in Z_{q}$. OR $A \in_{R} Z_{q}^{n \times m}$ and $b=s^{t} A+e \in Z_{q}^{m}$.
- Encryption: To encrypt each bit of message, do the following. Choose a string $x \in_{R}\{0,1\}^{m}$.
Compute $u=\sum x_{i} a_{i}=A x, u^{\prime}=b i t\left[\frac{q}{2}\left\lfloor+b^{\prime} x\right.\right.$
- Decryption: Compute $u^{\prime}-s^{\prime} u=b i t\left[\frac{q}{2}\right]+e x$.

Output is 0 if $u^{\prime}-s^{\prime} u$ is closer to 0 than $\left\lfloor\frac{9}{2}\right\rfloor$ and 1 otherwise.

Dual Public Key Cryptosystem [GPV08]

- System Parameter: Integers n (the security parameter), m (number of equations), q modulus, and a real $\alpha>0$ (noise parameter).
- Private Key: is a vector $x \in_{R}\{0,1\}^{m}$.
- Public Key: is $\overline{A \epsilon_{R} Z_{q}^{n \pi n}}$ and $b=A x$.

Encryption Matrix

- Encryption: To encrypt each bit of message, do the following.

Choose a $s \in_{R} Z_{q}^{n}$.
Compute $u=s^{t} A+e, u^{\prime}=b i t\lfloor q / 2\rfloor+s^{t} b+e^{\prime}$.

- Decryption: Compute $u^{\prime}-u x=b i t[9 / 2]+e^{\prime}-e x$. Output is 0 if $u^{\prime}-u x$ is closer to 0 than $\left\lfloor\frac{q}{2}\right\rfloor$ and 1 otherwise.

Correctness:

- Error $=\sum x_{i} a_{i}=e x$. Error is atmost m normal error terms each with standard deviation aq and mean zero.
Sum of normal distribution is also normal distribution with mean zero and variance $\left(\sigma^{2}\right)=m \alpha^{2} q^{2} \leq \frac{q^{2}}{(\log n)^{3}}$, since $\alpha=\frac{1}{\sqrt{n}(\log n)^{2}}$.

$$
q / 4=\frac{(\log n)^{3 / 2}}{4} \times \frac{q}{(\log n)^{3 / 2}} \geq 10 \sigma
$$

- Hence probability that error term is greater than $\mathrm{q} / 4$ is negligible.

LWE based IBE [GPV 08]

Random Oracle $H:\{0,1\}^{*} \rightarrow Z_{q}^{n}$ that maps identities to public key of the dual cryptosystem. $u=H(i d)$: public key.

- IBE Setup: Generate a trapdoor function f_{A} with trapdoor T. The master public key is A, master secret key is T (Algo $\operatorname{TrapGen}(\mathrm{q}, \mathrm{n})$).

$$
f_{A}(e)=A e \bmod q
$$

- IBE Extract ($\mathrm{A}, \mathrm{T}, \mathrm{id}$): Let $u=H(i d)$ and choose a decryption key $e \leftarrow f_{A}{ }^{-1}(u)$ using preimage sampler with trapdoor T. Store (id,e) and return e.
- Encryption: Dual Encryption.
- Decryption: Dual Decryption.

Lattice IBE in the Standard Model for selective ID
 (ABB10)

- Master Secret Key : short basis for A_{0}.
- Two uniformly random $n \times m$ matrices A_{1} and B in $Z_{q}^{n \times m}$ and a uniformly random n-vector $u \in Z_{q}^{n} . \quad H:\{0,1\}^{*} \rightarrow Z_{q}^{n \times m}$.
- Encryption Matrix $F_{i d}=\left[A_{0} \mid A_{1}+H(i d) B\right]$
- Secret key for Id is short vector x such that $F_{i d} x=u$.
- Sample left Algorithm (A_{0}, M_{1}, T, u):

Let $F_{i d}=\left[A_{0} \mid M_{1}\right]$, The algorithm outputs x such that $F_{i d} x=u$.
Simulation: Challenger Identity $=\mathrm{Id}^{*}$.

- Challenger does not have basis for A_{0} but have basis for B .
- Choose $A_{1}=A_{0} R-H\left(i d^{*}\right) B$, where R is low norm.
- $\quad F_{i d}=\left[A_{0} \mid A_{0} R+\left(H(i d)-H\left(i d^{*}\right)\right) B\right]$
- Sample Right Algorithm ($\left.A_{0}, B, R, T_{B}, u\right)$: Let $F_{i d}=\left[A_{0} \mid A_{0} R+B\right]$. The algorithm outputs short vector x such that $F_{i d} x=u$.

Adaptively Secure Lattice IBE in the Standard Model (ABB10)

- Waters showed how to convert the selectively secure IBE to an adaptively secure IBE.
- Using Waters technique,

$$
F_{i d}=\left[A_{0} \mid B+\sum_{i=1}^{l} b_{i} A_{i}\right]
$$

where id $=\left(b_{1}, \ldots, b_{l}\right)$ in $\{1,-1\}^{l}$

Our Adaptively Secure Lattice IBE in the Standard

 Model with short Public Parameter- ABB[10] requires I $n \times m$ matrices.
- Independent work by Chaterjee and Sarkar[05] and Naccache provided a variant of Waters IBE to reduce public parameters.
- The Idea is to divide an l-bit identity into l' block of I/l' so that size of public parameters can be reduced from I $n \times m$ to l' $n \times m$ matrices.
- Identity $i d=\left(b_{1}, \ldots, b_{l}\right)$ where each b_{i} an $I / l^{\prime}=\beta$ bit string.
- Encryption Matrix:

$$
F_{i d}=\left[A_{0} \mid B+\sum_{i=1}^{l^{i}} b_{i} A_{i}\right]
$$

- $\quad R_{i d}=\sum_{i=1}^{l^{\prime}} b_{i} R_{i} \in\left\{-l^{\prime}\left(2^{\beta}-1\right), \ldots, l^{\prime}\left(2^{\beta}-1\right)\right\}$
where $R_{i} \in_{R}\{-1,1\}^{m \times m}$
- To satisfy some requirements like error term should be less than q/4 etc.

$$
\text { New } q=q\left(2^{\beta} \frac{l^{\prime}}{l}\right)^{2}=q\left(\frac{2^{\beta}}{\beta}\right)^{2} \text {. }
$$

- When public parameters are reduced by factor β the value of q is increased by $\left(\frac{2^{\beta}}{\beta}\right)^{2}$ or number of bits in q is increased by $(\beta-\log (\beta))^{2}$.
- Cost of key generation, encryption and decryption is same as ABB[10].
- In our scheme computational cost increases because of increase in value of q.

Space-Time Trade-off

- Relative decrease in amount of space $=\frac{l-l}{l}$.
- Relative increase in time $=\frac{Z_{q}-Z_{q}}{Z_{q}}=\frac{(\beta-\log \beta)^{2}}{\left|z_{q}\right|}$.
- For $l=160$ and $\left|z_{q}\right|=512$.

$\boldsymbol{l} \cdot$	Relative decrease in space	Relative increase in time
$\mathbf{8}$	95	48
16	90	8.71
32	80	1.40
64	60	0.27

Our Adaptively Secure Lattice Hierachical IBE in the Standard Model with short Public Parameters

- ABB[10] constructed selective -ID secure lattice HIBE.
- Using Waters idea, we convert selective-ID secure lattice HIBE to adaptively secure lattice HIBE.
- Then using blocking technique we reduce public parameters.
$\operatorname{Setup}(I, \lambda)$: $\operatorname{TrapGen}(\mathrm{q}, \mathrm{n})$ generate a matrix A_{0} and a short basis T .
- Select $l^{\prime} l+1$ uniformly random $n \times m$ matrices $A_{1,1}, \ldots, A_{l, l^{\prime \prime}}$ and B.
- Select a uniformly random n-vector u.

Derive: Encryption matrix $\quad F_{i d / i d_{i}}=\left[A_{0}\left|\sum_{i=1}^{t^{\prime \prime}} A_{1, i, i, i} b_{1, i}+B\right| . . \mid \sum_{i=1}^{l^{\prime \prime}} A_{l, i} b_{l, i}+B\right]$

$$
\begin{aligned}
\text { or } F_{i d / i d_{l}}=\left[F_{i d / i d_{l-1}} \mid \sum_{i=1}^{l^{\prime}} A_{l, i,} b_{l, i}+B\right] \text { where } \quad i d / i d_{l}=\left(i d_{1}, \ldots, i d_{l}\right) \\
\quad \text { and } i d_{i}=\left(b_{i, 1}, \ldots, b_{i, l l^{\prime}}\right)
\end{aligned}
$$

Using SampleLeftAlgorithm, secret key for ID is answered.

Encryption:

$$
\begin{aligned}
& C_{0}=s^{T} u_{0}+x+b i t\lfloor q / 2\rfloor \\
& C_{1}=s^{T} F_{i d}+\left[\frac{y}{z}\right]
\end{aligned}
$$

Decryption: $\quad C_{0}-e_{i d}^{T} C_{1} \approx b i t$

Security

Simulation:

- Challenger does not have short basis for A_{0} but have short basis for B.
- Choose $A_{k, i}=A_{0} R_{k, i}+h_{k, i} B$.
- Encryption matrix for $i d / i d_{l}=\left(i d_{1}, \ldots, i d_{l}\right)$ is

$$
F_{i d / i d_{l}}=\left[A_{0}\left|\sum_{i=1}^{l^{\prime \prime}} A_{1, i} b_{1, i}+B\right| \ldots \mid \sum_{i=1}^{l^{\prime \prime}} A_{l, i} b_{l, i}+B\right]
$$

Substituting the value of matrix $A_{k, i}$

$$
F_{i d i d_{l}}=\left[A_{0} \mid A_{0} R_{i d}+B h_{i d}\right]
$$

where

$$
\begin{aligned}
R_{i d} & =\sum_{i=1}^{l^{\prime \prime}} R_{1, i} b_{1, i}|\ldots| \sum_{i=1}^{l^{\prime \prime}} R_{l, i} b_{l, i} \\
\text { and } & h_{i d}=\left(1+\sum_{i=1}^{n^{\prime}} h_{1, i} b_{1, i}\right)|\ldots|\left(1+\sum_{i=1}^{l^{\prime \prime}} h_{l, i} b_{l, i}\right)
\end{aligned}
$$

Abort Resistant Hash Function

Definition: Let $H=\{\hbar: X \rightarrow Y\}$ be family of hash functions from X to Y where $0 \in Y$. For a set of $\mathrm{Q}+1$ inputs $\bar{x}=\left(x_{0}, \ldots, x_{Q}\right) \in x^{Q+1}$, define the non-abort probability of \bar{x} as the quantity.

$$
\begin{aligned}
& \alpha(\bar{x})=\operatorname{Pr}\left[\hbar\left(x_{0}\right)=0 \wedge \hbar\left(x_{1}\right) \ldots \wedge \hbar\left(x_{Q}\right) \neq 0\right] \\
& \hbar_{i d}=\hbar\left(i d_{1}, \ldots, i d_{l}\right)=\left(1+\sum_{i=1}^{l^{\prime \prime}} h_{1, i} b_{1, i}\right)|\ldots|\left(1+\sum_{i=1}^{l^{\prime \prime}} h_{l i,} b_{l, i}\right)
\end{aligned}
$$

Lemma: Let q be prime and $0<\mathrm{Q}<\mathrm{q}$. Then the hash function family defined is $\left(Q, \frac{1}{q}\left(1-\frac{Q}{q^{i}}\right), \frac{1}{q^{i}}\right)$ resistant.

Theorem for the Security of Our Scheme: Suppose there exixts a probabilistic algorithm A (Adversary) that wins the IND-ID-CPA game with advantage ε, making no more than $Q \geq q^{l} / 2$ adaptive chosen queries. Then there is a probabilistic algorithm B that solves LWE problem in about the same time as A and with $\varepsilon^{\prime} \geq \varepsilon / 4 q^{l}$.

Thank You!

