A Differential Fault Attack on Grain-128a using MACs

Subhadeep Banik, Subhamoy Maitra and Santanu Sarkar

Applied Statistics Unit Indian Statistical Institute, Kolkata s.banik_r@isical.ac.in

Subhadeep Banik

A Differential Fault Attack on Grain-128a using MACs

Slide 1 of 22

Grain Family of Stream Ciphers

Grain Family

- Proposed by Hell et al in 2005
- Part of E-stream's hardware portfolio
- Bit-oriented, Synchronous stream cipher
- The first version (v0) of the cipher was crypatanalysed
 - A Distinguishing attack by Kiaei et. al (Ecrypt : 071).
 - A State Recovery attack by Berbain et.al (FSE 2006).
- After this, the versions Grain v1, Grain 128, Grain 128a were proposed.

General Structure of the Grain Family

Figure: Structure of Grain v1

Grain-128a

The size of Key n = 128 bits and the IV is of size m = 96 bits. The value of pad used is P = 0xFFFF FFFE. The LFSR update rule is given by

$$y_{t+128} \stackrel{\Delta}{=} f(Y_t) = y_{t+96} + y_{t+81} + y_{t+70} + y_{t+38} + y_{t+7} + y_t.$$

he NFSR state is updated as follows

$$\begin{aligned} x_{t+128} &= y_t + g(x_{t+96}, x_{t+95}, x_{t+93}, x_{t+92}, x_{t+91}, x_{t+88}, x_{t+84}, x_{t+82}, \\ &\quad x_{t+78}, x_{t+70}, x_{t+68}, x_{t+67}, x_{t+65}, x_{t+61}, x_{t+59}, x_{t+48}, \\ &\quad x_{t+40}, x_{t+27}, x_{t+26}, x_{t+25}, x_{t+24}, x_{t+22}, x_{t+13}, x_{t+11}, \\ &\quad x_{t+3}, x_t), \end{aligned}$$

where $g(x_{t+96}, x_{t+95}, \dots, x_t)$ is defined as

$$g(X_t) = x_t + x_{t+26} + x_{t+56} + x_{t+91} + x_{t+96} + x_{t+3}x_{t+67} + x_{t+11}x_{t+13} + x_{t+17}x_{t+18} + x_{t+27}x_{t+59} + x_{t+40}x_{t+48} + x_{t+61}x_{t+65} + x_{t+68}x_{t+84} + x_{t+88}x_{t+92}x_{t+93}x_{t+95} + x_{t+22}x_{t+24}x_{t+25} + x_{t+70}x_{t+78}x_{t+82}.$$

T

Grain-128a

The keystream bit z_t is defined as

$$z_t = \bigoplus_{j \in A} x_{t+j} + y_{t+93} + h(x_{t+12}, y_{t+8}, y_{t+13}, y_{t+20}, x_{t+95}, y_{t+42}, y_{t+60}, y_{t+79}, y_{t+94})$$

where $\textit{A} = \{2, 15, 36, 45, 64, 73, 89\}$ and

$$h(s_0,\ldots,s_8)=s_0s_1+s_2s_3+s_4s_5+s_6s_7+s_0s_4s_8.$$

Keystream generating routines

• Key Loading Algorithm (KLA)

- *n*-bit key $K \rightarrow NFSR$
- *m*-bit (m < n) *IV* \rightarrow LFSR[0]...LFSR[m-1]
- p = n m bit pad $P \rightarrow \text{LFSR}[m]...\text{LFSR}[n-1]$

• Key Schedule Algorithm (KSA)

• For 2*n* clocks, output of *h*' is XOR-ed to the LFSR and NFSR update functions

•
$$y_{t+n} = f(Y_t) + z_t$$
 and $x_{t+n} = y_t + z_t + g(X_t)$

• Pseudo Random bitstream Generation Algorithm (PRGA)

• The feedback is discontinued

•
$$y_{t+n} = f(Y_t)$$
 and $x_{t+n} = y_t + g(X_t)$

•
$$z_t = h'(X^t, Y^t)$$

Authentication procedure

- Message of length $L = m_0, \ldots, m_{L-1}$. Set $m_L = 1$ as padding.
- Use 2 registers: accumulator and shift register of 32 bits each.
- Initialize accumulator: $a_0^j = z_j, 0 \le j \le 31$
- Initialize Shift Register: $r_j = z_{32+j}, 0 \le j \le 31$.
- Update Shift Register: $r_{t+32} = z_{64+2t+1}$.
- Update Accumulator: $a_{t+1}^j = a_t^j + m_t r_{t+j}$ for $0 \le j \le 31$ and $0 \le t \le L$.
- The final content of accumulator, a⁰_{L+1},..., a³¹_{L+1} is the output MAC.

Fault Attacks on Grain Family

- Fault Attack Grain-128 : Berzati et al. (IEEE HOST 2009),
- Fault Attack Grain-128 : Karmakar et. al. (Africacrypt 2011)
- Fault Attack on Grain v1, 128 : Banik et. al. (CHES 201)
- Fault Analysis of Grain-128a is tricky as the entire keystream is unavailable to the attacker
 - The first 64 and every alternate bit thereafter is used to compute MAC.

Fault Model

- The attacker is able to reset the system with the original Key-IV/ original Key and a different IV and start the cipher operations again.
- The attacker can inject a fault at any one random bit location of the LFSR.
- The fault in any bit may be reproduced at any later stage of operation, once injected.
- The attacker has full control over the timing of fault injection, i.e., it is possible to inject the fault precisely at any stage of the cipher operation.
- The attacker is able to obtain the original faulty MAC for any message of his choice.

Location Identification Finding the LFSR

Identifying Fault Location

Location Identification Finding the LFSR

Location Identification

- Apply a fault at a random LFSR location: imperative to determine fault location before proceeding.
- This is done by comparing the fault-free and faulty MACs of chosen messages.
- More than one fault at same location may be required to conclusively identify the location.

Location Identification Finding the LFSR

The Idea

•The MAC of the empty message $\sigma(\emptyset)$ is defined as

$$\sigma(\emptyset) = [z_0 + z_{32}, z_1 + z_{33}, \dots, z_{31} + z_{63}],$$

and similarly the MAC for the single zero bit message is given by

 $\sigma(0) = [z_0 + z_{33}, z_1 + z_{34}, \dots, z_{30} + z_{63}, z_{31} + z_{65}].$

• Consider 2 initial states $S_0, S_{0,\Delta_{127}}$ such that $S_0\oplus S_{0,\Delta_{127}}=y_{127}$

In all rounds $k \in [0, 65] \setminus \{33, 34, 48, 65\}$, the diifference does not affect output keystream bit.

- \Rightarrow Only 1st,2nd,16th bits of $\sigma(\emptyset)$ and $\sigma^{127}(\emptyset)$ may be different.
- \Rightarrow Only 0th,1st,15th,31st bits of $\sigma(0)$ and $\sigma^{127}(0)$ may be different.

Hence formulate signature vector Sgn_{127} = 9FFF 7FFF 3FFE FFFE.

 \bullet Idea is to match the sum of faultless and faulty keystream bits with all Sgn_{ϕ} for $\phi \in [0,127]$

Subhadeep Banik

Location Identification Finding the LFSR

Beginning the Attack

Location Identification Finding the LFSR

Some Notations

- $S_t = [x_0^t, x_1^t, \dots, x_{127}^t, y_0^t, y_1^t, \dots, y_{127}^t]$ state at round t of the PRGA. $x_i^t (y_i^t) \rightarrow i^{th}$ NFSR (LFSR) bit at t^{th} of the PRGA.
- When t = 0, $S_0 = [x_0, x_1, \dots, x_{127} \ y_0, y_1, \dots, y_{127}]$ for convenience.
- S_t^{ϕ} state round t of the PRGA, when a fault at LFSR location ϕ at round t.
- $z_i^{\phi} i^{th}$ faulty keystream bit, when a fault at LFSR location ϕ at round t.
- z_i is the fault-free i^{th} keystream bit.

Location Identification Finding the LFSR

Affine Differential Resistance

Definition

Consider a *q*-variable Boolean function *F*. A non-zero vector $\alpha \in \{0,1\}^q$ is said to be an affine differential of the function *F* if $F(\mathbf{x}) + F(\mathbf{x} + \alpha)$ is an affine function. A Boolean function is said to be affine differential resistant if it does not have any affine differential.

In Grain-128a

$$h(s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8) + h(s_0, s_1, 1 + s_2, s_3, s_4, s_5, s_6, s_7, s_8) = s_3$$
(1)

$$h(s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8) + h(s_0, s_1, s_2, 1 + s_3, s_4, s_5, s_6, s_7, s_8) = s_2$$
(2)

$$h(s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8) + h(s_0, s_1, s_2, s_3, s_4, s_5, 1 + s_6, s_7, s_8) = s_7$$
(3)

$$h(s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8) + h(s_0, s_1, s_2, s_3, s_4, s_5, s_6, 1 + s_7, s_8) = s_6$$
(4)

Therefore h is not affine differential resistant.

Subhadeep Banik

Location Identification Finding the LFSR

Determining the LFSR: An example

- Fault at LFSR location $\phi = 127$ at beginning of PRGA.
- At t = 48 differential travels to LFSR locn $79 \Rightarrow S_{48}$ and S_{48}^{127} differ in locn 48 (corresponds to s_7 of h) and no other location of interest.
- By (4), $\Rightarrow z_{48} + z_{48}^{127} = h() + h(1 + s_7) = s_6 = y_{60}^{48} = y_{108}.$
- Also at t = 16, differential does not affect any location of interest $\Rightarrow z_{16} = z_{16}^{127}$.
- Now the sum of bit *d* = 16 of the original and faulty MACs of the null messsage is

$$\sigma(\emptyset) \oplus \sigma^{127}(\emptyset) = z_{16} + z_{48} + z_{16}^{127} + z_{48}^{127} = y_{108}.$$

 This gives one LFSR state bit of the initial PRGA state. By suitably varying φ, d 115 out of 128 bits can be recovered.

Location Identification Finding the LFSR

Finding the remaining LFSR bits

- Only State bits not found are y_0, y_1, \ldots, y_{12} .
- $orall i \in [0,12]$, Fault at $\phi = 109 + i
 ightarrow$ sum of $(17 + i)^{th}$ bit of

$$\sigma(\emptyset) + \sigma^{109+i}(\emptyset) = y_{127}^{1+i}$$

• By LFSR update rule of Grain-128a we have

$$y_{127}^{1+i} = y_{96+i} + y_{81+i} + y_{70+i} + y_{38+i} + y_{7+i} + y_i, \quad \forall i \in [0, 12].$$

- In the last equation y_{12} is the only unknown: value calculated easily.
- Similarly y_{11} is the only unknown in the previous equation etc.

Location Identification Finding the LFSR

Determining the NFSR

We have, $h(\mathbf{s}) = s_0 \cdot u(\mathbf{s}) + v(\mathbf{s})$, where

 $u(\mathbf{s}) = s_1 + s_4 s_8, \ v(\mathbf{s}) = s_2 s_3 + s_4 s_5 + s_6 s_7$

$$u(s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8) + u(s_0, 1 + s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8) = 1,$$
(5)

$$v(s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8) + v(s_0, 1 + s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8) = 0.$$
(6)

Also $h(\mathbf{s}) = s_4 \cdot U(\mathbf{s}) + V(\mathbf{s})$, where

 $U(\mathbf{s}) = s_5 + s_0 s_8, \ V(\mathbf{s}) = s_2 s_3 + s_4 s_5 + s_6 s_7$

$$U(s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8) + U(s_0, s_1, s_2, s_3, s_4, 1 + s_5, s_6, s_7, s_8) = 1,$$
(7)

$$V(s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8) + V(s_0, s_1, s_2, s_3, s_4, 1 + s_5, s_6, s_7, s_8) = 0.$$
(8)

Location Identification Finding the LFSR

Determining the NFSR: An example

- Fault at LFSR location $\phi = 8$ at beginning of PRGA.
- At t = 0 S_0 and S_0^8 differ in locn 8 (corresponds to s_1 of h) and no other location of interest.
- By (5,6), \Rightarrow $z_0 + z_0^8 = s_0 \cdot u() + v() + s_0 \cdot u(1 + s_1) + v(1 + s_1) = s_0 = x_{12}.$
- Also at t = 32, differential does not affect any location of interest ⇒ z₃₂ = z₃₂⁸.
- Now the sum of bit *d* = 0 of the original and faulty MACs of the null messsage is

$$\sigma(\emptyset) \oplus \sigma^8(\emptyset) = z_0 + z_{32} + z_0^8 + z_{32}^8 = \mathbf{x_{12}}.$$

• This gives one NFSR state bit of the initial PRGA state. By suitably varying ϕ , d 97 out of 128 bits can be recovered.

Location Identification Finding the LFSR

Finding the remaining NFSR bits and Secret Key

- Only State bits not found are $x_0, x_1, ..., x_{11}, x_{76}, x_{77}, ..., x_{94}$.
- The remaining bits may be determined by a combination of solving equations and querying the device for MACs of other messages (Please refer to the paper).
- After the initial PRGA state is found we try to find the Secret Key.
- It is well known that the KSA routine of Grain is both one to one and Invertible.

$$S_0 \stackrel{KSA^{-1}}{\rightarrow} Secret Key$$

Location Identification Finding the LFSR

THANK YOU