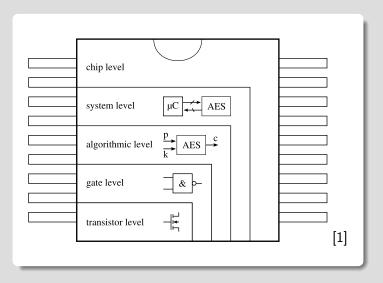


A Novel Circuit Design Methodology to Reduce Side Channel Leakage 02.11.2012

Ruhr-Universität Bochum Analogue Integrated Circuits Research Group

Andreas Gornik, Ivan Stoychev and Jürgen Oehm



- 1 Introduction
- 2 Analytical Concept
- 3 Methodology
- 4 Evaluation Results
- 5 Improvement of a Logic Gate
- 6 Conclusion & Outlook

RUB

Introduction

Design Levels for Countermeasures Against Side-Channel Leakage

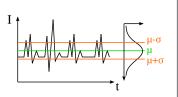
1 Introduction

- 2 Analytical Concept
- 3 Methodology
- 4 Evaluation Results
- 5 Improvement of a Logic Gate
- 6 Conclusion & Outlook

How can the Leakage be Measured? (1)

Normalized Energy Deviation (NED) [2]:

$$NED = rac{\max(energy/cycle) - \min(energy/cycle)}{\max(energy/cycle)}$$

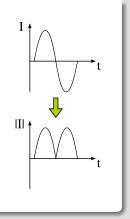

- only maximum and minimum energy are compared
 - \Rightarrow All values in between are ignored

How can the Leakage be Measured? (2)

Normalized Standard Deviation (NSD) [2]:

 $NSD = \frac{\sigma}{\mu}$

- Analyzes several clock cycles
- \blacksquare Based on the standard deviation σ
 - $\Rightarrow\,$ Cannot show the absolute difference between transitions
 - $\Rightarrow\,$ Switching activity of the analyzed circuit changes results
- \blacksquare Standard deviation σ is divided by mean μ
 - \Rightarrow Large mean (generated by e.g. static current consumption) can falsify results



RUE

How can the Leakage be Measured? (3)

- Only dynamic current is considered
 ⇒ Static current cannot falsify results
- Dynamic current that flows into a circuit:

$$\mathit{flow}(X
ightarrow Y) = \int\limits_{t_0}^{t_0+T} \lvert I_{\mathrm{dyn}}
vert \, dt$$

Transition Matrix

Matrix for all possible transitions for a 2 input gate:

$$\mathbf{T} = \begin{pmatrix} 0 \to 0 & 0 \to 1 & 0 \to 2 & 0 \to 3 \\ 1 \to 0 & 1 \to 1 & 1 \to 2 & 1 \to 3 \\ 2 \to 0 & 2 \to 1 & 2 \to 2 & 2 \to 3 \\ 3 \to 0 & 3 \to 1 & 3 \to 2 & 3 \to 3 \end{pmatrix}$$

- Example: $3 \rightarrow 2$ stands for $\binom{A}{B} = \binom{1}{1} \rightarrow \binom{1}{0}$
- Gates with 3 input signals: 8×8 matrix
 - \Rightarrow Hard to compare all transitions with each other
 - \Rightarrow Metric must be extended

RUHR-UNIVERSITÄT BOCHUM

Verbosity and Relative Verbosity (RV)

Difference between two current peaks:

verbosity =
$$\frac{1}{T} \cdot \int_{t_0}^{t_0+T} ||I_{\mathrm{dyn},1}| - |I_{\mathrm{dyn},2}|| dt$$

Relative (normalized) verbosity of two current peaks:

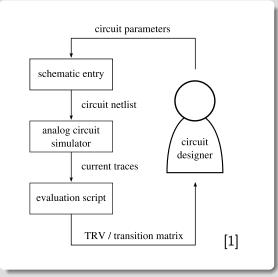
$$RV = \frac{\int_{t_0}^{t_0+T} ||I_{\rm dyn,1}| - |I_{\rm dyn,2}|| \ dt}{\int_{t_0+T}^{t_0+T} |I_{\rm dyn,1}| + |I_{\rm dyn,2}| \ dt}$$

Total Relative Verbosity (TRV)

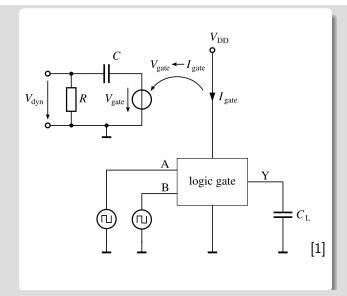
• Verbosity of all possible combinations of transitions:

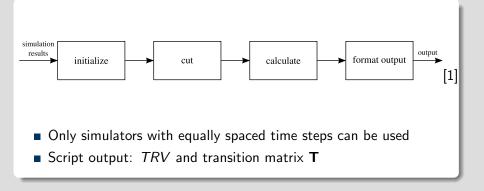
$$TRV = \frac{1}{N} \cdot \sum_{i=1}^{n-1} \sum_{k=i}^{n-1} \frac{\int_{t_0}^{t_0+T} ||I_{dyn,i}| - |I_{dyn,k+1}|| \ dt}{\int_{t_0}^{t_0+T} |I_{dyn,i}| + |I_{dyn,k+1}| \ dt}$$

N: number of all possible combinations of transitions
n: number of all possible combinations of input signals


RUE

- 1 Introduction
- 2 Analytical Concept
- 3 Methodology
 - 4 Evaluation Results
- 5 Improvement of a Logic Gate
- 6 Conclusion & Outlook


Evaluation Methodology



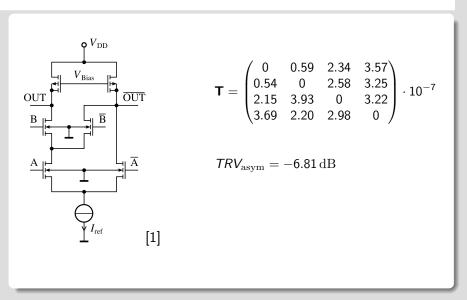
Andreas Gornik et al. | A Novel Circuit Design Methodology to Reduce Side Channel Leakage | 02.11.2012

Test Circuit for Logic Gates

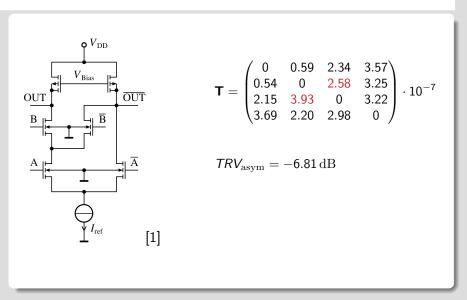
Structure of the Used Evaluation Script

- 1 Introduction
- 2 Analytical Concept
- 3 Methodology
- 4 Evaluation Results
- 5 Improvement of a Logic Gate
- 6 Conclusion & Outlook

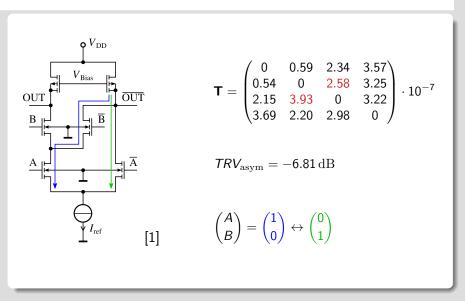
Evaluation Results

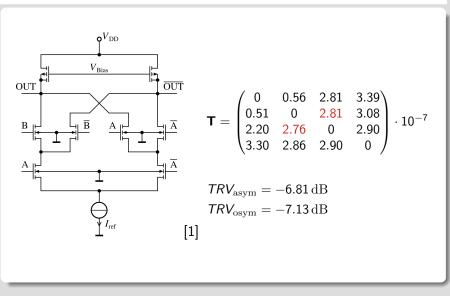

	$TRV \ / \ dB$		
logic circuit	CMOS	STSCL	CRSABL
2 input NAND	-5.255	-8.992	-22.655
2 input NOR	-5.031	-8.995	-23.129
AO21	-6.730	-7.780	-24.374
AO31	-7.678	-7.394	-26.495
MAOI	-7.896	-8.461	-25.047
MOAI	-7.785	-8.484	-25.894
S-Box	-7.956	-10.167	-27.014

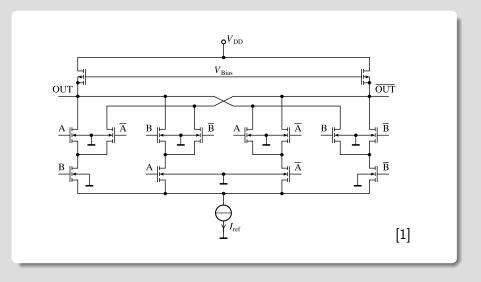
[1]



- 1 Introduction
- 2 Analytical Concept
- 3 Methodology
- 4 Evaluation Results
- 5 Improvement of a Logic Gate
- 6 Conclusion & Outlook


Asymmetric 2 Input STSCL NAND


Asymmetric 2 Input STSCL NAND


Asymmetric 2 Input STSCL NAND

Output-Symmetric 2 Input STSCL NAND

Symmetric 2 Input STSCL NAND

Symmetric 2 Input STSCL NAND

Transition matrix:

.

$$\mathbf{T} = \begin{pmatrix} 0 & 1.04 & 1.02 & 3.11 \\ 0.97 & 0 & 2.31 & 2.67 \\ 0.97 & 2.32 & 0 & 2.67 \\ 3.10 & 2.23 & 2.21 & 0 \end{pmatrix} \cdot 10^{-7}$$

 $TRV_{asym} = -6.81 \text{ dB}$ $TRV_{osym} = -7.13 \text{ dB}$ $TRV_{sym} = -8.99 \text{ dB}$

- 1 Introduction
- 2 Analytical Concept
- 3 Methodology
- 4 Evaluation Results
- 5 Improvement of a Logic Gate
- 6 Conclusion & Outlook

Conclusion & Outlook

Conclusion:

- New methodology is able to characterize side channel leakage on the transistor level
 - For a gate: TRV
 - For a transition: transition matrix
- Results show the same tendency for leakage as other methodologies
- Methodology helps circuit designers to fine-tune circuits

Outlook:

- Extend methodology for non constant power supply
- Take mismatch effects into account

Thank you for your attention.

 Gornik, A., Stoychev, I., Oehm, J.: A Novel Circuit Design Methodology to Reduce Side Channel Leakage.
 In Regulation A Security Drivery and April 1998

In Bogdanov, A., Sanadhya, S., eds.: Security, Privacy, and Applied Cryptography Engineering. Lecture Notes in Computer Science. Springer Berlin Heidelberg (2012) 1–15

[2] Kris Tiri, Moonmoon Akmal, Ingrid Verbauwhede: A Dynamic and Differential CMOS Logic with Signal Independent Power Consumption to Withstand Differential Power Analysis on Smart Cards.

In: Proceedings of the 29th European Solid-State Circuits Conference

- ESSCIRC 2002. (2002) 403-406