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What is a Protein ?

I Amino acids form
peptide bonds to
polymerize.

I Proteins are
poly-peptide
molecules.

I Represented by
sequence of
residues.

I Poly-peptide
chains fold to form
3D structures.



Protein Structure

Myoglobin
(1DWT):
Tertiary
Structure



Protein Structure

Simplification: Cα

atoms and topology.
Loss:

I Side chain
I Secondary

structure
Gain: Simplicity
Past uses: SSAP, DALI,
CE, etc.



Pointsets

Problem with Topology:
non-topological
similarities are not
detected.
New model: Pointset.
Gain: Generality
(Active sites ?)
Past uses: Cα match.



Abstraction

Protein Structure
A protein structure X having n residues is represented as
X = {x1, . . . ,xn} where xi ∈ R3,1 ≤ i ≤ n.

Each xi gives position of Cα atom of the i th residue with respect
to some arbitrary coordinate system.



Structural Alignment

Alignment between two proteins, 2PEL and 5CNA, showing
circular permutations.
Alignment is defined by a set of equivalences.
Optimal superposition can be calculated easily.



Structural Alignment

Structural Alignment

A structural alignment between two proteins X A and X B is a 1-1
mapping φ : {i |xA

i ∈ X̄ A} → {j |xB
j ∈ X̄ B}, where X̄ A ⊆ X A and

X̄ B ⊆ X B.



Structural Alignment

Structural Alignment

A structural alignment between two proteins X A and X B is a 1-1
mapping φ : {i |xA

i ∈ X̄ A} → {j |xB
j ∈ X̄ B}, where X̄ A ⊆ X A and

X̄ B ⊆ X B.

Root Mean Square Deviation

RMSD(φ) =

√√√√ 1
|X̄ A|

∑
(i,j)∈Φ

(xA
i − T (xB

j ))2

where T is the optimal transformation.

Can we use this as a score function ?



Structural Alignment

Structural Alignment

A structural alignment between two proteins X A and X B is a 1-1
mapping φ : {i |xA

i ∈ X̄ A} → {j |xB
j ∈ X̄ B}, where X̄ A ⊆ X A and

X̄ B ⊆ X B.

Root Mean Square Deviation

RMSD(φ) =

√√√√ 1
|X̄ A|

∑
(i,j)∈Φ

(xA
i − T (xB

j ))2

where T is the optimal transformation.

Problem: Both φ and T are unknown and interdependent.



Another Score

Distance Root Mean Square Deviation

RMSDD(φ) =

√√√√ 1
|P̄A|2

∑
xA

i ,x
A
j ∈X̄ A

(dA
ij − dB

φ(i)φ(j))2

where, dA
ij is the distance between residues xA

i and xA
j .



Graph and Distance Matrix



Graph and Distance Matrix

DALI Scoring function

Known: Neighboring residues interact with greater force than
far away ones.

SDALI(φ) =
∑

xA
i ,x

A
j ∈X̄ A

(
0.2−

|dA
ij − dB

φ(i)φ(j)|
d̄ij

)
exp

−( d̄ij

20

)2


Maximize SDALI over all φ.
DALI uses heuristics which degrade it’s performance. Also, not
amenable to theoretical analysis.

Observation from DALI score
Neighboring residues affect the score more than far away ones.
So, use nearness instead of distance function.



Graph and Distance Matrix
Nearness matrix
The adjacency or nearness matrix A of a given protein
X = {x1, . . . ,xn} is defined as:

Aij = e
−dij
α , α > 0

I An exponentially decreasing function of d between 0 and 1.
I A continuous and invertible function.

Scoring function

S(φ) =
∑

xA
i ,x

A
j ∈X̄ A

T − (AA
ij −AB

φ(i)φ(j))2

Maximize S(φ) over all φ. T is a known threshold.



Scoring function

Scoring function

S(φ) =
∑

xA
i ,x

A
j ∈X̄ A

T − (AA
ij −AB

φ(i)φ(j))2

Maximize S(φ) over all φ. T is a known threshold.

Graph Matching

Given two weighted graphs GA and GB, find their maximal
subgraphs ḠA and ḠB and a mapping φ between vertices of ḠA

and ḠB such that

|AA
ij −AB

φ(i)φ(j)| < T , i , j ∈ ḠA



Graph Matching



Graph Matching

Graph Matching

Given two weighted graphs GA and GB, find their maximal
subgraphs ḠA and ḠB and a mapping φ between vertices of ḠA

and ḠB such that

|AA
ij −AB

φ(i)φ(j)| < T , i , j ∈ ḠA

Intractable
This is the optimization version of the well known NP-Hard
problem subgraph isomorphism. Thus a polynomial time
algorithm to find an exact solution of this problem does not exist
unless P = NP.



Graph Matching

Assumption

Two structures have same number of residues, and all of them
are aligned.

Weighted Graph Matching (Umeyama 88)[4]

S(P) = ‖PAAPT −AB‖2

Minimize S(P) over all permutation matrices P.



Spectral Solution

Motivation (Umeyama 88)[4]
Theorem 1 Let AA and AB be full rank adjacency matrices,
with eigenvalue decompositions

AA = UAΛAUAT

AB = UBΛBUBT

Q = UBSUAT minimizes ‖QAAQT −AB‖2 for all orthogonal
matrices Q. Here S ∈ S = {diag(s1, . . . , sn)|si = 1 or − 1}.
Theorem 2 Let ŪA and ŪB be matrices having absolute values
of the entries in matrices UA and UB. Let P̂ be the optimal
permutation matrix in the case of a perfect match, then P̂
maximizes

tr(PT ŪBŪAT )



Spectral Solution

Corollary

Permutation π̂ corresponding to P̂ can be obtained by:

min
π∈Π

n∑
i=1

‖(ŪA)i − (ŪB)π(i)‖2

where (A)i is the i th row of matrix A.



Neighborhood Preserving Projections

Projection

We are interested in projecting the residues on real line such
that neighborhoods are preserved optimally.

max
f∈Rn

n∑
i=1

n∑
j=1

[Aij(fi + fj)2 −Aij(fi − fj)2]

Observations

I Second term: |fi − fj | low whenever Aij is high.
I First term: |fi + fj | high whenever Aij is low. So, fi and fj

should be far apart.
I Unbounded solution. Constrain by adding ‖f‖2 = n.



Neighborhood Preserving Projections

Final formulation

max
f∈Rn

fTAf

Subject to
‖f‖2 = n

This is same as finding the eigenvector corresponding to
maximum eigenvalue of the matrix A.

Absolute Value
If f is a eigenvector, so is −f. Thus, we define neighborhood
preserving projections, fi as |f ∗i |.



Scoring function

Similarity score

Given two proteins X A and X B, and their neighborhood
preserving projections fA and fB, we define the similarity
between residue i of X A and residue j of X B as:

s(i , j) = T − (f A
i − f B

j )2

The similarity score of an alignment φ is:

S(φ) =
∑

xi∈X̄ A

s(i , φ(i))

Maximize S(φ) w.r.t. φ.



Connection

Spectral Similarity

By considering only the leading eigenvector, the spectral
similarity score becomes:

min
π∈Π

n∑
i=1

((Ū1
G)i − (Ū1

H)π(i))2

or

max
π∈Π

n∑
i=1

T − ((Ū1
G)i − (Ū1

H)π(i))2



Connection

Projection Similarity

If all residues of the two proteins are aligned, i.e. X̄ A = X A and
X̄ B = X B, we solve,

max
φ

∑
xi∈X A

T − (f A
i − f B

j )2

Unequal residues

The above problem can be solved even in case of unequal
number of residues in the two structures.



Greedy Fragment Pair Search

Topology

I The above problem is an instance of assignment problem.
We could solve it in polynomial time.

I But we use information in protein sequence to solve the
problem more efficiently.

Basic Idea

I The scoring function s(i , j) is analogous to the sequence
similarity function.

I Use sequence alignment algorithms, e.g. local alignment
algorithm.



Greedy Fragment Pair Search

Algorithm

1. Initialize alignment to null.
2. Calculate the local alignment matrix of incremental

fragment similarity.
3. Find the maximum element in the matrix and traceback to

find the high scoring fragment pair.
4. Add the currently found fragment pair to the alignment and

delete the rows and columns correspodning to the
currently added residues from local alignment matrix.

5. Go to step 3. If no positive scoring entry is found,
terminate.



Benchmark Datasets

Comparison between Matchprot(MP) and DALI using
benchmark datasets.

Data set / Classifn. Total pairs Better Worse Level
Fischer 68 17 18 33

Novotny et. al.
1.10.40 21 8 1 12
1.10.164 10 2 0 8
1.25.30 21 3 0 18
2.30 110 6 1 2 3
2.40.100 28 4 3 21
2.100.10 15 5 4 6
3.10.70 10 0 2 8
3.40.91 6 6 0 0
3.70.10 15 1 3 11
2.40.20 21 1 4 16

Better: MP has lower RMSD higher length of alignment(Lali).
Worse: DALI has lower RMSD higher Lali.

Level: MP has either both higher or lower RMSD and Lali than DALI.



Non-topological Similarities

Alignment
between 2PEL
and 5CNA
showing
circular
permutation



Structure Retrieval

Comparison with CE (Shindyalov and Bourne) [1]

Retrieval of domains having similar folds from ASTRAL 95% non-redundant dataset.

Query ID Matchprot CE
(TP/FP/prec./rec.) (TP/FP/prec./rec.)

d101m__ 93 / 0 / 1 / 0.95 96 / 2 / 0.97 / 0.99
d1htia_ 272 / 56 / 0.82 / 0.83 307 / 29 / 0.91 / 0.93
d1jzba_ 23 / 0 / 1 / 0.1 33 / 270 / 0.1 / 0.14
d2pela_ 70 / 50 / 0.58 / 0.8 61 / 36 / 0.62 / 0.70
d7rsa__ 18 / 0 / 1 / 1 17 / 1 / 0.94 / 0.94

TP: True positive
FP: False positive

prec = TP
TP+FP

rec = TP
Actual



Time Comparison



Summary

I Fast O(n3) deterministic algorithm for comparing protein
structure.

I New score function using neighborhood preserving
projections.

I State of the art performance for structure retrieval on
SCOP.
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Problem of Indels

Problem

I The above algorithm was designed for similarly sized
proteins.

I It still works for many cases with upto 40% indels.
I However, it gives wrong answers for proteins having higher

indels (Roughly half of the residues are absent in the other
protein).

Main Idea
Align conserved substructures called neighborhoods, and
“grow” neighborhood alignments to entire structure.



Neighborhoods
Observation
Spatial neighborhoods are more preserved even in
evolutionarily distant proteins.

Reasons

I The site crucial for functioning remains structurally
preserved.

I Many a times, additions are in terms of separate domains.

Solution

I Compare spatial neighborhoods instead of entire
structures using spectral method.

I “Grow” the neighborhood alignments to get a good overall
alignment.



Neighborhoods

Definition
The k-structure neighborhood of a residue of a protein is
defined as the set of k residues nearest to the given residue in
3D.

Definition
The k-sequence neighborhood, NA

seq(i) starting from residue i
of structure A is defined as NA

seq(i) = {xi , . . . ,xi+k−1}.



Neighborhoods



Alignment using Neighborhoods

Overall Scheme

1. Calculate a spanning set of neighborhoods.
2. Align all pairs of neighborhoods.
3. Grow neighborhood alignments to entire structure.

Spanning set of Neighborhoods

I Set of neighborhoods should span the entire protein, and
should not be very high.

I For structure neighborhoods, choose one around every
residue.

I For sequence neighborhoods, choose one starting at every
residue.



Alignment using Neighborhoods
Neighborhood Alignment

I For sequence neighborhoods, use the spectral algorithm
developed above.

I For structure neighborhoods, solve maximal common
subgraph.

I Restrict sizes of structure neighborhoods.

Growing Neighborhood Alignments

I Calculate optimal transformation based on neighborhood
alignment.

I Re-calculate similarity measure based using transformed
coordinates.

I Calculate final alignment using revised similarity measure.



Algorithm



Comparison with existing methods: Difficult Cases

10 difficult pairs mentioned in (Shindyalov and Bourne)[1]

PDBid1(size) - Seq Nbhd Struct Nbhd DALI CE SSM
PDBid2(size) LAli / RMS LAli / RMS Len / RMS Len / RMS Len / RMS
1fxiA(96) - 1ubq(76) 54 / 2.18 56 / 2.16 60 / 2.6 100 / 3.82 60 / 2.86
1ten(90) - 3hhrB(185) 84 / 1.58 82 / 1.39 86 / 1.9 87 / 1.90 73 / 2.09
3hlaB(270) - 2rhe(114) 70 / 2.26 68 / 2.26 75 / 3 85 / 3.46 78 / 3.08
2azaA(129) - 1paz(120) 72 / 2.46 79 / 2.20 81 / 2.5 85 / 2.90 79 / 2.41
1cewI(108) - 1molA(94) 68 / 1.80 79 / 1.94 81 / 2.3 81 / 2.34 79 / 2.12
1cid(177) - 2rhe(114) 91 / 2.05 91 / 2.06 97 / 3.2 98 / 2.97 89 / 2.32
1crl(534) - 1ede(310) 160 / 2.50 174 / 2.49 211 / 3.5 220 / 3.91 188 / 3.81
2sim(381) - 1nsbA(390) 262 / 2.72 262 / 2.63 222 / 3.8 276 / 2.99 271 / 2.86
1bgeB(159) - 2gmfA(121) 85 / 2.48 87 / 2.22 94 / 3.3 102 / 4.02 44 / 2.49
1tie(166) - 4fgf(124) 105 / 2.20 106 / 2.27 114 / 3.1 115 / 2.86 114 / 2.85



Overall Results on Benchmark Datasets

Comparison with DALI [3]

Data set/ Align. sequence nbhd. Align. structure nbhd.
classifn. Better / Worse / Level Better / Worse / Level
Fischer’s 4 / 4 / 60 5 / 2 / 61
Novotny’s
1.10.164 1 / 0 / 9 2 / 0 / 8
1.10.40 11 / 0 / 10 5 / 0 / 16
1.25.30 10 / 0 / 11 5 / 0 / 16
2.30.110 0 / 0 / 6 0 / 0 / 6
2.40.100 0 / 0 / 28 0 / 0 / 28
2.100.10 5 / 3 / 7 5 / 0 / 10
3.10.70 0 / 0 / 10 0 / 0 / 10
3.40.91 0 / 0 / 6 0 / 0 / 6
3.70.10 0 / 0 / 15 2 / 0 / 13
2.40.20 0 / 3 / 18 0 / 0 / 21



Overall Results on Benchmark Datasets

Comparison with CE [1]

Data set/ Align. sequence nbhd. Align. structure nbhd.
classifn. Better / Worse / Level Better / Worse / Level
Fischer’s 2 / 1 / 65 2 / 0 / 66
Novotny’s
1.10.164 0 / 0 / 10 0 / 0 / 10
1.10.40 0 / 0 / 21 0 / 0 / 21
1.25.30 1 / 0 / 20 0 / 0 / 21
2.30.110 0 / 0 / 6 0 / 0 / 6
2.40.100 6 / 0 / 22 4 / 0 / 24
2.100.10 4 / 0 / 11 4 / 0 / 11
3.10.70 1 / 0 / 9 1 / 0 / 9
3.40.91 0 / 0 / 6 0 / 0 / 6
3.70.10 0 / 0 / 15 0 / 1 / 14
2.40.20 1 / 1 / 19 0 / 0 / 21



Overall Results on Benchmark Datasets

Comparison with SSM

Data set/ Align. sequence nbhd. Align. structure nbhd.
classifn. Better / Worse / Level Better / Worse / Level
Fischer’s 13 / 10 / 45 23 / 5 / 40
Novotny’s
1.10.164 3 / 1 / 6 4 / 0 / 6
1.10.40 9 / 0 / 12 8 / 0 / 13
1.25.30 9 / 0 / 12 3 / 0 / 18
2.30.110 1 / 1 / 4 1 / 1 / 4
2.40.100 1 / 0 / 27 2 / 1 / 25
2.100.10 1 / 4 / 10 3 / 1 / 11
3.10.70 2 / 0 / 8 3 / 0 / 7
3.40.91 2 / 0 / 4 1 / 0 / 5
3.70.10 0 / 1 / 14 1 / 2 / 12
2.40.20 0 / 6 / 15 3 / 2 / 16



Structure Retrieval

5 SCOP Folds

SCOPid Method cutoff True +ve False +ve
(tot. num.) (% / Z)
d101m__ seq nbhd 50% 34 9
(37) seq nbhd 45% 35 38

CE 4.0 35 95
d1htia_ seq nbhd 50% 190 4
(253) seq nbhd 45% 231 13

CE 4.0 233 224
d1jzba_ seq nbhd 50% 28 56
(119) seq nbhd 45% 48 172

CE 4.0 2 0
d2pela_ seq nbhd 50% 41 9
(48) seq nbhd 45% 45 21

CE 4.0 36 8
d7rsa__ seq nbhd 50% 4 0
(4) seq nbhd 45% 4 13

CE 4.0 4 0



Summary

I A robust algorithm for for protein structure alignment.
I Idea of neighborhood alignments and growing of

neighborhood alignments to entire structures.
I Outperformed state of the art techniques on benchmark

datasets.
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Automatic Structure Classification

Problem
Classify given protein structures into SCOP superfamilies.

Approach

Define kernels on protein structures and use kernel methods.

Motivation

I Support vector machines (SVMs) are one of the most
popular classifiers.

I SVMs cannot be directly used with protein structures.
I Kernels on protein structures will allow SVMs and many

other methods to applied.



Kernel Methods

Definition
A kernel K on a set X is a real valued function on X × X
satisfying the following properties:

I K(x , y) = K(y , x) (Symmetric)
I K(x , x) ≥ 0, and 0 only if x = 0
I
∑

i,j cicjK(xi , xj) ≥ 0∀ci , cj ∈ R (Positive semidefinite)

RKHS
Kernels can be thought of as dot products in a higher
dimensional space called reproducing kernel hilbert space
(RKHS).



Kernel Methods



Kernel Methods

Geometry

I Kernel functions define a geometry in the RKHS.
I Angles can be measured using the kernels.
I Distances can be defined as

d(xi , xj) =
√
K(xi , xi) +K(xj , xj)− 2 ∗ K(xi , xj).

Kernelized Algorithms

Many machine learning techniques can be modified to be used
with kernels rather than vectorial data.

I Support Vector Machines.
I K-means clustering.
I Gaussian process regression, Principal component

analysis, etc



Building New kernels
If k1(x , y) and k2(x , y) are two valid kernels, then the following
kernels are valid:

I Linear Combination:

k(x , y) = c1k1(x , y) + c2k2(x , y)

I Exponentiation:

k(x , y) = exp(k1(x , y))

I Product:
k(x , y) = k1(x , y)k2(x , y)

I Polynomial Transformation:

k(x , y) = Q(k1(x , y))

I Function product:

k(x , y) = f (x)k1(x , y)f (y)



Structured data

Motivation

I Many types of data processed by learning algortihms
cannot be naturally represented as vectors.

I Kernelized learning algorithms can be used, if appropriate
kernels are defined on those data.

Examples

I Strings, trees, graphs, etc.
I Protein structures.



Kernels on Structured Data

Intuition

I Kernels can be thought of as similarity measures since
d(xi , xj) is a decreasing function of K(xi , xj).

I Define similarity measures on structured data satisfying
properties of kernels.

I Generally, positive-semidefiniteness is most difficult to
ensure.

Other Kernels on Proteins

I Graph Kernels.
I Sequence based kernels.
I Alignment Kernels using empirical kernel maps.



Scheme

Problem
Define kernels capturing similarity between protein structures.

Ideas

I Kernels should capture the notion of structural alignment.
I Define kernels on neighborhoods and extend them to

entire protein structures.



Kernels on Neighborhoods

Convolution Kernels (Haussler 99)

I x ∈ X is a composite object, parts from X1, . . . ,Xm.
I R is a relation over X1 × · · · × Xm × X such that

R(x1, . . . , xm, x) is true if x is composed of x1, . . . , xm

I K 1, . . . ,K m be kernels on X1, . . . ,Xm, respectively.

It can be showed that K is a kernel on X .

K (x , y) =
∑

(x1,...,xm)∈R−1(x),(y1,...,ym)∈R−1(y)

m∏
i=1

K i (xi , yi )

where
R−1(x) = (x1, . . . , xm) ∈ X1 × · · · × Xm|R(x1, . . . , xm, x) = true.



Kernels on Neighborhoods

Spectral Kernel

I X is set of all neighborhoods.
I X1, . . . ,Xm are sets of residues.
I R(x1, . . . , xm,N) is true if {x1, . . . , xm} ∈ N.
I K 1, . . . ,K m are RBF kernels comparing spectral

projections.

Spectral kernel is defined as:

KSS(Ni ,Nj) =
∑
π∈Π

e
−‖fi−π(fj )‖2

β



Kernels on Neighborhoods

Pairwise Distance Kernel

I X is set of all neighborhoods.
I X1, . . . ,Xm are sets of all pairs of residues.
I R(d1, . . . ,dm,N) is true if d1, . . . ,dm are pariwise distances

in N.
I K 1, . . . ,K m are RBF kernels comparing pariwise distances.

Pairwise distance kernel is defined as:

KPDS(Ni ,Nj) =
∑
π∈Π

e
−‖di−π(dj )‖2

σ2



Connection with Spectral Score

Theorem
Let Ni and Nj be two sub-structures with spectral projection
vectors f i and f j . Let S(Ni ,Nj) be the score of alignment of Ni
and Nj , obtained by solving assignment problem. For large
enough value of T such that all residues are matched.

lim
β→0
KSS(Ni ,Nj))β = eS(Ni ,Nj )−kT

Non-psd Kernel

KLSS(N1,N2) = lim
β→0

(KSS(N1,N2))β



Kernels on Protein Structures

Kernels on Structures
For a set of proteins X 1, . . . ,X n, define kernels:

K1(X i ,X j) =

ni∑
a=1

nj∑
b=1

KSS(N i
a,N

j
b)

K2(X i ,X j) =

ni∑
a=1

nj∑
b=1

KPDS(N i
a,N

j
b)



Kernels on Protein Structures

More Accurate Kernels

K3(X i ,X j ) =

ni∑
a,b=1

nj∑
c,d=1

KSS(N i
a,N

i
b)×KSS(N j

c ,N
j
d )×Knorm((N i

a,N
i
b), (N j

c ,N
j
d ))

K4(X i ,X j ) =

ni∑
a,b=1

nj∑
c,d=1

KPDS(N i
a,N

i
b)×KSS(N j

c ,N
j
d )×Knorm((N i

a,N
i
b), (N j

c ,N
j
d ))

where, Knorm((N i
a,N i

b), (N j
c ,N

j
d )) = e−

(‖xi
a−xi

b‖−‖x
j
c−xj

d‖)2

σ2 .



Kernels on Protein Structures

Alignment Kernels

I Increase the accuracy of these kernels by using alignment
information.

I Add neighborhood kernels for aligned residues:

KAl
1 (X i ,X j ;φij) =

∑
a|x i

a∈X̄ i

KSS(N i
a,N

j
φij (a))

I KAl
2 and KAl

3 are defined analogously using KLSS and KPDS.



Kernels on Protein Structures

Alignment Kernels

I Make alignment kernels positive semidefinite:

KAl
4 (P i ,P j) =



∑
a|pi

a∈P̄ i

KSS(N i
a,N

j
φij (a)) if i 6= j

M∑
b=1

∑
a|pi

a∈dom(φib)

KSS(N i
a,N

i
φib(a)) if i = j

I KAl
5 and KAl

6 are defined analogously using KLSS and KPDS.



Structure Kernels

Kernel Positive Acc. Negative Acc. Total Acc.
K1 69.67% 54.87% 62.27%
K2 68.73% 61.33% 65.03%
K3 56.13% 54.93% 55.53%
K4 64.00% 60.93% 62.45%
CE 96.47% 63.33% 79.90%



Alignment Kernels

Kernel Positive Acc. Negative Acc. Total Acc.
K Al

1 74.33% 83.47% 78.90%
K Al

2 79.13% 86.47% 82.80%
K Al

3 73.87% 82.67% 78.27%
K Al

4 91.87% 75.93% 83.90%
K Al

5 80.67% 76.07% 78.37%
K Al

6 88.53% 80.20% 84.37%
CE (NN) 96.47% 63.33% 79.90%
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Summary

Problem
Build a protein structure classifier which takes resolution
information into account.

Motivation

I Coordinates of atoms in protein structures are resolved to
a particular accuracy.

I For example 1biaa1: 2.3Å, 1repc1: 2.6Å
I RMSDs of alignment between proteins are sometimes

lower than the resolution.
I Example: 1biaa1 - 1repc1: 2.2Å
I Kernel values are perturbed due to perturbation in

structure within resolution.



SVM Classification with uncertain kernels

SVM dual form

max
α∈Sn,t

α>e − 1
2

t s.t. α>YKYα ≤ t

where Sn = {α|0 ≤ αi ≤ C,
∑n

i=1 αiyi = 0} and Y = diag(yi).

SVM chance constrained form

max
t ,α∈Sn

α>e − 1
2

t

s.t. Prob
(
α>Y (K + Z )Yα ≤ t

)
≥ 1− ε

where Z is a matrix of random noise.



Gaussian Uncertainty

Theorem

I Z is an n × n random matrix.
I Zij ∼ N(0, σ2

ij ).

I K = K + Z , where K is kernel matrix.

For such a K, the chance constraint in previous formulation is
satisfied if the following holds.∑

ij

yiyjαiαjK ij − Φ−1(ε)‖Σ ∗ (αα>)‖F ≤ t



Interval Uncertainty

Theorem

I Z be a n × n random matrix with E(Zij) = 0.
I P(aij ≤ Zij ≤ bij) = 1.
I K = K + Z , where K is kernel matrix.

For such a K, the chance constraint in previous formulation is
satisfied if the following holds.∑

ij

yiyjαiαjK ij +
√

2 log(1/ε)
√∑

ij

βijα
2
i α

2
j ≤ t

where, βij = l2ij γ
2
ij , lij =

bij−aij
2 , γij is a function of aij and bij .



Robust SVM

Deterministic Optimization Problem

The chance constraint program proposed earlier for learning
SVMs with uncertain kernels can be posed as:

min
t ,α∈Sn

1
2 t −

∑
i αi

s.t.
∑

ij yiyjαiαjK ij + κ
√∑

ij βijα
2
i α

2
j ≤ t

where κ depends on ε. This problem is applicable for both
Gaussian and interval uncertainties.



Solution of the above problem

I The solution method depends on the matrix β = [βij ].
I When β is rank one, the solution boils down to solving

SVM with modified kernel.
I When β is PSD, the problem is a second order cone

program (SOCP), and can be solved using SOCP solver.
I In the general case, the problem in non-convex and can be

solved using a standard descent algorithm.



Results

RSVM SVM MI
QP SOCP QN nominal M R

MajErr
TA 72.67 73.56 82.78 62.89 71.11 71.67 72.11
F1 73.49 74.35 82.95 63.50 71.87 72.58 72.17

RobustErr
TA 27.11 50.33 66.44 34.56 22.00 61.56 20.11
F1 26.81 50.28 66.36 34.07 21.70 61.26 19.63

NomErr
TA 66.50 66.65 76.00 61.02 65.00 70.44 x
F1 65.13 65.16 75.80 60.86 64.48 67.58 x



Results

Observations

I Robust SVM performs better than nominal SVM on
synthetic datasets generated using Gaussian, Uniform and
Beta noise.

I Robust error RSVM-SOCP and RSVM-QN increases less
rapidly than nominal SVM, as the uncertainty is increased.

I For resolution-aware protein structure classification,
RSVM-QN outperforms nominal SVM, and SVM with
multiple instance kernel on 15 SCOP superfamilies.
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Thank you !

Questions ?
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