Support Vector Machines

Sourangshu Bhattacharya
sourangshu@cse.iitkgp.ernet.in

Computer Science and Engineering
IIT Kharagpur

Outline

- Classification Problem.
- Linear Classifiers.
- Max-margin principle.
- Dual problem.
- Soft-margin SVMs.
- Non-linear classifiers.
- Kernel methods.
- Examples.

mRNA Splicing

Ben-Hur et al, PLOS computational Biology 4 (2008)

Splice site recognition

- Donor sites contain GT on the intron side.
- Acceptor sites contain AG on the intron side.
- Task is to classify AG as acceptor or not.
- GC content of exons is higher than introns.
- Use GC content before and after AG to classify it as acceptor.

Slice site recognition

Ben-Hur et al, PLOS computational Biology, 4 (2008)

Linear Separators

- Binary classification can be viewed as the task of separating classes in feature space:

$$
f(\mathbf{x})=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)
$$

Linear Separators

- Which of the linear separators is optimal?

What is a good Decision Boundary?

- Many decision boundaries!
- The Perceptron algorithm can be used to find such a boundary
- Are all decision boundaries equally
 good?

Examples of Bad Decision Boundaries

Finding the Decision Boundary

- Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be our data set and let $y_{i} \in\{1,-1\}$ be the class label of x_{i}

$$
\text { For } y_{i}=1 \quad w^{T} x_{i}+b \geq 1
$$

$$
\text { For } y_{i}=-1 \quad w^{T} x_{i}+b \leq-1
$$

So:

$$
y_{i} \cdot\left(w^{T} x_{i}+b\right) \geq 1, \forall\left(x_{i}, y_{i}\right)
$$

Large-margin Decision Boundary

- The decision boundary should be as far away from the data of both classes as possible
- We should maximize the margin, m

Finding the Decision Boundary

- The decision boundary should classify all points correctly \Rightarrow

$$
y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1, \quad \forall i
$$

- The decision boundary can be found by solving the following constrained optimization problem

$$
\text { Minimize } \frac{1}{2}\|\mathrm{w}\|^{2}
$$

$$
\text { subject to } y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1 \quad \forall i
$$

- This is a constrained optimization problem. Solving it requires to use Lagrange multipliers

Finding the Decision Boundary

$$
\text { Minimize } \frac{1}{2}\|\mathbf{w}\|^{2}
$$

subject to $1-y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \leq 0 \quad$ for $i=1, \ldots, n$

- The Lagrangian is

$$
\mathcal{L}=\frac{1}{2} \mathbf{w}^{T} \mathbf{w}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)\right)
$$

$-\alpha_{i} \geq 0$

- Note that $||\mathbf{w}||^{2}=\mathbf{w}^{\top} \mathbf{w}$

Gradient with respect to w and b

- Setting the gradient of $\mathcal{L}:$ w.r.t. \mathbf{w} and b to zero, we have

$$
\begin{aligned}
& L=\frac{1}{2} w^{T} w+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(w^{T} x_{i}+b\right)\right)= \\
& =\frac{1}{2} \sum_{k=1}^{m} w^{k} w^{k}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(\sum_{k=1}^{m} w^{k} x_{i}^{k}+b\right)\right)
\end{aligned}
$$

n : no of examples, m : dimension of the space

$$
\left\{\begin{array}{rlrl}
\frac{\partial L}{\partial w^{k}} & =0, \forall k & \mathrm{w}+\sum_{i=1}^{n} \alpha_{i}\left(-y_{i}\right) \mathrm{x}_{i} & =0 \quad \Rightarrow \quad \mathrm{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathrm{x}_{i} \\
\frac{\partial L}{\partial b} & =0 & \sum_{i=1}^{n} \alpha_{i} y_{i} & =0
\end{array}\right.
$$

The Dual Problem

- If we substitute $\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}$ to \mathcal{L}, we have

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{2} \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}^{T} \sum_{j=1}^{n} \alpha_{j} y_{j} \mathbf{x}_{j}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(\sum_{j=1}^{n} \alpha_{j} y_{j} \mathbf{x}_{j}^{T} \mathbf{x}_{i}+b\right)\right) \\
&=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}+\sum_{i=1}^{n} \alpha_{i}-\sum_{i=1}^{n} \alpha_{i} y_{i} \sum_{j=1}^{n} \alpha_{j} y_{j} \mathbf{x}_{j}^{T} \mathbf{x}_{i}-b \sum_{i=1}^{n} \alpha_{i} y_{i} \\
&=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}+\sum_{i=1}^{n} \alpha_{i} \\
& \text { Since } \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

- This is a function of α_{i} only

The Dual Problem

- The new objective function is in terms of α_{i} only
- It is known as the dual problem: if we know \mathbf{w}, we know all α_{i}; if we know all α_{i}, we know w
- The original problem is known as the primal problem
- The objective function of the dual problem needs to be maximized (comes out from the KKT theory)
- The dual problem is therefore:

$$
\begin{aligned}
& \quad \max . W(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \\
& \text { subject to } \alpha_{i} \geq 0, \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

Properties of α_{i} when we introduce the Lagrange multipliers

The result when we differentiate the original Lagrangian w.r.t. b

The Dual Problem

$\max . W(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$
subject to $\alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i} y_{i}=0$

- This is a quadratic programming (QP) problem
- A global maximum of α_{i} can always be found
- \mathbf{w} can be recovered by $\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}$

Characteristics of the Solution

- Many of the α_{i} are zero
- wis a linear combination of a small number of data points
- This "sparse" representation can be viewed as data compression as in the construction of knn classifier
- \mathbf{x}_{i} with non-zero α_{i} are called support vectors (SV)
- The decision boundary is determined only by the SV
- Let $t_{\mathrm{j}}(j=1, \ldots, s)$ be the indices of the s support vectors. We can write

$$
\mathbf{w}=\sum_{j=1}^{s} \alpha_{t_{j}} y_{t_{j}} \mathbf{x}_{t_{j}}
$$

- Note: w need not be formed explicitly

A Geometrical Interpretation

Characteristics of the Solution

- For testing with a new data \mathbf{z}
- Compute $\mathbf{w}^{T} \mathbf{z}+b=\sum_{j=1}^{s} \alpha_{t_{j}} y_{t_{j}}\left(\mathbf{x}_{t_{j}}^{T} \mathbf{z}\right)+b$
and classify \mathbf{z} as class 1 if the sum is positive, and class 2 otherwise
- Note: w need not be formed explicitly

The Quadratic Programming Problem

- Many approaches have been proposed
- Loqo, cplex, etc. (see http://www.numerical.rl.ac.uk/qp/qp.html)
- Most are "interior-point" methods
- Start with an initial solution that satisfies the constraints
- Improve this solution by optimizing the objective function
- For SVM, sequential minimal optimization (SMO) is the most popular
- A QP with two variables is trivial to solve
- Each iteration of SMO picks a pair of (α_{i}, α_{j}) and solve the QP with these two variables; repeat until convergence
- In practice, we can just regard the QP solver as a "black-box" without bothering how it works

Non-linearly Separable Problems

- We allow "error" ξ_{i} in classification; it is based on the output of the discriminant function $\boldsymbol{w}^{\top} \boldsymbol{x}+b$
- ξ_{i} approximates the number of misclassified samples

Soft Margin Hyperplane

- The new conditions become

$$
\begin{cases}\mathbf{w}^{T} \mathbf{x}_{i}+b \geq 1-\xi_{i} & y_{i}=1 \\ \mathbf{w}^{T} \mathbf{x}_{i}+b \leq-1+\xi_{i} & y_{i}=-1 \\ \xi_{i} \geq 0 & \forall i\end{cases}
$$

- ξ_{i} are "slack variables" in optimization
- Note that $\xi_{i}=0$ if there is no error for \mathbf{x}_{i}
- ξ_{i} is an upper bound of the number of errors
- We want to minimize

$$
\frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \xi_{i}
$$

subject to $y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}, \quad \xi_{i} \geq 0$

- C : tradeoff parameter between error and margin

The Optimization Problem

$$
L=\frac{1}{2} w^{T} w+C \sum_{i=1}^{n} \xi_{i}+\sum_{i=1}^{n} \alpha_{i}\left(1-\xi_{i}-y_{i}\left(w^{T} x_{i}+b\right)\right)-\sum_{i=1}^{n} \mu_{i} \xi_{i}
$$

With a and μ Lagrange multipliers, POSITIVE

$$
\begin{aligned}
\frac{\partial L}{\partial w_{j}} & =w_{j}-\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i j}=0 \quad \vec{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \vec{x}_{i}=0 \\
\frac{\partial L}{\partial \xi_{j}} & =C-\alpha_{j}-\mu_{j}=0 \\
\frac{\partial L}{\partial b} & =\sum_{i=1}^{n} y_{i} \alpha_{i}=0
\end{aligned}
$$

The Dual Problem

$$
\begin{aligned}
& L=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x}_{i}{ }^{T} \vec{x}_{j}+C \sum_{i=1}^{n} \xi_{i}+ \\
& +\sum_{i=1}^{n} \alpha_{i}\left(1-\xi_{i}-y_{i}\left(\sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}{ }^{T} x_{i}+b\right)\right)-\sum_{i=1}^{n} \mu_{i} \xi_{i}
\end{aligned}
$$

With $\quad \sum_{i=1}^{n} y_{i} \alpha_{i}=0 \quad$ and $\quad C=\alpha_{j}+\mu_{j}$

$$
L=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x}_{i}^{T} \vec{x}_{j}+\sum_{i=1}^{n} \alpha_{i}
$$

The Optimization Problem

- The dual of this new constrained optimization problem is

$$
\begin{aligned}
& \max . W(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \\
& \text { subject to } C \geq \alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

- New constraints derived from $C=\alpha_{j}+\mu_{j}$ since μ and α are positive.
- \mathbf{w} is recovered as $\mathbf{w}=\sum_{j=1}^{s} \alpha_{t_{j}} y_{t_{j}} \mathbf{x}_{t_{j}}$
- This is very similar to the optimization problem in the linear separable case, except that there is an upper bound C on α_{i} now
- Once again, a QP solver can be used to find α_{i}

$$
\frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \xi_{i}
$$

- The algorithm try to keep ξ null, maximising the margin
- The algorithm does not minimise the number of error. Instead, it minimises the sum of distances fron the hyperplane
- When C increases the number of errors tend to lower. At the limit of C tending to infinite, the solution tend to that given by the hard margin formulation, with 0 errors

Soft margin is more robust to outliers

Soft Margin SVM
Hard Margin SVM

Extension to Non-linear Decision Boundary

- So far, we have only considered large-margin classifier with a linear decision boundary
- How to generalize it to become nonlinear?
- Key idea: transform \mathbf{x}_{i} to a higher dimensional space to "make life easier"
- Input space: the space the point \mathbf{x}_{i} are located
- Feature space: the space of $\phi\left(\mathbf{x}_{\mathrm{i}}\right)$ after transformation
- Why transform?
- Linear operation in the feature space is equivalent to non-linear operation in input space
- Classification can become easier with a proper transformation. In the XOR problem, for example, adding a new feature of $\mathrm{x}_{1} \mathrm{x}_{2}$ make the problem linearly separable

XOR

\mathbf{X}	\mathbf{Y}	$\mathbf{X Y}$	
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Find a feature space

Transforming the Data

Note: feature space is of higher dimension than the input space in practice

- Computation in the feature space can be costly because it is high dimensional
- The feature space is typically infinite-dimensional!
- The kernel trick comes to rescue

The Kernel Trick

- Recall the SVM optimization problem

$$
\begin{aligned}
& \max . W(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y{ }_{\lambda} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \\
& \text { subject to } C \geq \alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

- The data points only appear as inner product
- As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly
- Many common geometric operations (angles, distances) can be expressed by inner products
- Define the kernel function K by

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)
$$

An Example for $\phi($.$) and K(.,$.

- Suppose $\phi($.$) is given as follows$

$$
\phi\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)
$$

- An inner product in the feature space is

$$
\left\langle\phi\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right), \phi\left(\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]\right)\right\rangle=\left(1+x_{1} y_{1}+x_{2} y_{2}\right)^{2}
$$

- So, if we define the kernel function as follows, there is no need to carry out $\phi($.$) explicitly$

$$
K(\mathbf{x}, \mathbf{y})=\left(1+x_{1} y_{1}+x_{2} y_{2}\right)^{2}
$$

- This use of kernel function to avoid carrying out $\phi($. explicitly is known as the kernel trick

Kernels

- Given a mapping: $\quad \mathbf{x} \rightarrow \boldsymbol{\varphi}(\mathbf{x})$
a kernel is represented as the inner product

$$
K(\mathbf{x}, \mathbf{y}) \rightarrow \sum_{i} \varphi_{i}(\mathbf{x}) \varphi_{i}(\mathbf{y})
$$

A kernel must satisfy the Mercer's condition:
$\forall g(\mathbf{x})$ such that $\int g^{2}(\mathbf{x}) d \mathbf{x} \geq 0 \Rightarrow \int K(\mathbf{x}, \mathbf{y}) g(\mathbf{x}) g(\mathbf{y}) d \mathbf{x} d \mathbf{y} \geq 0$

Modification Due to Kernel Function

- Change all inner products to kernel functions
- For training,

Original

$$
\max . W(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{\substack{i=1, j=1 \\ n}}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}
$$

$$
\text { subject to } C \geq \alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

With kernel max. $W(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
function
subject to $C \geq \alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i} y_{i}=0$

Modification Due to Kernel Function

- For testing, the new data \mathbf{z} is classified as class 1 if $f \geq 0$, and as class 2 if $f<0$

Original

$$
\begin{aligned}
\mathbf{w} & =\sum_{j=1}^{s} \alpha_{t_{j}} y_{t_{j}} \mathbf{x}_{t_{j}} \\
f & =\mathbf{w}^{T} \mathbf{z}+b=\sum_{j=1}^{s} \alpha_{t_{j}} y_{t_{j}} \mathbf{x}_{t_{j}}^{T} \mathbf{z}+b
\end{aligned}
$$

With kernel

$$
\begin{aligned}
\mathbf{w} & =\sum_{j=1}^{s} \alpha_{t_{j}} y_{t_{j}} \phi\left(\mathrm{x}_{t_{j}}\right) \\
f & =\langle\mathbf{w}, \phi(\mathbf{z})\rangle+b=\sum_{j=1}^{s} \alpha_{t_{j}} y_{t_{j}} K\left(\mathbf{x}_{t_{j}}, \mathbf{z}\right)+b
\end{aligned}
$$

More on Kernel Functions

- Since the training of SVM only requires the value of $K\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{j}}\right)$, there is no restriction of the form of \mathbf{x}_{i} and \mathbf{x}_{j}
$-x_{i}$ can be a sequence or a tree, instead of a feature vector
- $K\left(\mathbf{x}_{i}, \mathbf{x}_{\mathrm{j}}\right)$ is just a similarity measure comparing \mathbf{x}_{i} and \mathbf{x}_{j}
- For a test object \mathbf{z}, the discriminant function essentially is a weighted sum of the similarity between z and a pre-selected set of objects (the support vectors)

$$
f(\mathbf{z})=\sum_{\mathbf{x}_{i} \in \mathcal{S}} \alpha_{i} y_{i} K\left(\mathbf{z}, \mathbf{x}_{i}\right)+b
$$

\mathcal{S} : the set of support vectors

Example

- Suppose we have 5 1D data points
$-x_{1}=1, x_{2}=2, x_{3}=4, x_{4}=5, x_{5}=6$, with $1,2,6$ as class 1 and 4,5 as class $2 \Rightarrow y_{1}=1, y_{2}=1, y_{3}=-1, y_{4}=-1, y_{5}=1$

Example

- Suppose we have 5 1D data points
$-x_{1}=1, x_{2}=2, x_{3}=4, x_{4}=5, x_{5}=6$, with $1,2,6$ as class 1 and 4,5 as class $2 \Rightarrow y_{1}=1, y_{2}=1, y_{3}=-1, y_{4}=-1, y_{5}=1$

Example

- We use the polynomial kernel of degree 2
$-K(x, y)=(x y+1)^{2}$
$-C$ is set to 100
- We first find $\alpha_{i}(i=1, \ldots, 5)$ by
max. $\sum_{i=1}^{5} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{5} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(x_{i} x_{j}+1\right)^{2}$
subject to $100 \geq \alpha_{i} \geq 0, \sum_{i=1}^{5} \alpha_{i} y_{i}=0$

Example

- By using a QP solver, we get
$-\alpha_{1}=0, \alpha_{2}=2.5, \alpha_{3}=0, \alpha_{4}=7.333, \alpha_{5}=4.833$
- Note that the constraints are indeed satisfied
- The support vectors are $\left\{x_{2}=2, x_{4}=5, x_{5}=6\right\}$
- The discriminant function is

$$
\begin{aligned}
& f(z) \\
= & 2.5(1)(2 z+1)^{2}+7.333(-1)(5 z+1)^{2}+4 \$_{833}(1)(6 z+1)^{2}+b \\
= & 0.6667 z^{2}-5.333 z+b
\end{aligned}
$$

- b is recovered by solving $f(2)=1$ or by $f(5)=-1$ or by $f(6)=1$,
- All three give $\mathrm{b}=9 \longrightarrow f(z)=0.6667 z^{2}-5.333 z+9$

Example

Kernel Functions

- In practical use of SVM, the user specifies the kernel function; the transformation $\phi($.$) is not explicitly stated$
- Given a kernel function $K\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{j}}\right)$, the transformation $\phi($. is given by its eigenfunctions (a concept in functional analysis)
- Eigenfunctions can be difficult to construct explicitly
- This is why people only specify the kernel function without worrying about the exact transformation
- Another view: kernel function, being an inner product, is really a similarity measure between the objects

A kernel is associated to a transformation

-Given a kernel, in principle it should be recovered the transformation in the feature space that originates it.
$-K(x, y)=(x y+1)^{2}=x^{2} y^{2}+2 x y+1$

It corresponds the transformation

$$
x \rightarrow\left(\begin{array}{c}
x^{2} \\
\sqrt{2} x \\
1
\end{array}\right)
$$

Examples of Kernel Functions

- Polynomial kernel up to degree d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v})^{d}
$$

- Polynomial kernel up to degree d

$$
K(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{T} \mathbf{y}+1\right)^{d}
$$

- Radial basis function kernel with width σ

$$
K(\mathbf{x}, \mathbf{y})=\exp \left(-\|\mathbf{x}-\mathbf{y}\|^{2} /\left(2 \sigma^{2}\right)\right)
$$

- The feature space is infinite-dimensional
- Sigmoid with parameter κ and θ

$$
K(\mathbf{x}, \mathbf{y})=\tanh \left(\kappa \mathbf{x}^{T} \mathbf{y}+\theta\right)
$$

- It does not satisfy the Mercer condition on all κ and θ

Building new kernels

- If $k_{1}(x, y)$ and $k_{2}(x, y)$ are two valid kernels then the following kernels are valid
- Linear Combination

$$
k(x, y)=c_{1} k_{1}(x, y)+c_{2} k_{2}(x, y)
$$

- Exponential

$$
k(x, y)=\exp \left[k_{1}(x, y)\right]
$$

- Product

$$
k(x, y)=k_{1}(x, y) \cdot k_{2}(x, y)
$$

- Polymomial tranfsormation (Q : polymonial with non negative coeffients)

$$
k(x, y)=Q\left[k_{1}(x, y)\right]
$$

- Function product (f : any function)

$$
k(x, y)=f(x) k_{1}(x, y) f(y)
$$

Polynomial kernel

C

Ben-Hur et al, PLOS computational Biology 4 (2008)

Gaussian RBF kernel

C

Ben-Hur et al, PLOS computational Biology 4 (2008)

Spectral kernel for sequences

- Given a DNA sequence x we can count the number of bases (4-D feature space)

$$
\phi_{1}(x)=\left(n_{A}, n_{C}, n_{G}, n_{T}\right)
$$

- Or the number of dimers (16-D space)

$$
\phi_{2}(x)=\left(n_{A A}, n_{A C}, n_{A G}, n_{A T}, n_{C A}, n_{C C}, n_{C G}, n_{C T}, . .\right)
$$

- Or I-mers (4 -D space)
- The spectral kernel is $k_{l}(x, y)=\phi_{l}(x) \cdot \phi_{l}(y)$

Choosing the Kernel Function

- Probably the most tricky part of using SVM.
- The kernel function is important because it creates the kernel matrix, which summarizes all the data
- Many principles have been proposed (diffusion kernel, Fisher kernel, string kernel, ...)
- There is even research to estimate the kernel matrix from available information
- In practice, a low degree polynomial kernel or RBF kernel with a reasonable width is a good initial try
- Note that SVM with RBF kernel is closely related to RBF neural networks, with the centers of the radial basis functions automatically chosen for SVM

Other Aspects of SVM

- How to use SVM for multi-class classification?
- One can change the QP formulation to become multi-class
- More often, multiple binary classifiers are combined
- See DHS 5.2.2 for some discussion
- One can train multiple one-versus-all classifiers, or combine multiple pairwise classifiers "intelligently"
- How to interpret the SVM discriminant function value as probability?
- By performing logistic regression on the SVM output of a set of data (validation set) that is not used for training
- Some SVM software (like libsvm) have these features built-in

Software

- A list of SVM implementation can be found at http://www.kernelmachines.org/software.html
- Some implementation (such as LIBSVM) can handle multi-class classification
- SVMLight is among one of the earliest implementation of SVM
- Several Matlab toolboxes for SVM are also available

Summary: Steps for Classification

- Prepare the pattern matrix
- Select the kernel function to use
- Select the parameter of the kernel function and the value of C
- You can use the values suggested by the SVM software, or you can set apart a validation set to determine the values of the parameter
- Execute the training algorithm and obtain the α_{i}
- Unseen data can be classified using the α_{i} and the support vectors

Strengths and Weaknesses of SVM

- Strengths
- Training is relatively easy
- No local optimal, unlike in neural networks
- It scales relatively well to high dimensional data
- Tradeoff between classifier complexity and error can be controlled explicitly
- Non-traditional data like strings and trees can be used as input to SVM, instead of feature vectors
- Weaknesses
- Need to choose a "good" kernel function.

Conclusion

- SVM is a useful alternative to neural networks
- Two key concepts of SVM: maximize the margin and the kernel trick
- Many SVM implementations are available on the web for you to try on your data set!

Resources

- http://www.kernel-machines.org/
- http://www.support-vector.net/
- http://www.support-vector.net/icmltutorial.pdf
- http://www.kernel-machines.org/papers/tutorial-nips.ps.gz
- http://www.clopinet.com/isabelle/Projects/SV M/applist.html

Thank You!

