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mRNA Splicing

Ben-Hur et al, PLOS computational Biology 4 (2008)



Splice site recognition

• Donor sites contain GT on the intron side.

• Acceptor sites contain AG on the intron side.

• Task is to classify AG as acceptor or not.

• GC content of exons is higher than introns.

• Use GC content before and after AG to classify 
it as acceptor.



Slice site recognition

Ben-Hur et al, 
PLOS computational Biology,
4 (2008)



Linear Separators 

• Binary classification can be viewed as the task of 
separating classes in feature space:

wTx + b = 0

wTx + b < 0
wTx + b > 0

f(x) = sign(wTx + b)



Linear Separators

• Which of the linear separators is optimal? 



What is a good Decision Boundary?

• Many decision 
boundaries!

– The Perceptron algorithm 
can be used to find such a 
boundary

• Are all decision 
boundaries equally 
good?
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Examples of Bad Decision Boundaries
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Finding the Decision Boundary
• Let {x1, ..., xn} be our data set and let yi  {1,-1} be the class 

label of xi
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Large-margin Decision Boundary
• The decision boundary should be as far away 

from the data of both classes as possible

– We should maximize the margin, m
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Finding the Decision Boundary

• The decision boundary should classify all points correctly 

• The decision boundary can be found by solving the 
following constrained optimization problem

• This is a constrained optimization problem. Solving it 
requires to use Lagrange multipliers
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• The Lagrangian is

– ai≥0
– Note that ||w||2 = wTw
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Finding the Decision Boundary



• Setting the gradient of     w.r.t. w and b to 
zero, we have
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The Dual Problem

• If we substitute                             to     , we have 

Since 

• This is a function of ai only
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The Dual Problem
• The new objective function is in terms of ai only

• It is known as the dual problem: if we know w, we know all ai; if we know 
all ai, we know w

• The original problem is known as the primal problem

• The objective function of the dual problem needs to be maximized (comes 
out from the KKT theory)

• The dual problem is therefore:
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Properties of ai when we introduce 
the Lagrange multipliers

The result when we differentiate the 
original Lagrangian w.r.t. b



The Dual Problem

• This is a quadratic programming (QP) problem

– A global maximum of ai can always be found

• w can be recovered by
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Characteristics of the Solution
• Many of the ai are zero

– w is a linear combination of a small number of data 
points

– This “sparse” representation can be viewed as data 
compression as in the construction of knn classifier

• xi with non-zero ai are called support vectors (SV)

– The decision boundary is determined only by the SV

– Let tj (j=1, ..., s) be the indices of the s support 
vectors. We can write

– Note: w need not be formed explicitly
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A Geometrical Interpretation

19

a6=1.4

Class 1

Class 2

a1=0.8

a2=0

a3=0

a4=0

a5=0

a7=0

a8=0.6

a9=0

a10=0



Characteristics of the Solution

• For testing with a new data z

– Compute                                                      

and classify z as class 1 if the sum is positive, and 

class 2 otherwise

– Note: w need not be formed explicitly
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The Quadratic Programming Problem

• Many approaches have been proposed
– Loqo, cplex, etc. (see http://www.numerical.rl.ac.uk/qp/qp.html)

• Most are “interior-point” methods
– Start with an initial solution that satisfies the constraints
– Improve this solution by optimizing the objective function 
– For SVM, sequential minimal optimization (SMO) is the 

most popular
– A QP with two variables is trivial to solve
– Each iteration of SMO picks a pair of (ai,aj) and solve the 

QP with these two variables; repeat until convergence

• In practice, we can just regard the QP solver as a 
“black-box” without bothering how it works
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Non-linearly Separable Problems
• We allow “error” xi in classification; it is based on the output 

of the discriminant function wTx+b

• xi approximates the number of misclassified samples
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Soft Margin Hyperplane

• The new conditions become

– xi are “slack variables” in optimization
– Note that xi=0 if there is no error for xi

– xi is an upper bound of the number of errors

• We want to minimize

• C : tradeoff parameter between error and margin
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The Optimization Problem
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The Dual Problem
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The Optimization Problem

• The dual of this new constrained optimization problem is

• New constraints derived from                            since μ and α are 
positive.

• w is recovered as

• This is very similar to the optimization problem in the linear 
separable case, except that there is an upper bound C on ai now

• Once again, a QP solver can be used to find ai
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• The algorithm try to keep ξ null, maximising the 
margin

• The algorithm does not minimise the number of 
error. Instead, it minimises the sum of distances fron 
the hyperplane 

• When C increases the number of errors tend to 
lower. At the limit of C tending to infinite, the 
solution tend to that given by the hard margin 
formulation, with 0 errors
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Soft margin is more robust to outliers
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Extension to Non-linear Decision 
Boundary

• So far, we have only considered large-margin classifier with 
a linear decision boundary

• How to generalize it to become nonlinear?
• Key idea: transform xi to a higher dimensional space to 

“make life easier”
– Input space: the space the point xi are located
– Feature space: the space of f(xi) after transformation

• Why transform?
– Linear operation in the feature space is equivalent to non-linear 

operation in input space
– Classification can become easier with a proper transformation. 

In the XOR problem, for example, adding a new feature of x1x2
make the problem linearly separable
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XOR
X Y

0 0 0

0 1 1

1 0 1

1 1 0
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Is not linearly separable

X Y XY

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Is linearly separable



Find a feature space
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Transforming the Data 

• Computation in the feature space can be costly 
because it is high dimensional
– The feature space is typically infinite-dimensional!

• The kernel trick comes to rescue
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The Kernel Trick

• Recall the SVM optimization problem

• The data points only appear as inner product
• As long as we can calculate the inner product in the 

feature space, we do not need the mapping explicitly
• Many common geometric operations (angles, 

distances) can be expressed by inner products
• Define the kernel function K by
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An Example for f(.) and K(.,.)

• Suppose f(.) is given as follows

• An inner product in the feature space is

• So, if we define the kernel function as follows, there is no 
need to carry out f(.) explicitly

• This use of kernel function to avoid carrying out f(.) 
explicitly is known as the kernel trick
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Kernels

• Given a mapping:

a kernel is represented as the inner product

A kernel must satisfy the Mercer’s condition:
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Modification Due to Kernel Function
• Change all inner products to kernel functions

• For training,
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Modification Due to Kernel Function

• For testing, the new data z is classified as class 
1 if f 0, and as class 2 if f <0
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More on Kernel Functions
• Since the training of SVM only requires the value of 

K(xi, xj), there is no restriction of the form of xi and xj

– xi can be a sequence or a tree, instead of a feature vector

• K(xi, xj) is just a similarity measure comparing xi and xj

• For a test object z, the discriminant function essentially 
is a weighted sum of the similarity between z and a 
pre-selected set of objects (the support vectors)
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Example

• Suppose we have 5 1D data points

– x1=1, x2=2, x3=4, x4=5, x5=6, with 1, 2, 6 as class 1 
and 4, 5 as class 2  y1=1, y2=1, y3=-1, y4=-1, y5=1
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Example

41

1 2 4 5 6

class 2 class 1class 1

• Suppose we have 5 1D data points

– x1=1, x2=2, x3=4, x4=5, x5=6, with 1, 2, 6 as class 1 
and 4, 5 as class 2  y1=1, y2=1, y3=-1, y4=-1, y5=1



Example

• We use the polynomial kernel of degree 2

– K(x,y) = (xy+1)2

– C is set to 100

• We first find ai (i=1, …, 5) by
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Example
• By using a QP solver, we get

– a1=0, a2=2.5, a3=0, a4=7.333, a5=4.833
– Note that the constraints are indeed satisfied
– The support vectors are {x2=2, x4=5, x5=6}

• The discriminant function is

• b is recovered by solving f(2)=1 or by f(5)=-1 or by f(6)=1, 

• All three give b=9

43



Example
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Kernel Functions

• In practical use of SVM, the user specifies the kernel 
function; the transformation f(.) is not explicitly stated

• Given a kernel function K(xi, xj), the transformation f(.) 
is given by its eigenfunctions (a concept in functional 
analysis)
– Eigenfunctions can be difficult to construct explicitly

– This is why people only specify the kernel function without 
worrying about the exact transformation

• Another view: kernel function, being an inner product, 
is really a similarity measure between the objects 
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A kernel is associated to a 
transformation

– Given a kernel, in principle it should be recovered the 
transformation in the feature space that originates it.

– K(x,y) = (xy+1)2= x2y2+2xy+1

It corresponds the transformation
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Examples of Kernel Functions

• Polynomial kernel up to degree d

• Polynomial kernel up to degree d

• Radial basis function kernel with width s

– The feature space is infinite-dimensional

• Sigmoid with parameter k and q

– It does not satisfy the Mercer condition on all k and q
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Building new kernels
• If k1(x,y) and k2(x,y) are two valid kernels then the 

following kernels are valid
– Linear Combination

– Exponential

– Product

– Polymomial tranfsormation (Q: polymonial with non 
negative coeffients)

– Function product (f: any function)
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Polynomial kernel

Ben-Hur et al, PLOS computational Biology 4 (2008)
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Gaussian RBF kernel

Ben-Hur et al, PLOS computational Biology 4 (2008)
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Spectral kernel for sequences

• Given a DNA sequence x we can count the 
number of bases (4-D feature space)

• Or the number of dimers (16-D space)

• Or l-mers (4l –D space)

• The spectral kernel is  
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Choosing the Kernel Function

• Probably the most tricky part of using SVM.
• The kernel function is important because it creates the 

kernel matrix, which summarizes all the data
• Many principles have been proposed (diffusion kernel, 

Fisher kernel, string kernel, …)
• There is even research to estimate the kernel matrix from 

available information

• In practice, a low degree polynomial kernel or RBF kernel 
with a reasonable width is a good initial try

• Note that SVM with RBF kernel is closely related to RBF 
neural networks, with the centers of the radial basis 
functions automatically chosen for SVM
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Other Aspects of SVM

• How to use SVM for multi-class classification?
– One can change the QP formulation to become multi-class
– More often, multiple binary classifiers are combined

• See DHS 5.2.2 for some discussion

– One can train multiple one-versus-all classifiers, or 
combine multiple pairwise classifiers “intelligently”

• How to interpret the SVM discriminant function value 
as probability?
– By performing logistic regression on the SVM output of a 

set of data (validation set) that is not used for training

• Some SVM software (like libsvm) have these features 
built-in
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Software

• A list of SVM implementation can be found at 
http://www.kernel-
machines.org/software.html

• Some implementation (such as LIBSVM) can 
handle multi-class classification

• SVMLight is among one of the earliest 
implementation of SVM

• Several Matlab toolboxes for SVM are also 
available
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Summary: Steps for Classification

• Prepare the pattern matrix

• Select the kernel function to use

• Select the parameter of the kernel function and 
the value of C
– You can use the values suggested by the SVM 

software, or you can set apart a validation set to 
determine the values of the parameter

• Execute the training algorithm and obtain the ai

• Unseen data can be classified using the ai and the 
support vectors
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Strengths and Weaknesses of SVM

• Strengths
– Training is relatively easy 

• No local optimal, unlike in neural networks

– It scales relatively well to high dimensional data

– Tradeoff between classifier complexity and error can 
be controlled explicitly

– Non-traditional data like strings and trees can be used 
as input to SVM, instead of feature vectors

• Weaknesses
– Need to choose a “good” kernel function.
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Conclusion

• SVM is a useful alternative to neural networks

• Two key concepts of SVM: maximize the 
margin and the kernel trick

• Many SVM implementations are available on 
the web for you to try on your data set!
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Resources

• http://www.kernel-machines.org/

• http://www.support-vector.net/

• http://www.support-vector.net/icml-
tutorial.pdf

• http://www.kernel-
machines.org/papers/tutorial-nips.ps.gz

• http://www.clopinet.com/isabelle/Projects/SV
M/applist.html
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Thank You!


