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e Classification Problem.

* Linear Classifiers.
— Max-margin principle.
— Dual problem.
— Soft-margin SVMs.

e Non-linear classifiers.
— Kernel methods.
— Examples.
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Splice site recognition

Donor sites contain GT on the intron side.
Acceptor sites contain AG on the intron side.
Task is to classify AG as acceptor or not.

GC content of exons is higher than introns.

Use GC content before and after AG to classify
It as acceptor.
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Linear Separators

* Binary classification can be viewed as the task of
separating classes in feature space:

wix+b=0

wix+b<0

® f(x) = sign(w'x + b)




Linear Separators

* Which of the linear separators is optimal?




What is a good Decision Boundary?

* Many decision

boundaries! o © Class2

— The Perceptron algorithm
can be used to find such a o
boundary .

Are all decision .
boundaries equally Class 1
good?




Examples of Bad Decision Boundaries
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Finding the Decision Boundary

* Let{xy, ..., x,} be ourdatasetandlety. € {1,-1} be the class
label of x;

For y/:]_ WTXi +b 21
For y=-1 W' X +b<-1

So:
Y, -(WTxi + b)21, v(x, ;)
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Large-margin Decision Boundary

 The decision boundary should be as far away
from the data of both classes as possible

— We should maximize the margin, m

2

m =
W]

0"’ .
"@ Class 2

wix4+b=1
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Finding the Decision Boundary

The decision boundary should classify all points correctly =
yi(wix+0)>1, W

The decision boundary can be found by solving the
following constrained optimization problem

1
Sliwll?

: T :
subject to y;(w x; +b) > 1 Vi

Minimize

This is a constrained optimization problem. Solving it
requires to use Lagrange multipliers
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Finding the Decision Boundary

1
Minimize §||w||2

subject to 1—y;(wlx;4+b) <0

 The Lagrangian is

1

fore=1,...,n

L= EWTW + i o (1 —y;(wlx, + b))

1=1

— Note that | |[w]||?=w'w
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Gradient with respect to w and b
e Setting the gradient of £:w.r.t. w and b to
zero, we have

L :% TW+Zn:ai (1— . (WTxi +b))=
=1

— Ezmlwkwk + Zn:ai [1— yi(zmlwkxik +bj]
2 k=1 =1 k=1

n: no of examples, m: dimension of the space

a—Lk =0,vk W 221 ai(—y)x; =0 = w= 221 O YiX;
11— 1=
3 0L =
—=0 > aiy; =0
ob i=1
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The Dual Problem

* If we substitute w = ) _ o;u;x; to £, we have

=1
10 n Z =
EZEZ QY X Z VLIRS J+ZO‘% l_yi(zaﬂyj JX%_H))
i=1 j=1 z—l j=1
l n n T n
) D D ciagyiyX; x5+ Z Q — Z XY Z O‘Jijj xi—b ), iy,
i=1j5=1 i=1 i=1 =1
1 " n 7 n
=5 DD aogyyXi X+ ) oy
mn
Since Zl QY =
1=

* Thisis a function of o, only
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The Dual Problem

The new objective function is in terms of o, only

It is known as the dual problem: if we know w, we know all o; if we know
all o, we know w

The original problem is known as the primal problem

The objective function of the dual problem needs to be maximized (comes
out from the KKT theory)

The dual problem is therefore:

n 1 n
Max. W(Oﬂ) = Z Q; — 5 Z aiajyiijzTXj
i=1 i=1,7=1
n
subject to a; > 0, > oy; =0
A i=1 \
Properties of o, when we introduce The result when we differentiate the
the Lagrange multipliers original Lagrangian w.r.t. b

16



The Dual Proble

1 i T
max. W(Oﬁ) = Z oy — 5 Z QGO YY Xy X
=1 1=1,7=1
T
subject to o; > 0, Y a;y; =0
1=1

* This is a quadratic programming (QP) problem

— A global maximum of o, can always be found
n

* wcan berecoveredby w = Z oYX
1=1
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Characteristics of the Solution

* Many of the q, are zero

— W is a linear combination of a small number of data
points

— This “sparse” representation can be viewed as data
compression as in the construction of knn classifier

* X, with non-zero o, are called support vectors (SV)

— The decision boundary is determined only by the SV

— Let ¢, (j=1, ..., s) be the indices of the s support
vectors. We can write

S S
W = j=1 atjytjxtj
— Note: w need not be formed explicitly
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A Geometrical Interpretation

- » "’."\‘NTX +b=1
(19=0 0 ’o.‘ T ¢
0= _
Class 1 3 o, W x+b=0
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Characteristics of the Solution

* For testing with a new data z
— Compute wiz 4 b= G=1 Ot Yt (X;}l;z) T b
and classify z as class 1 if the sum is positive, and
class 2 otherwise

— Note: w need not be formed explicitly
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The Quadratic Programming Problem

Many approaches have been proposed
— Loqo, cplex, etc. (see http://www.numericaI.rI.ac.uk/qp/qp.htmI)

Most are “interior-point” methods
— Start with an initial solution that satisfies the constraints
— Improve this solution by optimizing the objective function

— For SVM, sequential minimal optimization (SMO) is the
most popular

— A QP with two variables is trivial to solve

— Each iteration of SMO picks a pair of (a,0) and solve the
QP with these two variables; repeat until convergence

In practice, we can just regard the QP solver as a
“black-box” without bothering how it works
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Non-linearly Separable Problems

* We allow “error” &, in classification; it is based on the output
of the discriminant function w'x+b

* &, approximates the number of misclassified samples

Class 2
. @
| %
|
H wlx + b =
T _
Class 1 WX+ b=
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Soft Margin Hyperplane

* The new conditions become
wixi+b>1-& =
wix, +b<—14¢
& =0 Vi
— &, are “slack variables” in optimization

— Note that £=0 if there is no error for x.

— & is an upper bound of the number of errors

* We want to minimize 1 n
SR
i=1

subject to y;(wix; +b)>1—-¢, & >0

e (C:tradeoff parameter between error and margin

|
—t

-
]
|

 —
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The Optimization Problem

L = %WTW“LCZn:fi +_Zn:05i (1_; —Yi (WTXi +b))_zn:ﬂi§i

With a and p Lagrange multipliers, POSITIVE

ﬁ:Wj_z‘,ai)’ixij:o WZZ%WFO
aWj i=1 =1
a—L:C_O‘j —H =

ol

a_L:Zyi [ :O
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The Dual Problem

1 n n T n
L :EZZaiainyj IX ACY &+
=1

i=1 j=1
n

+Za{l—§i —yi[_zn:ajijfxi +bn—zn:yi§i

=1

With Zyiai -0 and C=a;+u

:__ZZ“ 'Yiyru X; —I—ZO{

=1 j=1



The Optimization Problem

The dual of this new constrained optimization problem is
1 n T

max. W((X) = Z oy — 5 Z QLYY X5 X
=1 1=1,7=1
n
subject to C > o; > 0, > ayy; =0
=1

New constraints derived from C = a;+ U, since wand a are
positive.

W is recovered as — ) U+ . .
w G—1 QY Xt

This is very similar to the optimization problem in the linear
separable case, except that there is an upper bound C on o, how

Once again, a QP solver can be used to find o,
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1 n
Il +Cs
1=1

* The algorithm try to keep € null, maximising the
margin

* The algorithm does not minimise the number of
error. Instead, it minimises the sum of distances fron
the hyperplane

* When Cincreases the number of errors tend to
lower. At the limit of C tending to infinite, the
solution tend to that given by the hard margin
formulation, with O errors

10/28/2013 27



Soft margin is more robust to outliers

Var, Var,
. ] . l
' . 1.:' '
|
Var, i ¥+b=0 Var,
w-x+5b=0
Soft Margin SVM Hard Margin SVM

28



Extension to Non-linear Decision
Boundary

So far, we have only considered large-margin classifier with
a linear decision boundary

How to generalize it to become nonlinear?

Key idea: transform x; to a higher dimensional space to
“make life easier”

— Input space: the space the point x; are located

— Feature space: the space of ¢(x;) after transformation
Why transform?

— Linear operation in the feature space is equivalent to non-linear
operation in input space

— Classification can become easier with a proper transformation.
In the XOR problem, for example, adding a new feature of x,x,
make the problem linearly separable

29
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:

O
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O
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Find a feature space
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v

Input space

Transforming the Data

o )¢(.)

5®) po) bl)

2 @) N\ o)
o(m) " ) o)
o(m) )
o(m) o)

Feature space

Note: feature space is of higher dimension
than the input space in practice

 Computation in the feature space can be costly

because it is high dimensional

— The feature space is typically infinite-dimensional!

e The kernel trick comes to rescue
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The Kernel Trick

Recall the SVM optimization problem

T 1 n
max. W(a) =) «a; — 5 >y oz@-ozjyiy
=1

i=1,j=1
T
subject to C > a; >0, Y oy, =0 /

i=1
The data points only appear as inner product

As long as we can calculate the inner product in the
feature space, we do not need the mapping explicitly

Many common geometric operations (angles,
distances) can be expressed by inner products

Define the kernel function K by

K (x;,%x;) = ¢(x;)" d(x;)
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An Example for ¢(.) and K(.,.)

Suppose ¢(.) is given as follows

s(| 35 ) = (1,V221, V25,22, 23, V22172)
An inner product in the feature space is

(@[5 s o[ ) = (1 4 w11 + 2292)°

So, if we define the kernel function as follows, there is no
need to carry out ¢(.) explicitly

K(x,y) = (1 + z1y1 + 20y2)?

This use of kernel function to avoid carrying out ¢(.)
explicitly is known as the kernel trick
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Kernels

* Given a mapping: X—¢(x)
a kernel is represented as the inner product

K(X,y) —>Zi i (X)pi (Y)
A kernel must satisfy the Mercer’s condition:

Vg (X) such that_‘.gz(x)dx20:>jK(x,y)g(x)g(y)dxdyzo
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Modification Due to Kernel Function

* Change all inner products to kernel functions
* For training,

n 1 n
max. W(Of) = Z oy — 5 | Z aiajyiijng
Original i=1 i=1,j=1
subject to C' > a; >0, > ayy; =0
1=1
n 1 T
max. W(a) = o —— ;oYY K (X, X
With kernel (@) Z; ! 27;:12;4:1 Yy K (X5, %)
function

(L
subject to C' > a; >0, > oyy; =0
i=1
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Modification Due to Kernel Function

* For testing, the new data z is classified as class
1if f=0, and as class 2 if f <0
W = Z th.yt.Xt.
Original j=1

f—w zZ + b= Zatytxtz—l—b
J=

W= ) opyd(Xe;)
With kernel jz

function ¢ = (w, ¢(z)) + b = Z oyt K (xt;,2) + b
j=
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More on Kernel Functions

* Since the training of SVM only requires the value of
K(x;, x;), there is no restriction of the form of x; and x;

— X; can be a sequence or a tree, instead of a feature vector
* K(x, xj) is just a similarity measure comparing x. and X;

* For a test object z, the discriminant function essentially
is a weighted sum of the similarity between z and a
pre-selected set of objects (the support vectors)

f(z) =) owiK(z,x;)+b
X;ES

S : the set of support vectors
39



Example

e Suppose we have 5 1D data points

—X,=1, X,=2, X3=4, x,=5, x.=6, with 1, 2, 6 as class 1
and 4,5 asclass 2 => vy,=1,y,=1, y;=-1, y,=-1, y.=1

40



Example

e Suppose we have 5 1D data points

—X,=1, X,=2, X3=4, x,=5, x.=6, with 1, 2, 6 as class 1
and 4,5 asclass 2 => vy,=1,y,=1, y;=-1, y,=-1, y.=1

class 1 class 2 class 1

X O O
4 5

X
1 2

o) X
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Example

* We use the polynomial kernel of degree 2
— K(x,y) = (xy+1)?
— Cissetto 100

e We first find of (i 1 .., 5) by
Z gy — = Z Z g gyzyj(mz 1)2

?,1]
5

subject to 100 > «; > 0, )  a;y; =0
1=1
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Example
By using a QP solver, we get
— o,=0, a,,=2.5, 0,3=0, a,,=7.333, 0.;=4.833
— Note that the constraints are indeed satisfied
— The support vectors are {x,=2, x,=5, x;=6}

The discriminant function is N Ys K(z, xs)
f(z) > l ’
=25(1)(224+ 1)2 4+ 7.333(=1)(52 4 1)° + 4\833( ) (62 Z 1)°+b

= 0.66672° — 5.3332 + b
b is recovered by solving f(2)=1 or by f(s)=-1 or by f(e)=1,

All three give b-s ==  f(2) = 0.666722 — 5.3332 4+ 9
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Example

Value of discriminant function

class 2

class 1
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Kernel Functions

* |n practical use of SVM, the user specifies the kernel
function; the transformation ¢(.) is not explicitly stated

* Given a kernel function K(x;, x;), the transformation ¢(.)
is given by its eigenfunctions (a concept in functional
analysis)

— Eigenfunctions can be difficult to construct explicitly

— This is why people only specify the kernel function without
worrying about the exact transformation

* Another view: kernel function, being an inner product,
is really a similarity measure between the objects

45



A kernel is associated to a
transformation

- Given a kernel, in principle it should be recovered the
transformation in the feature space that originates it.

~K(x,y) = (xy+1)?= x?y?+2xy+1
(%2 )
It corresponds the transformation X—> \/EX
1

\ J
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Examples of Kernel Functions

Polynomial kernel up to degree d

K(u,v) = (u-v)?
Polynomial kernel up to degree d

K(x,y) = (xly + 1)4
Radial basis function kernel with width o

K(x,y) = exp(—|lx — y|[?/(20°))
— The feature space is infinite-dimensional
Sigmoid with parameter k and 0

K(x,y) = tanh(kx!y + 0)

— It does not satisfy the Mercer condition on all Kk and 0

47



Building new kernels

* If k,(x,y) and k,(x,y) are two valid kernels then the
following kernels are valid

— Linear Combination
K(X,y) =ck (X Y)+C,K, (X, Y)
— Exponential

k(, y) = exp[k; (x, y)]
— Product

K(X, y) =k (X, ¥)- K, (X, y)

— Polymomial tranfsormation (Q: polymonial with non
negative coeffients)

k(%,y) =Q[k (X, ¥)]

— Function product (f: any function)

K(X, y) = T(X)K (X Y) T(Y)

49



Polynomial kernel

Polysonial Kernel d=2

GC Content Defore "AG°Y

CC Caontent Aftar "AGC*

Ben-Hur et al, PLOS computational Biology 4 (2008)

100X

Polysomial Kernel d=6
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Gaussian RBF kernel

c Gaussian Xerzel Sigma=0.0%

A Gaussian Xerzel Sigma=20 8 Gaussian Xernel Sigza~l o4
" 1

OC Coatent Defore 'AS*

120X 100X

GC Coxtent After "AGC'

Ben-Hur et al, PLOS computational Biology 4 (2008)
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Spectral kernel for sequences

* Given a DNA sequence x we can count the
number of bases (4-D feature space)

A (X) = (N, Ne N, 1)
e Or the number of dimers (16-D space)

,(X) = (Nap, Nac s Nag s Nar s Neas Nees Ne s Ners-2)

* Orl-mers (4'-D space)

* The spectral kernel is k| (X’ Y) — ﬂ (X) ﬂ (y)

10/28/2013 52



Choosing the Kernel Function

Probably the most tricky part of using SVM.

The kernel function is important because it creates the
kernel matrix, which summarizes all the data

Many principles have been proposed (diffusion kernel,
Fisher kernel, string kernel, ...)

There is even research to estimate the kernel matrix from
available information

In practice, a low degree polynomial kernel or RBF kernel
with a reasonable width is a good initial try

Note that SVM with RBF kernel is closely related to RBF
neural networks, with the centers of the radial basis
functions automatically chosen for SVM
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Other Aspects of SVM

How to use SVM for multi-class classification?
— One can change the QP formulation to become multi-class

— More often, multiple binary classifiers are combined
* See DHS 5.2.2 for some discussion
— One can train multiple one-versus-all classifiers, or
combine multiple pairwise classifiers “intelligently”
How to interpret the SVM discriminant function value
as probability?

— By performing logistic regression on the SVM output of a
set of data (validation set) that is not used for training
Some SVM software (like libsvm) have these features

built-in
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Software

A list of SVM implementation can be found at
http://www.kernel-
machines.org/software.html

Some implementation (such as LIBSVM) can
handle multi-class classification

SVMLight is among one of the earliest
implementation of SVM

Several Matlab toolboxes for SVM are also
available
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Summary: Steps for Classification

Prepare the pattern matrix
Select the kernel function to use

Select the parameter of the kernel function and
the value of C

— You can use the values suggested by the SVM
software, or you can set apart a validation set to
determine the values of the parameter

Execute the training algorithm and obtain the .

Unseen data can be classified using the o, and the
support vectors
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Strengths and Weaknesses of SVM

e Strengths

— Training is relatively easy
* No local optimal, unlike in neural networks

— |t scales relatively well to high dimensional data

— Tradeoff between classifier complexity and error can
be controlled explicitly

— Non-traditional data like strings and trees can be used
as input to SVM, instead of feature vectors

 Weaknesses
— Need to choose a “good” kernel function.
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Conclusion

e SVM is a useful alternative to neural networks

* Two key concepts of SVM: maximize the
margin and the kernel trick

 Many SVM implementations are available on
the web for you to try on your data set!
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Resources

http://www.kernel-machines.org/

ttp://www.support-vector.net/

nttp://www.support-vector.net/icml-
tutorial.pdf

http://www.kernel-
machines.org/papers/tutorial-nips.ps.gz

http://www.clopinet.com/isabelle/Projects/SV
M/applist.html
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Thank You!



