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Rational Drug Design
Traditionally drugs were discovered by chance 
observations
Alternatively large scale screening was done to identify 
potential drugs

Expensive and time consuming.

Rational Drug Design 
design using the information about the 3D shape of proteins
To inhibit protein function

Steps
Step 1: Looking for protein targets in the virus
Step 2: Identify the active site
Step 3: Design drug for blocking the active site
Step 4: Do further studies with the designed molecule



Active site and RDD

Specific sites in proteins where all the action happens. 
Each protein has a specific shape so it will only perform a specific job. 
Example – An enzyme that increases the rate of a reaction

http://chsweb.lr.k12.nj.us/mstanley/outlines/enzymesap/Enzymesap.html
http://academic.brooklyn.cuny.edu/biology/bio4fv/page/active_.html

Joining things together
Ripping things apart



There are two types of 
protein = N and H. 

N and H have special 
shapes to perform 
specific jobs for the 
virus. 

Influenza viruses are 
named according to the 
proteins sticking out of 

their virus coat.(H)

(N)

Designing a Flu Drug 
Step 1: looking for protein targets

Source http://www.gtac.edu.au/site/bioinformatics/bio_task_10/bio_task_10.ppt



Human Lung Cell

Virus
Proteins on cell surface

H attaches to cell 
surface proteins so virus 
can enter

Virus genes are released into the 
cell. 

The lung cell is ‘tricked’ into using 
these genes to make new virus 
particles.

N cuts the links between the 
viruses and the cell surface so 
virus particles are free to go and 
infect more cells.



Design of Flu Drug

RELENZA

Australian team of  scientists headed 
by Prof  Peter Coleman. They 
designed the flu drug, Relenza
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GENETIC ALGORITHMS

DEFINITION 
Randomized search and optimization technique guided by the 
principle of natural genetic systems.

Why Genetic Algorithms (GAs) ?
1. Most real life problems can not be solved in polynomial time 
using any deterministic algorithm 

2. Sometimes near optimal solutions that can be generated 
quickly are more desirable than optimal solutions which require 
huge amount of time

3.When the prob. can be modeled as an optimization one.
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Search Techniques
The traditional vs. the unconventional

Calculus based techniques – gradient 
descent

(hill climbing)

Global optima

local
optima

Continuous domain, quadratic optimization – best method



12

Search Techniques
The traditional vs. the unconventional

Enumerative technique – dynamic
programming

n points 

What if n very very large? Quite likely in practice.
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Search Techniques
The traditional vs. the unconventional

Random technique – hoping to find the 
optimal

sooner.

No better than enumerative in the long run
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Randomized Algorithms
Guided random search technique
Uses the payoff function to guide 
search

Genetic Algorithms (GAs)

Problems P

Specialized algorithms – best performance for special problems
Genetic algorithms – good performance over a wide range of problems

Specialized Algo.

GA
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Genetic Algorithms -
Features

Evolutionary Search and Optimization Technique
Principles of Evolution (survival of the fittest and 
inheritance)
Work with coding of the parameter set
Searches from a population of points
Uses probabilistic transition rules



16

Simple Generational GA
1.Randomly generate a population of chromosomes 2.Decode each chromosome to get an individual 3.Evaluate the fitness of each individual 4.Perform selection, crossover and mutation.5.Repeat steps 2, 3 and 4 until a stop condition is true. 

Note : There is no overlapping between generations. 
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Initialize Population

Terminate?

Yes
Output
solution

No

Evaluate Fitness

Perform selection, 
crossover and mutation

Evaluate Fitness GA 
Flowchart
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Encoding Strategy and 
Population

Chromosome encodes a solution in the search 
space

Usually as strings of 0's and 1's
If l is the string length, number of different chromosomes (or 
strings) is 2l

Population
A set of chromosomes in a generation 
Population size is usually constant 
Common practice is to choose the initial population randomly.



Encoding and Population - Example

0      1 0          0       1        0         0        1

Optimization Problem DeJong F1 - Sphere:
Minimize fsphere(x) = ∑xi

2
,      i=1,2,…,p, xi ϵ[-5.12,5.12], 

Solution: x* = [0 0 … 0], fsphere (x*) = 0

Binary String of 8 bits used to represent each xi 0-255, should 
map to -5.12 to 5.12

Example, p=2,
Chromosome encodes x1 and x2

Value of x1 = 154 (5.12*2)/255 * 154 + (-5.12) = 1.06415

1      0 0          1        1        0         1        0

x1 x2

Value of x2 = 73 (5.12*2)/255 * 73 + (-5.12) = -2.1885
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Encoding and Population – Example  
contd…

10011010   01001001   [154  73] [1.06415  -2.1885]

01100111 11101001   [103 233] [-0.98384  4.23654]

00010101   01011100   [21  92] [-4.2767  -1.4255]

10111100    11000011  [188 195]  [2.42949  2.71058]

Population (size = 4) Corresponding x
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Fitness Evaluation
• Fitness/objective function associated with each chromosome
• Indicates the degree of goodness of the encoded solution
• Only problem specific information (also known as the payoff information) that GAs 
use
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Fitness Evaluation - Example

Population (size = 4) Corresponding x Objective         Fitness
fn.                    fn.=1/Obj

Minimize fsphere(x) = ∑xi
2

10111100    11000011  [188 195]  [2.42949  2.71058] 13.2898               0.0752

10011010   01001001   [154  73] [1.06415  -2.1885]           5.12194             0.16886

00010101   11011100   [21  220] [-4.2767  3.7145]            32.0877              0.03116

01100111 11101001   [103 233] [-0.98384  4.23654]        18.9162              0.05286   
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Selection
• More copies to good strings
• Fewer copies to bad string
• proportional selection scheme

• Number of copies taken to be directly proportional to its fitness 
• mimics the natural selection procedure to some extent. 
• Roulette wheel parent selection and stochastic universal selection selection are 
two frequently used selection procedures. 
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Roulette Wheel Selection –
Example 

Chromosome # Fitness
1 0.0752
2 0.16886
3 0.03116
4 0.05286 

1
2

3 4

Spin 1 Chromosome 2 selected
Spin 2 Chromosome 1 selected
Spin 3 Chromosome 2 selected
Spin 4 Chromosome 4 selected

0  1 1  0 0  1  1  1 
1  0 0  1 1  0  1  0
0  1 1  0 0  1  1  1
1  0 1  1 1  1  0  0

Mating

Pool
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Crossover
• Exchange information

• between randomly selected parent chromosomes 
• Single point crossover is one of the most commonly used schemes.
• probabilistic operation
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Crossover – Example

1 0 0 1              1             0             1               0

0 1 1 1              1             1             0               1

Here l (string length) = 8. Let k (crossover point) = 5

1 0 0 1              1                                        1             0               1

0 1 1 1              1                                        0             1               0

Offspring formed :
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Mutation

random alteration in the genetic structure 
introduce genetic diversity into the population. 
Exploration of new search areas
Mutating a binary gene involves simple negation of the bit, 
Mutating a real coded gene defined in a variety of ways
probabilistic operation
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Mutation- Example
1 0 0 1              1             0             1               0

1 1 0 1              0             0             1               0

Mutations at positions 2 and 5
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Parameters …
• population size (usually fixed) 
• string length (usually fixed) 
• probabilities of performing crossover (μc) and mutation(μm),

• μc  is kept high and μm is kept low
• the termination criteria

•Generally a maximum number of iterations
• parameters are user determined  
• parameters are problem dependent 
• no firm guidelines 
•parameters can be kept variable and/or adaptive. 
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Parameters – Example 
For the example being considered, 
P = 4,  l = 8.

But for most realistic cases
P is usually chosen in the range 50-100.
μc  = [0.6-0.9],
μm = [0.01-0.1].
l usually depends on the required precision



31

Termination Criterion
The cycle of selection, crossover and mutation is repeated a number of times till one of 
the following occurs :
• the average fitness value of a population becomes more or less constant 
over a specified number of generations,
• a desired objective function value is attained by at least one string in the 
population,
• the number of generations (or iterations) is greater than some threshold  ---
-- most commonly used.
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Elitist Model of GAs
The best string (in terms of fitness) seen 

up to the current generation is 
preserved in a location either inside or 
outside the population.



Drug Design – Relevance of GAs

Identify/design a suitable ligand which can bind 
to the active site of a protein to prevent its 
proliferation.
Design the ligand using groups from a library of 
chemical groups

Such that interaction energy is minimized
Drug design problem can be modeled as one of 
optimization
Application of GAs becomes relevant.



Problem Objective
Design of molecules that can bind to the active 
site of harmful protein (e.g., those crucial for the 
proliferation of microbial organisms, cancer cells 
or viruses).
Such molecules can destroy the action of the 
target protein

thereby nullifying its activity which can be lethal to us. 
Accurate prediction of the structure of the 
potential inhibitors, while utilizing the knowledge 
about the structure of a target protein, is 
important in drug design. 



Asn219
(-3.3,5.75)

Ser107
(-8.6,5.75)
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Barrel shaped active site of human rhino virus 
strain 14
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The Design Methodology
Building ligands from a fragment library
Optimizing the energy components

Van der Waals energy = [(Cn / r6) – (Cm / r12)]

Electrostatic energy = (q1q2)/(4πε0r2)

ε0 = 8.854185x10-12 coulomb2/(N m2)

Bond stretching energy = [kl × (lxy − l xy,0 )2]/2

Angle bending energy = [k θ × (θ − θ0)2]/2

Torsional energy = kφ × (1 − cos n × (φ − φ0))

GA is used for minimization
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Lower tree structure Upper tree structure
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O

NC

L

J R
The string representation of this 

structure is as follows

AB3#CDEFG#H#I0J#0K1#L#MN2##0P##Q0R

Length = 3

Length = 0
Length = 1

Length = 2
#

ENCODING STRATEGY



Fragment Details
Number of bonds a fragment can make is given below



Some Fragments in the Library

Group 0 Alkyl 1C  
Bond length ~0.65 along x-axis 

Group 1 Alkyl 3C  
Bond length ~ 1.75 along x-axis 

Group 2 Alkyl 1C Polar              OH
Bond length ~ 1.1 along x-axis



Groups Considered

Group 3 Alkyl 3C Polar
Bond length ~ 2.2 along x-axis 

Group 4 Polar     

Group 5 Aromatic
Bond length ~1.9 along x-axis

Group 6 Aromatic polar                                   
Bond length ~ 2.7 along x-axis             

OH

OH

OH



Groups Considered

Group 7 Alkyl 2C 
Bond length ~ 1.2 along x-axis                    

Group 8 Alkyl 4C 
Bond length ~ 2.5 along x-axis                    

Group 9 Alkyl 4C Polar
Bond length ~ 2.9 along x-axis

Group 10 Amine NH2
Bond length ~ 0.5 along x-axis

OH

N
HH



Groups Considered

Group 11Alkyl 5C
Bond length ~ 3.1 along x-axis

Group 12 Alkyl 2C Polar
Bond length ~ 1.68 along x-axis

Group 13 Alkyl 5C Polar
Bond length ~ 3.58 along x-axis OH

OH



Results

Energy Values
(by InsightII in 

Kcal/mole)

HIV-1 Protease HIV-1 Nef Protein
VGA IVGA3

D
VGA IVGA3D

Vander Waals Energy 4.724 -3.862 -2.616 -3.873

Coulombs Energy -1.408 -4. 190 0.764 -3.691

Total Energy 3.316 -8.052 -1.852 -7.564



Results for similar CSD molecules

Name of the 
protein

Method used CSD Ref code of 
the molecule

Energy (kcal)

HIV-1 Nef VGA IFEFOO -11.43518

IVGA3D ADAPII -18.39

HIV–1 Protease VGA VEHMUQ -17.7638

IVGA3D SEWZOJ -24. 76



Hydrogen Bond details

Hydrogen Bonds For HIV-1 Nef Protein
IVGA3D
Donor                        Acceptor                     Distance (Å)
Ligand:1:HH             Protein:83:N               1.92
Ligand:3:HH             Protein:120:O             1.87

VGA
Donor                        Acceptor                     Distance (Å)
Ligand:2:HH             Protein:83:NH            2.32



Hydrogen Bond details contd..

Hydrogen Bonds For HIV-1 Protease
IVGA3D
Donor                        Acceptor                     Distance 

(Å)
Ligand:2:HH             Protein:87:NH            2.14
Ligand:4:HH             Protein:27:O              0.25
Ligand:7:HH             Protein:48:O              2.48

VGA
Donor                        Acceptor                     Distance 

(Å)
Protein:87:HH          Ligand:4:OH               2.13
Ligand:4:HH             Protein:87:NH            1.46



HIV-1 Nef protein and HIV-1 Protease docked with 
a molecule designed by IVGA3D

Color code for Proteins:  Cyan: protein, White: Active site

Color code for ligands:   White: Hydrogen, Red: Oxygen, Green: Carbon



Observations
It is found that VGA designed molecule is associated 
with lower Van der Waals energy values as compared 
to the fixed string length GA based method. 
Moreover, it is found that the structure of the evolved 
molecule is such that it is amenable to stable 
configurations because of the presence of hydrogen 
bonds.
Molecule designed using fixed length GA had heavier 
molecules

therefore, may be unstable.



Conclusions and Further Work
An Improved VGA based technique for ligand design 
is proposed

no assumption regarding the size of the tree 
Modified crossover and mutation operators are used. 

Proposed method found to provide solutions having 
characteristics amenable to stability
Scope for further work

Need to analyze in 3 dimensions
Consider other optimizing criteria and multi-objective 
optimization algorithms
Consider structures other than tree
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