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Probability in Bioinformatics

 Classification

 Categorize a new object into a known class

 Supervised learning/predictive analysis

 Regression

 Supervised prediction of continuous valued variables

 Clustering

 Extract homogenous groups in population

 Unsupervised learning/exploratory analysis

 Sequence analysis

 Relation and graph structure analysis



Probabilistic Algorithms

 Classification

 Bayes classification, graphical models

 Regression

 Logistic regression

 Clustering

 Gaussian mixture models

 Sequence analysis

 Markov models, hidden markov models, conditional random 

fields

 Relation analysis

 Markov processes, graph structure analysis
many many more…..



A Simple Species Classification Problem

 Measure the length of a fish, and decide its class

 Hilsa or Tuna



Collect Statistics …

Population for Class Hilsa

Population for Class Tuna



Distribution of “Fish Length”
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Class Conditional Distributions

P ( L = 1.75 ft | HILSA )

P ( L = 4.25 ft | TUNA )

Histograms



Decision Rule

 If length L ≤ B

 HILSA

 ELSE

 TUNA

 What should be the value of B (“boundary” length) ?

 Based on population statistics



Error of Decision Rule

L

P( L | HILSA)
P( L | TUNA)

B

Errors: Type 1 + Type 2,

Type 1: Actually Tuna, Classified as Hilsa (area under pink curve to the left of a B)

Type 2: Actually Hilsa, Classified as Tuna (area under blue curve to the right of a B)



Optimal Decision Rule

L

P( L | HILSA)
P( L | TUNA)

B*

B*:  Optimal Value of B, (Optimal Decision Boundary)

Minimum Possible Error

P ( B* | HILSA ) = P ( B* | TUNA )

If Type 1 and Type 2 errors have different costs : optimal boundary shifts



Species Identification Problem

 Measure lengths of a (sizeable) population of Hilsa and 

Tuna fishes

 Estimate Class Conditional Distributions for Hilsa and 

Tuna classes respectively

 Find Optimal Decision Boundary B* from the 

distributions

 Apply Decision Rule to classify a newly caught (and 

measured) fish as either Hilsa or Tuna 

 (with minimum error probability)



Location/Time of Experiment

 Calcutta in Monsoon

 More Hilsa few Tuna

 California in Winter

 More Tuna less Hilsa

 Even a 2ft fish is likely to be Hilsa in Calcutta (2000 Rs/Kilo!),

 a 1.5ft fish may be Tuna in California



Apriori Probability

 Without measuring length what can we guess about the 

class of a fish

 Depends on location/time of experiment

 Calcutta : Hilsa, California: Tuna

 Apriori probability: P(HILSA), P(TUNA)

 Property of the frequency of classes during experiment

 Not a property of length of the fish

 Calcutta: P(Hilsa) = 0.90, P(Tuna) = 0.10

 California: P(Tuna) = 0.95, P(Hilsa) = 0.05

 London: P(Tuna) = 0.50, P(Hilsa) = 0.50

 Also a determining factor in class decision along with 

class conditional probability



Classification Decision

 We consider the product of Apriori and Class conditional 

probability factors

 Posteriori probability (Bayes rule)

 P(HILSA | L = 2ft) = P(HILSA) x P(L=2ft | HILSA) / P(L=2ft)

 Posteriori ≈ Apriori x Class conditional 

 denominator is constant for all classes

 Apriori: Without any measurement - based on just location/time – what can 

we guess about class membership (estimated frm size of class populations)

 Class conditional: Given the fish belongs to a particular class what is the 

probability that its length is L=2ft (estimated from population)

 Posteriori:  Given the measurement that the length of the fish is L=2ft what 

is the probability that the fish belongs to a particular class (obtained using 

Bayes rule from above two probabilities). 

 Useful in decision making using evidences/measurements.



Bayes Classification Rule (Bayes Classifier)

L

P( HILSA | L)
P( TUNA | L)

B*

B*:  Optimal Value of B, (Bayes Decision Boundary)

P ( HILSA| L= B* ) = P ( TUNA | L = B*)

Posteriori Distributions

Minimum error probability: Bayes error



MAP Representation of Bayes Classifier

L

P( HILSA | L)
P( TUNA | L)

Posteriori Distributions

Instead of finding decision boundary B*, state classification rule as:

Classify an object in to the class for which it has the highest posteriori prob.

(MAP: Maximum Aposteriori Probability)

Hilsa has higher posteriori probability than Tuna for this length



MAP Multiclass Classifier

L

P( HILSA | L)
P( TUNA | L)

Posteriori Distributions

Classify an object in to the class for which it has the highest posteriori prob.

(MAP: Maximum Aposteriori Probability)

Hilsa has highest posteriori probability among all classes for this length

P( SHARK | L)



Multivariate Bayes Classifier
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Decision Boundary

•Feature or Attribute Space

•Class Seperability



Decision Boundary: Normal Distribution

 Two spherical classes having different means, but same 

variance (diagonal covariance matrix with same variances)
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Decision Boundary: Perpendicular bisector of the mean vectors



Distances

 Two vectors: Euclidean, Minkowski etc

 A vector and a distribution: Mahalanobis, Bhattacharya

 Between two distributions: Kullback-Liebler Divergence
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Decision Boundary: Normal Distribution

 Two spherical classes having different means and variances 

(diagonal covariance matrix with different variances)
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Boundary: Locus of equi-Mahalanobis distance points from the class distributions.

(still a straight line)



Decision Boundary: Normal Distribution

 Two elliptical classes having different means and variances 

(general covariance matrix with different variances)
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Class Boundary: Parabolic



Bayesian Classifiers
 Approach:

 compute the posterior probability P(C | A1, A2, …, An) for all 
values of C using the Bayes theorem

 Choose value of C that maximizes 
P(C | A1, A2, …, An)

 Equivalent to choosing value of C that maximizes
P(A1, A2, …, An|C) P(C)

 How to estimate P(A1, A2, …, An | C )?
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Estimating Multivariate Class 

Distributions

 Sample size requirement

 In a small sample: difficult to find a Hilsa fish whose length is 

1.5ft and weight is 2 kilos, as compared to that of just finding a 

fish whose length is 1.5ft

 P(L=1.5, W=2 | Hilsa), P(L=1.5 | Hilsa)

 Curse of dimensionality

 Independence Assumption

 Assume length and weight are independent

 P(L=1.5, W=2 | Hilsa) = P(L=1.5 | Hilsa) x P(W=2| Hilsa)

 Joint distribution = product of marginal distributions

 Marginals are easier to estimate from a small sample



Naïve Bayes Classifier

 Assume independence among attributes Ai when class is given:    

 P(A1, A2, …, An |C) = P(A1| Cj) P(A2| Cj)… P(An| Cj)

 Can estimate P(Ai| Cj) for all Ai and Cj.

 New point is classified to Cj if  P(Cj)  P(Ai| Cj)  is maximal.



Example of Naïve Bayes Classifier
Name Give Birth Can Fly Live in Water Have Legs Class

human yes no no yes mammals

python no no no no non-mammals

salmon no no yes no non-mammals

whale yes no yes no mammals

frog no no sometimes yes non-mammals

komodo no no no yes non-mammals

bat yes yes no yes mammals

pigeon no yes no yes non-mammals

cat yes no no yes mammals

leopard shark yes no yes no non-mammals

turtle no no sometimes yes non-mammals

penguin no no sometimes yes non-mammals

porcupine yes no no yes mammals

eel no no yes no non-mammals

salamander no no sometimes yes non-mammals

gila monster no no no yes non-mammals

platypus no no no yes mammals

owl no yes no yes non-mammals

dolphin yes no yes no mammals

eagle no yes no yes non-mammals

Give Birth Can Fly Live in Water Have Legs Class

yes no yes no ?
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A: attributes

M: mammals

N: non-mammals

P(A|M)P(M) > P(A|N)P(N)

=> Mammals



How to Estimate Probabilities from Data?

 For continuous attributes: 

 Discretize the range into bins 

 one ordinal attribute per bin

 violates independence assumption

 Two-way split: (A < v) or (A > v)

 choose only one of the two splits as new attribute

 Probability density estimation:

 Assume attribute follows a normal distribution

 Use data to estimate parameters of distribution 
(e.g., mean and standard deviation)

 Once probability distribution is known, can use it to estimate the 
conditional probability P(Ai|c)

k



Naïve Bayes Classifier

 If one of the conditional probability is zero, then the 

entire expression becomes zero

 Probability estimation:
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Bayes Classifier (Summary)

 Robust to isolated noise points

 Handle missing values by ignoring the instance during 
probability estimate calculations

 Robust to irrelevant attributes

 Independence assumption may not hold for some 
attributes

 Length and weight of a fish are not independent



Bayesian Belief Network

 A directed acyclic probablistic graphical model that 

captures dependence among the attributes

Length

Weight

Color

Species

Nodes: Variable/Attributes/Class

Directed edges: Causality

Absence of edge: independence

Network structure: domain knowledge

Joint probabilities: from data



Nonparametric Statistics

 Do not assume parametric data distribution/model

 Take decisions based on given sample

 Bayesian statistics vs frequentist statistics



Nearest Neighbor Classifiers

 Basic idea:

 If it walks like a duck, quacks like a duck, then it’s probably a 

duck

Training 

Records

Test 

Record

Compute 

Distance

Choose k of the 

“nearest” records



Nearest-Neighbor Classifiers
 Requires three things

– The set of stored records

– Distance Metric to compute 

distance between records

– The value of k, the number of 

nearest neighbors to retrieve

 To classify an unknown record:

– Compute distance to other 

training records

– Identify k nearest neighbors 

– Use class labels of nearest 

neighbors to determine the 

class label of unknown record 

(e.g., by taking majority vote)

Unknown record



Nearest Neighbor Classification

 Compute distance between two points:

 Euclidean distance 

 Determine the class from nearest neighbor list

 take the majority vote of class labels among the k-nearest 

neighbors

 Weigh the vote according to distance

 weight factor, w = 1/d2
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Nearest Neighbor Classification…

 Choosing the value of k:

 If k is too small, sensitive to noise points

 If k is too large, neighborhood may include points from 

other classes

X



Nearest neighbor Classification…

 k-NN classifiers are lazy learners 

 It does not build models explicitly

 Unlike eager learners such as decision tree induction and rule-

based systems

 Classifying unknown records are relatively expensive



DNA Coding Segment Identification

 Classes: Coding – noncoding segment

 Attributes/features: sequence information

 Complex interdependence among attributes



Microarray Data Analysis

 Classes: Disease classes

 Attributes/features: gene expression levels

 Large number attributes, fewer samples



Protein Secondary Structure Prediction

 Classes: a-helix, coil etc

 Attributes/features: length, amino acid sequence, 

hydrophobicty, shape, ions

 Complex class distributions



Protein Interaction Prediction

 Classes: Binary

 Attributes/features: protein properties

 Presence of domain knowledge
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Questions!


