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Preface

Discrete Mathematics studies mathematical structures that are discrete, rather than continuous,
such as integers, graphs, logic, algorithms and their operations. Discrete Mathematics concerns
itself with problems of the following kinds: (1) finding an optimal/extremal object from a large
or infinite family of discrete objects, and, (2) Combinatorics, or the mathematics of counting the
number of objects satisfying a set of properties among a large family of discrete objects. Most
computationally hard problems are precisely the problems of determining the optimal object from a
large family of discrete objects or counting the size of such a family. All non-trivial solutions to these
problems emerge from the theory of Discrete Mathematics. Often constructive proofs of theorems
in Discrete Mathematics lead to algorithms in this domain. Today the applications of Discrete
Mathematics form the foundations of Graph Theory, Cryptography, Operations Research, Logic,
Computational Geometry, Combinatorics, Algorithms, Theoretical Computer Science, Information
Theory, and many others.

The field of Discrete Mathematics in all its branches is a rich and continuously evolving area of
research. The school proposes to bring together prominent and leading researchers in Algorithms
and Combinatorics to give lectures on recent developments in these overlapping areas of Discrete
Mathematics. This will benefit university teachers, researchers and doctoral students in the area
of Discrete Mathematics and Computer Science, by exposing them to the recent developments in
Computational Geometry, Algorithms, Combinatorics, Graph Theory and their applications.

The school is aimed at fulfilling two purposes: (i) as a CALDAM 2018 Pre-Conference School, and
(ii) as an Indo-Canadian School on Algorithms and Combinatorics. The school is jointly organized
by (i) Indian Institute of Technology, Guwahati, India, (ii) RKM Vivekananda University, Belur
Math, Howrah, India and (iii) Simon Fraser University, Burnaby, Canada. The school is funded
by (i) Microsoft Research Lab India Pvt. Ltd. and (ii) Science and Engineering Research Board,
Government of India.

R. Inkulu Subir Kumar Ghosh Ramesh Krishnamurti
IIT Guwahati RKM Vivekananda University Simon Fraser University

January 26, 2018
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Lecture Schedule
Time February 12, 2018 (Monday) February 13, 2018 (Tuesday)
8.00 hr.– Registration & Inauguration
9.00 hr.
9.00 hr.– Bojan Mohar: Excluded Structure Results: Valentine Kabanets: Algorithms Versus
10.15 hr. Graph Minors and Graph Immersions Complexity: Two sides of the same coin
10.15 hr.– Tea Tea
10.45 hr.
10.45 hr.– Kamyar Khodamoradi: Approximation Arti Pandey: On the Complexity
11.30 hr. Schemes for Clustering Problems of Domination and its Variations
11.30 hr.– Sunil Chandran: Spanning Tree Congestion Antonina Kolokolova
12.45 hr. Problem and Generalized Győri-Lovász Th. Proof Complexity and its Applications
12.45 hr– Lunch Lunch
14.00 hr.
14.00 hr.– Joydeep Mukerjee: Ambat Vijayakumar:The Median
14.45 hr. Bend the Strings (anti-Median) Problem on Graphs
14.45 hr.– Amitabha Bagchi: Decentralized Random Daya Gaur: An Introduction
16.00 hr. Walk-Based Data Collection in Networks to Approximation Algorithms
16.00 hr.– Tea Closing Session and Tea
16.20 hr.
16.20 hr.– Short Presentations on Open Problems
18.00 hr.
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Excluded Structure Results: Graph Minors

and Graph Immersions

Bojan Mohar

Simon Fraser University, Canada

mohar@sfu.ca

We say that a graph G contains another graph H as a minor if a graph isomorphic to H
can be obtained from G by first taking a subgraph and then contracting some of the edges. In
a series of 22 papers, Robertson and Seymour proved that finite graphs are well-quasi-ordered
for the graph minors containment relation [3]. To prove this seminal result they developed
a theory of graph minors and one of the centerpieces is a powerful structure theorem (the
Excluded Minor Theorem) that describes a rough structure of graphs that do not contain a
fixed graph H as a minor.

At the same time they resolved a similar result involving graph immersions [4], which was
conjectured by Nash-Williams.

The talk will give a gentle introduction to these results, with an emphasis on recent progress
in this area [1,2]. Some algorithmic applications may be presented as well.

References

[1] Ross Churchley, Bojan Mohar, A submodular measure and approximate Gomory-Hu the-
orem for packing odd trails, SODA 2018.

[2] Matt DeVos, Zdeněk Dvořák, Jacob Fox, Jessica McDonald, Bojan Mohar, and Diego
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Approximation Schemes for Clustering Problems

Kamyar Khodamoradi

University of Alberta, Canada

khodamor@ualberta.ca

1. Introduction

Clustering is a prevalent problem in science and technology, business, and our daily lives.
Roughly speaking, it is the task of grouping items of data into separate categories or clusters
based on a notion of similarity or “closeness”. It has been studied in a variety of disciplines
such as data mining, data science, operations research, and computer science to name a few. In
this talk, we will focus on a class of clustering problems known as centre-based clustering. This
class contains the well-known problems of Facility Location (or FL for short), k-median
and k-means .

In this presentation, we look at the clustering problems through the lens of approximation
algorithms. The main message is that a standard local search can obtain arbitrarily good
approximation factors in some cases. The intricate part is, of course, in the analysis, which
has become possible thanks to the recent techniques developed for analyzing the local search.

The talk will have two parts. The first part deals with the approximation of k-means and
some related problems. In the second part, we see the application of local search to setting
where we are allowed to ignore a fraction of the input data. The main problems that we
consider in this section are known as the k-means problem with outliers (k-means-out ) and
the k-median problem with outliers (k-median-out ).

2. PTAS for k-Means

Given a set of points X and a set of potential centres C, the task in the k-means problem is
to choose k cluster centres from C and assign all the points in X to them in such a way that
the sum of squares of the distances between these points and centres is minimized (k-median
is very similar, the only difference is that the objective there is to minimize the sum of the
distances instead). The following is a highlight of the results we will see in this part.

• PTAS for k-means : a local search algorithm that provides the very first Polynomial
Time Approximation Scheme (PTAS) for k-means in Euclidean metrics with a constant
dimension [4]1. In fact, the analysis is carried out for more general metrics known as
“doubling metrics”, of which the Euclidean metrics with a constant dimension are a
special case.

• PTAS for k-median and FL with arbitrary opening costs: PTASs were already
known in the community for these problems through the classic works of Sanjeev Arora
et al. (see [1] for instance). Those results used dynamic programming along the notion
of “quad-trees”. We, in this part, see how local search can recreate the same results.

1Simultaneously and independently in [2] as well.
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3. PTAS for k-Means with Outliers

In the k-means-out problem, we are still choosing k cluster centres from C. The difference
is that we are not required to assign all the points in X to the chosen centres. Instead, we
are allowed to discard a given number z of them as outliers. Outliers are very common in
real-world applications. Consider a situation where the data points are provided by sensory
readings. A fraction of the data may be altered by the noise and thus unreliable. For the sake
of obtaining a better clustering, it is natural to discard the noisy data.

The main focus of this part is on introducing a framework for transforming an analysis
for the clustering problems without outliers to an analysis for the case with outliers, while
preserving the approximation guarantee. This transformation comes with a caveat for k-
median-out /k-means-out . We have to chose slightly more than k centres from C (to be
precise, we need to open (1 + ε)k centres). If we are not allowed a violation on the number of
centres, there are examples showing that local search can have arbitrarily large cost compared
to an optimal clustering. The main results that we observe are:

• UFL with Uniform Opening Costs: standard local search achieves the same ap-
proximation guarantee for Uncapacitated Facility Location as the case without
outliers.

• k-means-out and k-median-out : standard local search with (1 + ε)k centres gives
the same approximation guarantees as the local search with k centres does for the case
without outliers. This observation implies a PTAS for doubling metrics, a PTAS for
“minor-closed” metrics (e.g., the shortest path metric of a planar graph), and matching
constant factors as the best known results for the general metrics.

4. Closing Remarks

For the most of this talk, I will be presenting the results of my joint work with Zahary
Friggstad, Mohsen Rezapour, and Mohammad Salavatipour that appeared in SODA 2018 [3],
and a prior work by the other three authors in FOCS 2016 [4], which forms the basis for our
recent results.
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Spanning Tree Congestion Problem and Generalized

Győri-Lovász Theorem 2

L. Sunil Chandran

Indian Institute of Science, Bangalore

sunil@iisc.ac.in

The Spanning Tree Congestion (STC) Problem:

Given a connected graph G = (V,E), let T be a spanning tree. For an edge e = (u, v) ∈ E,
its detour with respect to T is the unique path from u to v in T ; let DT(e, T ) denote the
set of edges in this detour. The stretch of e with respect to T is |DT(e, T )|, the length of
its detour. The dilation of T is maxe∈E |DT(e, T )|. The edge-congestion of an edge e ∈ T is
ec(e, T ) := |{f ∈ E : e ∈ DT(f, T )}|, i.e., the number of edges in E whose detours contain e.
The congestion of T is cong(T ) := maxe∈T ec(e, T ). The spanning tree congestion (STC) of
the graph G is STC(G) := minT cong(T ), where the minimization is among all spanning trees
of G.

We note that there is an equivalent cut-based definition for edge-congestion, which we will
use in our proofs. For each tree-edge in e ∈ T , its removal from T results in two connected
components; let Ue denote one of the components. The edge-congestion of the edge e is
ec(e, T ) := |E(Ue, V \ Ue)|.

Various types of congestion, stretch and dilation problems are studied in computer science
and discrete mathematics. In these problems, one typically seeks a spanning tree (or some
other structure) with minimum congestion or dilation. We mention some of the well-known
problems, where minimization is done over all the spanning trees of the given graph:

1. The Low Stretch Spanning Tree (LSST) problem is to find a spanning tree which mini-
mizes the total stretch of all the edges of G. [AKPW95] It is easy to see that minimizing
the total stretch is equivalent to minimizing the total congestion of the edges of the
selected spanning tree.

2. Spanning Tree Congestion (STC) problem is to find a spanning tree of minimum conges-
tion. [Ost04]

3. Tree Spanner Problem is to find a spanning tree of minimum dilation. [CC95]

There are other congestion and dilation problems which do not seek a spanning tree, but some
other structure. The most famous among them is the Bandwidth problem and the Cutwidth
problem; see the survey [RSV00] for more details.

Among the problems mentioned above, several strong results were published in connection
with the LSST problem. In comparison, there were not many strong and general results
for the STC Problem, though it was studied extensively by many researchers in the past 13
years. The problem was formally proposed by Ostrovskii [Ost04] in 2004. Prior to Ostrovskii,
Simonson [Sim87] had studied the same parameter under a different name to approximate the
cut width of outer-planar graph. A number of graph-theoretic results were presented on this

2The presentation is based on the recent work done in collaboration with Yun Kuen Cheung and Davis Issac of Max
Planck Institute für Informatik, Saarbrücken, Germany.
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topic. Some complexity results were also presented recently, but most of these results concern
special classes of graphs.

The most general results regarding STC of general graphs is an O(n
√
n) upper bound

by Löwenstein, Rautenbach and Regen in 2009 [LRR09], and a matching lower bound by
Ostrovskii in 2004 [Ost04]. Note that the above upper bound is not interesting when the
graph is sparse, since there is also a trivial upper bound of m. In our paper we come up with
a strong improvement to these bounds after 8 years:

Theorem: For a connected graphG with n vertices andm edges, its spanning tree congestion
is at most O(

√
mn). In terms of average degree davg = 2m/n, we can state this upper bound

as O(n
√
davg). There is a matching lower bound.

Our proof is constructive. Though in general the time complexity of our algorithm can be
exponential, for graphs with m = ω(n log2 n) edges, it works in sub-exponential time. Thus
for relatively dense graphs we have a sub-exponential algorithm. We raise the existence of a
polynomial time algorithm as an open problem.3

Though in the general case we do not have any polynomial time algorithm for the STC prob-
lem, we are able to provide efficient constant factor approximation algorithms for two impor-
tant cases. In both cases we prove that the spanning tree congestion is Θ(n) and provide
efficient polynomial time algorithms to find spanning trees with congestion O(n).

• For random graphs G(n, p) with 1 ≥ p ≥ c logn
n

for some small constant c > 1. It should
be noted that the STC problem is relevant only for connected graphs and since the
threshold function for graph connectivity is logn

n
, we are providing the polynomial time

algorithm for almost all of the relevant range of values of p.

• The other important case where we can give a constant factor approximation algorithm
is for the class of graphs with minimum degree (1/2+f)n for any fixed positive constant
f .

As a crucial ingredient for the above results, we prove the following lemma:

Lemma 1 Let G be a k-connected graph with m edges. Then its spanning tree congestion is
O(m/k).

The Key Tool: The Generalized Győri-Lovász Theorem. The result of Löwenstein,
Rautenbach and Regen [LRR09] relied on a theorem called the Győri-Lovász Theorem: [Győ76,
Lov77]

Theorem 2 Let G = (V,E) be a k-connected graph. Given any k distinct terminal vertices
t1, · · · , tk, and k positive integers n1, · · · , nk which sum to |V |, there always exists a k-partition
of V into ∪k

j=1Vj, such that for each j ∈ [k], tj ∈ Vj, |Vj| = nj and G[Vj] is connected.

To derive our stronger upper bound, we formulate and prove a generalization of the above
theorem, which we believe might be a useful tool in related areas. The statement of our
generalized Győri-Lovász Theorem is given below: (for any U ⊂ V , w(U) =

∑
v∈U w(v))

Theorem 3 Let G = (V,E) be a k-connected graph. Let w be a weight function w : V →
R+. Given any k distinct terminal vertices t1, · · · , tk, and k positive integers positive integers

3Finding the optimal spanning tree is NP-hard [OOUU11, BFG+12], but our requirement here is lesser, which is
finding a spanning tree with congestion O(

√
mn).
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T1, · · · , Tk such that for each j ∈ [k], Tj ≥ w(tj), and
∑k

i=1 Ti = w(V ), we can find a k-
partition of V into ∪kj=1Vj, such that for each j ∈ [k], tj ∈ Vj, w(Vj) ≤ Tj + maxv∈V w(v)− 1,
and G[Vj] is connected.

We also give an exponential time algorithm to find the k-partition; if we need only k/2
partitions instead of k (the input graph remains assumed to be k-connected), the algorithm’s
running time improves to O∗(2O((n/k) log k)).4 We emphasize that the running time does not
depend on the weights.

The Győri-Lovász Theorem was proved independently by Győri [Győ76] and Lovász [Lov77].
Győri’s proof is elementary, while Lovász used homology theory. Both proofs are non-
constructive.

References

[AKPW95] Noga Alon, Richard M. Karp, David Peleg, and Douglas B. West. A graph-
theoretic game and its application to the k-server problem. SIAM J. Comput.,
24(1):78–100, 1995.

[BFG+12] Hans L. Bodlaender, Fedor V. Fomin, Petr A. Golovach, Yota Otachi, and Erik Jan
van Leeuwen. Parameterized complexity of the spanning tree congestion problem.
Algorithmica, 64(1):85–111, 2012.

[CC95] Leizhen Cai and Derek G. Corneil. Tree spanners. SIAM J. Discrete Math.,
8(3):359–387, 1995.
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[RSV00] André Raspaud, Ondrej Sýkora, and Imrich Vrto. Congestion and dilation, simi-
larities and differences: A survey. In SIROCCO 2000, pages 269–280, 2000.

[Sim87] Shai Simonson. A variation on the min cut linear arrangement problem. Mathe-
matical Systems Theory, 20(4):235–252, 1987.

4O∗ notation hides all polynomial factors in input size.

12



Bend the Strings

Joydeep Mukherjee

Indian Statistical Institute, Kolkata

joydeep.m1981@gmail.com

Graphs arising from the intersection of geometric objects has been a major focus of research
due to their various practical applications as well as the elegant combinatorial structure they
contain. String graphs are a class of geometric intersection graphs which can be defined as
the intersection graphs of simple curves on the plane. As mentioned, they also offer nice com-
binatorial structures which make them amenable to various beautiful combinatorial as well as
algorithmic results. For example most of the important optimization problems are polynomial
time solvable in interval graphs which are otherwise NP-Hard in general string graphs. An-
other famous subclass of string graphs is planar graphs [4]. For planar graphs many important
optimization problems admit nice algorithmic upper bounds in terms of approximation and
fixed parameter tractability (FPT). But most of these problems are intractable in terms of
approximation and FPT in general string graphs. Again more famously Maximum Indepen-
dent Set problem is intractable in general graphs in terms of approximation whereas there is
a relatively good approximation for MIS in string graphs [3].

Recently Asinowski et al. [1] introduced the concept of VPG graphs which is expected to
give more insight into the study of string graphs. A path is a simple, piecewise linear curve
made up of horizontal and vertical line segments in the plane. A k-bend path is a path made
up of k+1 line segments. A Bk-VPG representation of a graph is a collection of k-bend paths
such that each path in the collection represents a vertex of the graph and two such paths
intersect if and only if the vertices they represent are adjacent in the graph. The graphs that
have a Bk-VPG representation are called Bk-VPG graphs and the set of all Bk-VPG graphs
are denoted simply by Bk-VPG. A graph is said to be a VPG graph if it is a Bk-VPG graph
for some k. The bend number of a graph G, denoted by bend(G), is the minimum integer k for
which G has a Bk-VPG representation. Asinowski et al. [1] showed that the family of VPG
graphs are equivalent to the family of string graphs. Therefore, bend number of a string graph
is finite. These class of graphs gives a natural way of defining subclasses of string graphs.

The study of different algorithmic problems as well as combinatorial problems in these
subclasses are expected to give nice algorithmic insights which might lead to better algorithms
for these problems in string graphs. Moreover much work has also been done on graph
representation using shapes of lower bends like [2, 4]. These works establish that many known
graph classes has bounded bend number which might lead to new algorithmic upper bounds
for more general classes of graphs.

In this talk we plan to survey some important results in this area including some of our
results and also plan to mention some open problems.
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Decentralized Random Walk-Based Data Collection
in Networks

Amitabha Bagchi

Indian Institute of Technology Delhi

bagchi@cse.iitd.ernet.in

We consider a multi-hop sensor network where each node is equipped with a queue which
helps in store and forward process of data. There are k source nodes in an n-node network,
k ≤ n− 1, and each source node gathers data at a fixed rate from its surroundings and stores
it in its queue along with other data packets that may be generated earlier or received from
the neighbouring nodes. Specifically, each of the k source nodes generate data as independent
Bernoulli processes with at the same rate, β, and relay it to a designated node, the sink. In
our model, we assume that the network is connected, but we do not expect any node to know
anything about the network except the identity of its neighbours (the nodes with which it
can directly communicate). We also assume that time is slotted and nodes communicate with
each other at the start of every time slot. However, this assumption can be easily removed
and does not affect our results.

In our setting each node, at each time slot, selects a data packet from its queue uniformly
at random and forwards it to a neighbour who is chosen according to a distribution on the
neighbours (for example, it may be the uniform distribution). We allow a node to transmit only
one packet to one of its neighbours, but, it can receive multiple packets from its neighbours.
This is known as transmitter gossip constraint [1, 5] and has been used in literature [3, 1, 4, 5]
for energy conservation and to prevent data implosion [2]. The movement of any data packet
in such setting can be seen as a random walk of the data packet on the graph. The particular
type of random walk would depend on the distribution defined on the neighbours of each node,
for example, if the distribution is the uniform distribution for each node then the random walk
described by a packet becomes the simple random walk on the graph.

We observe that the Markov chain defined by our data collection process achieves steady-
state when the queues of the nodes are stable. We also give a necessary and sufficient condition
for the stability of the queueing system implicit in the process and the stationarity of the
resulting Markov chain.

Having discussed our data collection process at steady-state, we analyze two important
performance metrics of our data collection process: throughput and latency. We show that
the data rate which determines the network throughput is lower bounded by the spectral gap
of the random walk’s transition matrix. In particular, we show if the random walk is simple
then the rate also depends on the maximum and minimum degree of the graph modelling the
network. We also discuss examples for which our lower bound and upper bound on the data
rate are optimal up to constant factors. We also present a upper bound on the average latency
which reflects the trade-off between the data rate and latency in data collection.
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Algorithms versus Complexity: Two Sides
of the Same Coin

Valentine Kabanets

Simon Fraser University, Canada

kabanets@cs.sfu.ca

1. Introduction

There is an intimate relation between certain efficient algorithms and certain lower bounds.
An algorithm for a problem is a procedure that allows one to figure out a correct answer
for every given input instance of the problem. In contrast, a lower bound for a problem is a
mathematical proof showing that there is no fast algorithm to solve the problem, no matter
how clever your algorithm may be.

People are normally interested in finding efficient algorithms for their problems. When
such an algorithm exists, and can be discovered, that is great! However, we know that this
can’t happen for all problems! Some natural problems simply do not have efficient algorithms.
In such cases, people would love to have a mathematical proof that no algorithm (running in
certain “small” amount of time) can solve the problem. Such a proof is called a lower bound
for the problem.

Proving lower bounds appears even more difficult than finding clever efficient algorithms!
But let us suppose we have such a lower bound for some “interesting” problem. Can we
say anything more than just the “negative” result that there is no fast algorithm? In other
words, can we use the clever ideas that went into the usually hard proof of a lower bound for
something more, maybe some other algorithm for a related problem?

The surprising answer is ‘Yes’ ! Algorithms and Lower Bounds are related: good algorithms
for certain problems X can be used to prove lower bounds for certain other problems Y , and
conversely, lower bounds for certain problems Y can be used to design efficient algorithms for
certain other problems X.

2. Derandomization and Learning Algorithms

In this lecture, I will discuss some known examples of the connection between algorithms
and lower bounds. I will start with the classical result in derandomization showing that
every efficient randomized algorithm (the algorithm that flips random coins to help it find the
correct solution to the problem) can always be made into an efficient deterministic algorithm,
assuming we have lower bounds of a certain kind! This is a result of a long line of work in
complexity theory [BM84, Yao82, NW94, BFNW93, IW97, Uma03].

I will survey some other results illustrating how one gets lower bounds from algorithms,
and algorithms from lower bounds. Time permitting, I will also show a much more recent
such result, where we get, unconditionally, efficient learning algorithms for a certain class of
functions, from a known lower bound proof for that same class of functions [CIKK16, CIKK17].

Here the learning setting is as follows: you are given “black-box” (or oracle) access to an
unknown function f : {0, 1}n → {0, 1} from a class of “easy” functions (e.g., those functions
computable by efficient algorithms of some restricted kind). Your learning algorithm is a ran-
domized algorithm that, with high probability, must produce a new algorithm that computes
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some function g: {0, 1}n → {0, 1} so that g is “approximately the same as” f , i.e., g and f
agree on all but a negligible fraction of n-bit inputs. In this way, you probabilistically “learn”
f , by querying f on a small number of inputs of your choice. (Your learning algorithm must
be efficient, and so in particular is not allowed to query f on all 2n possible inputs.) This is a
variant of the well-known PAC (Probabilistically Approximately Correct) setting for learning
algorithms introduced by Valiant [Val84].

The result I’d like to talk about is that there is such a learning algorithm for learning the
class of functions computable by circuits (computer chips) made up from constantly many
layers of at most polynomially many logical gates, where the allowed logical gates are AND,
OR, NOT, and MOD p, for a prime number p ≥ 2; here the MOD p gate outputs 1 if and
only if the number of 1-valued inputs to the gate is divisible by p. Such a class of functions is
called AC0[p] in complexity theory.

We get the first efficient learning algorithm for the class AC0[p] of functions, and the way
we get the algorithm is by exploiting the known lower bounds against AC0[p]-type algorithms
(and currently no other, more direct, way is known)!

3. Assumed background

In the talk, I will assume that students have seen some algorithms, and are familiar with the
concept of efficient (polynomial-time) algorithms. Some basic exposure to complexity, e.g.,
the famous “P vs. NP” question, is helpful but not necessary.
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Let G = (V,E) be a simple undirected graph. A set D ⊆ V of a graph G = (V,E) is called
a dominating set of G if NG[v] ∩D 6= ∅ for all v ∈ V . The Minimum Domination problem
is to find a dominating set of minimum cardinality. The Minimum Domination problem
has wide applications in facility location problems. The Minimum Domination problem is
very well studied in literature. The decision version of the Minimum Domination problem
is NP-complete for general graphs and remains NP-complete for important graph classes like
bipartite graphs, chordal graphs, planar graphs etc. Since, the problem remains NP-complete
even for important graph classes, the following issues have also been studied in the literature:
(i) to look for special classes of graphs where the problem admits polynomial time algorithms,
(ii) to design good approximation algorithm and look for the limit of approximability by
showing some inapproximation result, (iv) to obtain some structural results which are used in
solutions of the above issues and are of independent interests as well.

Many important variations of domination have also been studied in literature, for exam-
ple total domination, connected domination, disjunctive domination, restrained domination,
outer-connected domination, semitotal domination etc. Total domination is also well studied
problem in graph theory. The concept of total domination in graphs was introduced by Cock-
ayne, Dawes, and Hedetniemi in 1980. A set D ⊆ V of a graph G is called a total dominating
set of G if NG(v) ∩D 6= ∅ for all v ∈ V . Every total dominating set is also a dominating set.
Total domination is the extension of domination to include redundancy, but it is expensive to
implement. A relaxed form of total domination called semitotal domination was introduced
by Goddard, Henning and McPillan in 2014. A set D ⊆ V is called a semitotal dominating set
of G if D is a dominating set of G, and every vertex in D is within distance 2 of another vertex
of D. The Minimum Semitotal Domination problem is to find a semitotal dominating
set of minimum cardinality. The decision version of the Minimum Semitotal Domination
problem is known to be NP-complete for general graphs.

In this talk, we will discuss about the Minimum Domination problem and the Minimum
Semitotal Domination problem. We will first briefly review the literature available for
these problems. Then, we will discuss NP-hardness results, polynomial time algorithms and
approximability results for these two problems which are our recent contributions.
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The famous P vs NP question is formulated in terms of decision problems, where solving
a computational problem means providing a yes/no answer: for example, “does there exist a
schedule satisfying a given system of constraints?” Yet in practice it is the actual witness of
the “yes” answer which is often the goal: produce a schedule satisfying given constraints, if it
is exists. For problems in NP, by its very definition, we know that not only such witnesses to
“yes” answers exist, but also their size is small.

But what if the answer to your problem instance is “no”? Ideally, we would like an expla-
nation, a reason why there was no way to satisfy the constraints. In short, we want a proof
that the answer is “no”, just like we want a witness for the “yes” answer. But what could
such a proof be? And how large could it become?

This question is studied in proof complexity, the area combining complexity theory and
mathematical logic. Usually, the question is formulated as studying complexity of proofs of
tautologies: formulas that are always true. A propositional formula is a tautology if and only
if its negation is unsatisfiable, making it a natural counterpart to the Satisfiability problem:
given a propositional formula, is it satisfiable? That said, proof complexity extends well
beyond the propositional setting, from the complexity of proving quantified statements to
reasoning about systems of equations to bounded arithmetic.

I will give an overview of what is known about the complexity of proofs in common (mainly
propositional) proof systems, discussing in particular what kinds of reasoning is hard for the
simpler and better understood systems such as resolution. I will also talk about stronger
systems, closer to natural deduction. Much is unknown about these systems; it is still open
whether there is anything hard for them (or even whether there exists a set of rules and axioms
in which there is always a proof of size comparable to the input tautology).

Propositional proof complexity started in earnest with the 1979 paper by Cook and Reck-
how [CR79]. There, they have formally defined an abstract notion of a propositional proof
system (with complexity measures built in), and studied several types of proof systems, in
particular proving that a wide class of systems based on a natural deduction rule are all
equivalent.

The propositional proof system that received the most attention is a provably weaker system
called “resolution”. Rather than operating with arbitrary formulas, it works with a formula
in CNF (product-of-sums) form: an AND of ORs of (possibly negated) variables; the only
rule is a version of modus ponens adapted to this setting (the resolution rule). This is one of
the few proof systems for which we know that there are formulas requiring exponentially large
proofs; moreover, we know a number of examples of such formulas, including the well-studied
pigeonhole principle [Hak85]. Though it started as a purely theoretical endeavor, resolution
proof system became a basis for a powerful class of modern heuristics used in SAT solvers
[BBH09]. Nowadays, SAT solvers are used to solve a wide variety of constraint satisfaction
problems from software verification to the US broadband spectrum auction, outperforming
traditional equations-based methods from operations research in a number of applications.
When exactly they perform so spectacularly well, in spite of the underlying problem being
both NP-hard and co-NP hard, is still an open problem.

Time permitting, I will also talk about proof systems based on numerical representations
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of formulas, and combinations of approaches.

See excellent surveys by Pudlák [Pud08], Beame/Pitassi [BP01], Buss [Bus12] and Nord-
ström [Nor15] for more details on propositional proof systems, and a survey by Pitassi and
Tzameret [PT16] on algebraic proof systems.
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The median of a graph is one of the centrality concepts, together with the notions such as
center and centroid, is defined as follows.

The status of a vertex u in a graph G is the sum of the distances from u to all the vertices in
G. The subgraph induced by the vertices of minimum (maximum) status in G is the median
(anti-median) of G, denoted by M(G)(AM(G)). Thus the median vertices are the facility
locations that concern with minimum average distance in a network. The problem of finding
a graph H with a given graph G as the median is referred to as the median problem.

In [12], Slater proved that any graph is a median of some connected graph. The number of
vertices used for such a construction was shown to be ≤ 2|V (G)| in [6] and it was improved
to 2|V (G)|− δ(G) + 1 in [5]. The anti-median problem can be defined similarly and a solution
to it can be seen in [2].

The problem of simultaneous embedding of medians deals with the embedding of two
graphs G1 and G2 in graph H such that M(H) ∼= G1 and AM(H) ∼= G2. In [1], such an
embedding is given with d(G1, G2) ≥ 2. This work also presents the simultaneous embedding
of G1 and G2 as convex subgraphs of H with M(H) ∼= G1, AM(H) ∼= G2 and d(G1, G2) ≥
bd(G1)/2c + bd(G2)/2c + 2. An improved solution to these problems with d(G1, G2) ≥ 1 for
every G1 and G2 is in [9].

The study of the median(anti-median) problem for different classes of graphs is also signif-
icant since the median constructions for general graphs cannot be directly applied to many
networks as their underlying graph belong to different classes of graphs. See [11, 14, 7, 15, 8, 10]
for some works on cographs, distance hereditary graphs, Ptolemaic graphs, k-partite graphs
and symmetric bipartite graphs. A construction with M(H) = G and G is convex in H is in
[4].

This talk aims to bring the significance and recent results on the median problem in Graph
Theory.
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Approximation algorithms [11, 10] trade the quality of solution for time. This is a general
and natural way to address the ”complexity” of a problem. In this talk aimed at research
scholars and graduate students, I will illustrate various techniques used to design and analyze
approximation algorithms. We will examine approximation algorithms based on dynamic
programming, linear programming [8], primal-dual schema and combinatorial methods. We
will look at a variety of problems across several domains. Some of the problems that we
will consider are i) scheduling of vehicles with the release and handling times [4], ii) vehicle
routing problem [9], iii) covering in a geometric setting [3, 5], iv) balanced cuts in graphs
[7, 2], v) coloring in hypergraphs [6], and vi) coverage in sensor networks [1]. Each problem
will illustrate a different method of design and analysis.
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