Community Analysis in Large Networks: Methods and Applications

Tanmoy Chakraborty PhD. Student

Advisors: Dr. Animesh Mukherjee Prof. Niloy Ganguly

Dept. of Computer Science & Engineering Indian Institute of Technology, Kharagpur, India

PhD. Defence Seminar, September 22, 2015

Networks

Protein-protein interaction network

Internet

Social network

Citation network

Community Structure

Communities: sets of tightly connected nodes

- People with common interests
- Scholars working on the same field
- Proteins with equal/similar functions
- Papers on the same/related topics

• .

Similar functionality

Questions We Ask

• Why are the algorithms dependent on the **vertex ordering**?

- · Invariant substructure in the networks
- · Characterizing such substructure
- Community: a **local property** or a global property?
 - · Heterogeneity of belongingness
 - · Quantitative indicators of belongingness
- How do real-world **communities interact**?
 - · Evolutionary landscape of evolving communities
 - · Modeling real interaction phenomenon
- How do we use community information for **applications**?
 - · Analyzing and modeling patterns in networks
 - · Designing prediction and recommendation systems

Our Work: Community Analysis

Our research focuses on quantifying **"meaningful communities**" in real networks

S1: Methods: Design metrics and algorithms
S2: Applications: Design real systems

Our Work: Overview

	S1: Methods	S2: Applications
G1: Patterns	Nat. Sci. Rep. 13	CACM 15
G2: Analysis/ Modeling	ASONAM 13 SNAM 14 SocialCom 13 COMSNETS 14	JOI 15 CACM 15 SIGKDD 15
G3: Algorithms/ Predictions	Algorithms/SIGKDD 14PredictionsIEEE TKDE (submitted)ACM TKDD (submitted)	

Organization of the Thesis

Methods

Chapter 1: Constant Communities in Networks Chapter 2: Permanence and Community Structure Chapter 3: Analyzing Real-world Communities Chapter 4: Community-based Applications

Applications

Chapter 1. Constant Communities in Networks

Vertex Ordering

Vertex Ordering

Constant Communities

Group of vertices always remain together under any vertex ordering

Characterizing Constant Vertices

Two factors:

- (i) **Internal strength:** the more the number of internal neighbors, the more it becomes stable.
- (ii) Divergence of external pull: the more distributed the external neighbors, the more it becomes stable.

B is more stable than A

Relative Permanence

Distribution of Relative Permanence

Improving Community Detection Algorithms

Modularity (Q) Improvement on Real Networks

	Louvain			CNM		
Networks	Improve ment of Q (%)	Variance of Q (- CC)	Variance of Q (+ CC)	Improve ment of Q (%)	Variance of Q (- CC)	Variance of Q (+ CC)
Polbook	3.34	1.74e-5	1.2e-32	1.20	2.25e-5	0
Dolphin	1.30	1.76e-5	0	1.90	0.9e-10	0
Football	2.45	2.01e-5	0	3.05	7.25e-8	6.4e-10
Email	4.80	6.89e-5	0.9e-12	5.80	1.7e-8	1.36e-12
		J			J	

Chapter 2: Permanence and Community Structure

Modularity

M. E. J. Newman, M. Girvan, PRE, 2004

M. E. J. Newman, PRE, 2004

m = # edges $n_c = \# \text{ communities}$ $l_c = \# \text{ internal edges in community } c$ $d_c = \text{ sum of degrees of all nodes in } c$

Global Measure

- Total internal connections
- Total external connections

Our Perspective of a Community

Heuristic I

Total Internal connections > maximum external connections to any one of the external communities

Modularity, Conductance, Cut-ratio consider total external connections

Heuristic II

Internal neighbors should be highly connected => high clustering coefficient among internal neighbors

Modularity, conductance and cut-ratio do not consider clustering coefficient

Permanence

$$Perm(v) = \left[\frac{I(v)}{E_{max}(v)} \times \frac{1}{D(v)}\right] - (1 - C_{in}(v))$$

 $\begin{bmatrix} I(v) = \text{internal deg of } v \\ D(v) = \text{degree of } v \\ E_{max}(v) = \text{Max connection to an external neighbor} \\ C_{in}(v) = \text{clustering coefficient of internal neighbors} \end{bmatrix}$

Perm(v)=0.12

$$I(v) = 4, D(v) = 7, E_{max}(v) = 2$$

 $C_{in}(v) = 5/6$

Discussion

Permanence

Permanence ~ 1

Permanence = 0

Wrong vertex-to-community assignment

Permanence ~ -1

MaxPerm. Non-overlapping Community Detection Algorithm

Major Limitations

Limitations of optimization algorithms

Resolution limit (Fortunato & Barthelemy, PNAS, 07)
Degeneracy of solutions (Good et al., PRE, 10)
Asymptotic growth (Good et al., PRE, 10)

MaxPerm: Community Detection Based on Maximizing Permanence

□ Follow similar strategy used in Louvain algorithm (a greedy modularity maximization) (*Blondel et al., J. Stat. Mech*, 07)

 \Box We only consider those communities having size $\geq = 3$

Experimental Results

Algo	LFR (µ=0.1)	LFR (µ=0.3)	Football	Railway	Coauthorship
Louvain	0.02	0.00	0.02	0.14	0.00
FastGrdy	0.00	0.87	0.01	0.37	0.14
CNM	0.14	0.40	0.30	0.00	0.05
WalkTrap	0.00	0.00	0.02	0.02	0.01
Infomod	0.06	0.08	0.19	0.04	0.00
Infomap	0.00	0.00	0.02	0.02	0.03

Table: Improvement of our algorithm w.r.t the other algorithms (averaged over all validation measures)

More about Permanence

Permanence is not very sensitive to minor perturbation, but very sensitive after a certain threshold

Permanence finds small-size communities

□ Identify singleton (act as junction in Railway n/w) and small communities (subfields in Coauthorship n/w)

Theoretical Issues

Resolution limit

If a vertex is **very tightly connected** to a community and **very loosely connected** to another community, highest permanence is obtained when it joins the community to which it is more connected.

Degeneracy of solution

if a vertex is **sufficiently loosely connected** to its neighbouring communities and has equal number of connections to each community, then in most cases it will remain as **singleton**, rather than arbitrarily joining any of its neighbour groups.

Asymptotic growth of value

All the parameters of parameters are independent of the symmetric growth of

network size and the number of communities.

Analytical proofs: http://cnerg.org/permanence

Metric for Overlapping Communities

Overlapping Permanence (OPerm)

$$P_{ov}^{c}(v) = \frac{I^{c}(v)}{E_{max}(v)} \times \frac{1}{D(v)} - (1 - c_{in}^{c}(v)) \cdot \frac{I^{c}(v)}{I(v)}$$

Generalized metric

D(v) = degree of v $E_{max}(v) = \text{Max connection to an external community}$ $C^{c}in(v) = \text{clustering coeff. of internal neighbors of } v \text{ in } c$ I(v) = # of internal neighbors of v $I^{c}(v) = \sum_{e \in \Gamma_{v}^{e}} \frac{1}{x_{e}}$ $\Gamma_{v}^{e} = \text{ internal edges of } v \text{ in community}$ $\chi_{e} = \# \text{ of communities edge e shares}$ $P^{c1}(v) = \frac{1+1+v}{v}$

 $P_{ov} = \frac{1}{|V|} \sum_{v \in V} P_{ov}(v)$

D(v)=8, I(v)=5

$$P_{ov}^{c1}(v) = \frac{1+1+\frac{1}{2}}{2\times8} - (1-\frac{2}{3}) \times \frac{1+1+\frac{1}{2}}{5} = -0.01$$

$$P_{ov}^{c2}(v) = -0.18 \qquad P_{ov}(v) = P_{ov}^{c1}(v) + P_{ov}^{c2}(v) = -0.19$$

Inference from OPerm Values

Core-periphery Structure within Communities

Assortativity

Farness centrality: Avg. shortest path of each vertex within a community.

Assortativity	LFR (0.1)	LiveJournal
Degree-based	-0.045	0.037
OPerm-based	0.645	0.465

MaxOPerm: Overlapping Community Detection Algorithm
MaxOPerm: Framework

Experiment Results

(Evaluation with Ground-truth Communities)

Chapter 3: Analyzing Real-world Communities

Publication Dataset

- Crawled entire Microsoft Academic Search
- Papers in Computer Science domain
- Basic preprocessing

Basic Statistics of papers from 1960-2010	Values
Number of valid entries	3,473,171
Number of authors	1,186,412
Number of unique venues	6,143
Avg. number of papers per author	5.18
Avg. number of authors per paper	2.49

Publication Dataset

Available Metadata				
Title				
Unique ID				
Named entity disambiguated authors' name				
Year of publication				
Named entity disambiguated publication venue				
Related research field(s)				
References				
Keywords				
Abstract				

Available @ http://cnerg.org

Ground-truth Communities

Fig.: Citation network with ground-truth communities

"Impact" of a Field (Community)

Measuring the impact of each field (its constituent papers) around a particular year.

Local citation density is important

"Impact" of a Field (Community)

$$In(f_i^t) = \sum_{j \neq i} w_{j \to i}^t$$

where, $w_{j \rightarrow i}^{t} = \frac{C_{j \rightarrow i}^{t}}{P_{i}^{t}}$ $C_{j \rightarrow i} = \# \text{ of citations received by}$ the papers of field f_{i} from field f_{j} $P_{i}^{t} = \# \text{ of papers in field } f_{i}$ 1 <= t <= 3 (current year + next 3 years)N.B.: We only consider cross-field citations

Scientific Paradigm Shift

Rise in inwardness & decline near transition throughout
Second ranked field emerges as the leader in the next window

Cause Analysis

- · Impact of highly-cited papers
- Impact of collaboration
- Impact of top back-up fields
- Effect of seminal papers

External Evaluation of Inwardness:

Our results have high correlation with the project submission statistics of NSF

Effect of Interdisciplinary Research

How to measure the degree of interdisciplinarity of a field?

Reference Diversity index (RDI)

RDI of a paper
$$X_i = RDI(X_i) = -\sum_j p_j \log p_j$$

 p_j = proportion of references of X_i citing the papers of field F_j

More RDI, more interdisciplinarity

$$RDI(X_i) = -3/5 \log (3/5) - 2/5 \log (2/5)$$

= 0.67

NLP (95-99) World Wide Web (95–99) IR ALGO отн OTH (16%) (6%) (19%) (5%) HCI (13%) ML AI (24%) DB (34%) (31%)NETW (32%) (20%)

Other Indicators

- Citation Diversity Index (CDI)
 - Citation based measure
- Membership Diversity Index (MDI)
 - Community based measure
- Attraction Index
 - Propensity of new researchers joining to a field

Evolutionary Landscape

- ^o Fields are grouped based on the **connection proximity**
- The size of the font indicates the relative importance (# of incoming citations) of a field

Chapter 4: Community-based Applications

Citation Profile of an Article

Common consensus about the growth of citation count of a paper over time after publication

Six Universal Citation Profiles

Q1 and Q3 represent the first and third quartiles of the data points respectively.

Another category: **'Oth'** => having less than one citation (on avg) per year

More on the Categories

Contribution of papers from each category in different citation buckets

Application: Future Citation Count Prediction

Problem Definition

Citation counts:

Given the set of scientific articles D, the citation counts $(C_T(.))$ of an article $d \in D$ is defined as:

 $citing(d) = \{d' \in D : d' \text{ cites } d\}$ $C_T(d) = |citing(d)|$

Learning task: Given a set of features $F = \{f_1, f_2, ..., f_n\}$, our goal is to learn a predictive function ψ to predict the citation counts of an article d after a give time period Δt of its publication. Formally, this can be written as:

 $\psi(d|F,\Delta t) \to C_T(d|\Delta t)$

we consider $\Delta t \in \{1, 5\}$

Traditional Framework

Stratified Learning

- **Stratification** is the process of dividing members of the population into **homogeneous subgroups** before sampling.
- The strata should be mutually exclusive
 - Every element in the population must be assigned to only one stratum

Our Framework: 2-stage Model

Static Features

Performance Evaluation

(i) Coefficient of determination (R^2)

The more, the better

(ii) Mean squared error (θ)

The less, the better

(iii) Pearson correlation coefficient (ρ)

The more, the better

Performance Evaluation

	Baseline		
	R^2	θ	ρ
$\Delta t = 1$	0.57	5.06	0.61
$\Delta t=2$	0.55	7.10	0.59
$\Delta t=3$	0.52	8.78	0.65
$\Delta t = 4$	0.50	10.06	0.75
$\Delta t = 5$	0.45	13.06	0.42

Application: Faceted Recommendation System for Scientific Articles

Flat vs. Faceted Recommendation

FeRoSA: Workflow Diagram

Four facets: Background, Alternative Approach, Methods, Comparison

Experimental Setup

Baseline: Flat Recommendation Systems:

• Google Scholar (GS), Microsoft Academic Search (MAS) and LLQ (Liang et al., 11)

Baseline: Faceted Recommendation Systems:

• VanillaPR and FeRoSA-CS

Ground-truth Generation:

- Number of query papers = 30 (30 recommendations per query)
- Number of experts in NLP = 8

Metrics:

- Overall Precision (OP)
- Overall Impression (OI)
- · Faceted Evaluation: Faceted Precision (TP)

Faceted Evaluation based on Ground-truth

Facets	VanillaPR	FeRoSA-CS	FeRoSA
BG	0.65	0.51	0.79
AA	0.48	0.34	0.56
MD	0.62	0.39	0.62
CM	0.44	0.38	0.62
Average	0.55	0.40	0.65

Evaluation by the Original Authors

Flat Evaluation

Table : (a) Flat evaluation of the competing systems; (b) overall precision of f-FeRoSA at different number of recommendations.

www.ferosa.org

Takeaways

□ Community: mesoscopic view of a network

Constant community captures the invariant substructure of a network

Permanence measures the belongingness of a node in a community

Real-world community in citation network reveals scientific paradigms of Computer Science domain

 Applications such as search and recommendation systems perform significantly well

Future Work

- Local and dynamic community detection
- Explore more on the core-periphery structure within a community
- Citation categorization of individual authors
- Evaluate the real systems on larger datasets to show the Scalability and robustness

Discussion on Feedback Prof. Frank Schweitzer

"Networks containing a large number of such constant communities are less likely to be affected by perturbation."
Explain to what kind of perturbation this statement should apply.

Discussion on Feedback Prof. Frank Schweitzer

□ "We aggregate these two criteria to formulate permanence of a vertex" (4.1) is certainly only one of different ways to include the given heuristics I and II. Discuss alternatives, in order to provide more evidence for your specific choice.

Permanence

□ Discuss the relation between the relative permanence and permanence of a node. What are the conceptual differences, what is the additional information provided in each of these measures?

Relative Permanence

Discussion on Feedback Prof. Frank Schweitzer

□ Explain the meaning of a power law, and distinguish it from other types of distributions (stretched exponential, log-normal, beta etc.). Explain methods to test distributions in general, and methods to verify the power law behavior in data, specifically.

- Power law: $f(x) = a \cdot x^{-k}, 2 \le k \le 3$
- Stretched exponential: $f_k(x) = e^{-x^k}, 0 \le k \le 1$
- Log-normal: If x is log normal, y=ln(x) follows a normal dist

Discussion on Feedback Prof. Y. Narahari

Thank you very much for such inspiring comments. I would be happy to take up any queries.

Publications from the Thesis

Journals

 Chakraborty et al., On the Categorization of Scientific Citation Profiles in Computer Sciences, *Communications of the ACM (CACM)*, 58:9, pp. 82-90, 2015. (IF: 2.836)

 Chakraborty et al. Understanding and Modeling Diverse Scientific Careers of Researchers, *Journal of Informetrics*, 9:1, ISSN 1751-1577, pp. 69-78, Jan 2015. (IF: 3.609)

Chakraborty et al. Constant Communities in Complex Networks, *Nature Scientific Reports*, 3, 1825, ISSN 2045-2322, 2013. (IF: 5.078)

Chakraborty et al., Computer Science Fields: A Quantitative Route to the Rise and Fall of scientific Research, *Social Network Analysis and Mining (SNAM)*, 4:1, Springer Vienna, ISSN 1869-5450, pp. 1-18, 2014.

Publications from the Thesis

Conferences

> Chakraborty et al., On the formation circles in co-authorship networks, ACM SIGKDD, Sydney, August 10 - 13, 2015, pp. 109-118.

> Chakraborty et al., DiSCern: A Diversified Citation Recommendation System for Scientific Queries, *ICDE*, Seoul, Korea, April 3-17, 2015, pp. 555-566.

Chakraborty et al., Towards a Stratified Learning Approach to Predict Future Citation Counts, *JCDL*, London, Sep 8-12, 2014, pp. 351-360.

Chakraborty et al., On the Permanence of Vertices in Network Communities, ACM SIGKDD, New York City, Aug 24 - 27, 2014, pp. 1396-1405.

Chakraborty et al., Rising Popularity of Interdisciplinary Research - an Analysis of Citation Networks, Workshop on Social Networks, COMSNETS, Bangalore, 2014.

Chakraborty et al., Automatic Classification and Analysis of Interdisciplinary Fields in Computer Sciences, *SocialCom*, Washington D.C., Sep 8- 14, 2013, pp. 180 – 187.

Chakraborty et al., Computer Science Fields as Ground-truth Communities: Their Impact, Rise and Fall, ASONAM, Canada, Aug 25-28, 2013, pp. 426-433.

Manuscripts under Review

> Chakraborty et al, Overlapping Permanence: A New Vertex-based Metric to Analyze Overlapping Communities, *IEEE TKDE*.

> Chakraborty et al., FeRoSA: A Faceted Recommendation System for Scientific Articles, ACM TIST (to be submitted).

> Chakraborty et al., Permanence and Community Analysis in Complex Networks, *ACM TKDD*.

Publications outside the Thesis

- M. Singh, V. Patidar, S. Kumar, T. Chakraborty, A. Mukherjee, P. Goyal. The role of citation context in predicting long-term citation profiles: an experimental study based on a massive bibliographic text dataset, CIKM, 2015 (accepted).
- **T Chakraborty**, Leveraging non-overlapping communities to detect overlapping community structure, JSTAT, 5, pp. P05017, 2015.
- S. Srinivasan, T. Chakraborty, S. Bhowmick. Identifying Base Clusters And Their Application To Maximizing Modularity, Contemporary Mathematics. Graph partitioning and Graph Clustering. AMS-DIMACS, 2012.
- M. Singh, **T. Chakraborty**, A. Mukherjee, P. Goyal. ConfAssist: A Conflict resolution framework for assisting the categorization of Computer Science conferences, JCDL, Tennessee, USA, 2015.
- Chakraborty et al., Automatic Classification of Scientific Groups as Productive: An Approach based on Motif Analysis, ASONAM, Beijing, 2014.
- Chakraborty et al., Analysis and Modeling of Lowest Unique Bid Auctions, SocialCom, Stanford, CA, USA, 2014.
- Chakraborty & Chakraborty, OverCite: Finding Overlapping Communities in Citation Network, BASNA, ASONAM, Canada, 2013..

Awards & Recognitions

- Google PhD Fellowship
- First Prize in Microsoft Techvista 2015
- Best Demo Award, IBM Day, IIT Kharagpur, 2015
- Best Presentation Award, Workshop in Social Networking, COMSNETS 2014
- Honorable Mention Award, Microsoft Techvista 2013
- Best paper nomination in ASONAM, 2013
- Our KDD 2014 paper was invited as a premier paper at COMAD 2014, XRCI 2015 and ACM iKDD 2015

Thanks to the Co-authors

Thanks to the Co-authors

Thank you