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Abstract. Network communities represent mesoscopic structure for
understanding the organization of real-world networks, where nodes often belong
to multiple communities and form overlapping community structure in the
network. Due to non-triviality in finding the exact boundary of such overlapping
communities, this problem has become challenging, and therefore huge effort has
been devoted to detect overlapping communities from the network.

In this paper, we present PVOC (Permanence based Vertex-replication
algorithm for Overlapping Community detection), a two-stage framework to
detect overlapping community structure. We build on a novel observation
that non-overlapping community structure detected by a standard disjoint
community detection algorithm from a network has high resemblance with its
actual overlapping community structure, except the overlapping part. Based
on this observation, we posit that there is perhaps no need of building
yet another overlapping community finding algorithm; but one can efficiently
manipulate the output of any existing disjoint community finding algorithm to
obtain the required overlapping structure. We propose a new post-processing
technique that by combining with any existing disjoint community detection
algorithm, can suitably process each vertex using a new vertex-based metric,
called permanence, and thereby finds out overlapping candidates with their
community memberships. Experimental results on both synthetic and large real-
world networks show that PVOC significantly outperforms six state-of-the-art
overlapping community detection algorithms in terms of high similarity of the
output with the ground-truth structure. Thus our framework not only finds
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meaningful overlapping communities from the network, but also allows us to
put an end to the constant effort of building yet another overlapping community
detection algorithm.

Keywords: random graphs, networks, clustering techniques
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1. Introduction

One of the most used aspects of social network analysis is to discover and display
clusters and communities in networks—the dense sub-networks, where there are more
links internally, than externally. It is easy for the common person to spot dense clusters of
connection in a small network visualization. However, this is extremely difficult problem
to detect such groups from large scale networks. There has been a constant effort since
last one decade from the researchers of both computer science and physics domains to
explore such community structure from networks after the pioneering effort of Girvan
and Newman [1]. Today there are dozens of community detection algorithms that can
detect the disjoint/non-overlapping community structure from the network using different
heuristics and frameworks (see [2, 3] for the survey). However, in real-world scenario, it
has been observed that a node can be a part of multiple communities, which has eventually
led to the idea of overlapping/soft communities [4–7]. This problem is even more harder
because of the exponential number of possible solutions. Therefore, a new direction of
research has been started to detect the overlapping community structure from the network
(see [8] for the survey).

The dichotomy between ‘disjoint’ and ‘overlapping’ community detection algorithms
is unfortunate because it limits the application of each algorithm. If a network
has overlapping communities, a ‘disjoint’ algorithm cannot find them; conversely, if
communities are known to be disjoint, a ‘disjoint’ algorithm will generally perform better
than an ‘overlapping’ algorithm. Therefore, to obtain the actual community structure,
it is important to choose the right kind of algorithm. Note that the question of how to
choose the right kind of algorithm is outside the scope of the present paper.

However, we hypothesize that there is perhaps no need to develop yet another
overlapping community finding algorithm given the assumption that we have diverse
and efficient disjoint community detection algorithms in hand. In this paper, we present
a method to allow any ‘disjoint’ community detection algorithm to be used to detect
overlapping community structure instead for finding another overlapping community
detection algorithm. This means that a user wishing to find overlapping communities
need no longer be forced to use one of the overlapping algorithms that exist, but can also
choose from the many disjoint community finding algorithms. The proposed framework
is called as PVOC (Permanence based Vertex-replication algorithm for Overlapping
Community detection) which is a two-phase framework—in the first step, an efficient
disjoint community detection algorithm is used to detect the non-overlapping community
structure from the network; in the second step, each node in the disjoint communities
is processed appropriately using a new vertex-based metric, called permanence [9], in
order to measure the extent of belongingness of a vertex in its own community and
its attached neighboring communities. If the membership of the vertex in its assigned
community is similar to that in the neighboring community, we assign the vertex into the
neighboring community, keeping its original community intact. Thus the post-processing
step is the fundamental component in PVOC to find out overlapping vertices from the
non-overlapping structure.

We compare our framework with six state-of-the-art overlapping community detection
algorithms on both synthetic and large real-world networks (whose ground-truth
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community structure is available). We observe that PVOC significantly outperforms other
baseline algorithms in terms of high resemblance of the output with the ground-truth
structure. Moreover, we show that even if it is scalable, it does not compromise the
correctness of the output.

Our paper makes several unique contributions to the state-of-the-art in community
detection. These include (i) analyzing the real-world community structure and observing
that the disjoint communities are enough to be processed for discovering overlapping
community structure, (ii) proposing a new framework by combining existing disjoint
community detection algorithm along with the post-processing step, (iii) showing the
accuracy of PVOC in terms of accurately discovering the ground-truth structure.

The organization of the paper is as follows. In the next section, we provide a brief
overview of state-of-the-art approaches in overlapping community detection. Section 3
provides a brief description of the synthetic and real-world datasets. Following this,
in section 4, we present a detailed results of our empirical observation followed by
the description of our proposed framework. Section 5 describes the results of the
experiments to detect overlapping communities and a comparative analysis with the
baseline algorithms. The experiments in this paper use a combination of PVOC with
two existing disjoint community detection algorithms, Louvain [10] and Infomap [11].
Finally, we conclude the paper in section 6 with some immediate future directions.

2. Related work

There has been a class of algorithms for network clustering, which allow nodes belonging to
more than one community. Palla proposed ‘CFinder’ [12], the seminal and most popular
method based on clique-percolation technique. However, due to the clique requirement
and the sparseness of real networks, the communities discovered by CFinder are usually
of low quality [13]. The idea of partitioning links instead of nodes to discover community
structure has also been explored [14–17].

On the other hand, a set of algorithms utilized local expansion and optimization to
detect overlapping communities. For instance, Baumes et al [18] proposed a two-step
algorithm ‘RankRemoval’ using a local density function. LFM [19] expands communities
from a random seed node to form a natural community until a fitness function is locally
maximal. MONC [20] uses the modified fitness function of LFM which allows a single
node to be considered a community by itself. OSLOM [5] tests the statistical significance
of a cluster with respect to a global null model (i.e. the random graph generated by the
configuration model) during community expansion. Chen et al [21] proposed selecting a
node with maximal node strength based on two quantities—belonging degree and the
modified modularity. EAGLE [6] and GCE [22] use the agglomerative framework to
produce overlapping communities. COCD [23] first identifies cores and then remaining
nodes are attached to cores with which they have maximum connections.

Few fuzzy community detection algorithms have been proposed that quantify the
strength of association between all pairs of nodes and communities [24]. Nepusz et al [25]
modeled the overlapping community detection as a nonlinear constrained optimization
problem which can be solved by simulated annealing methods. Zhang et al [26] proposed
an algorithm based on the spectral clustering framework. Due to the probabilistic nature,
mixture models provide an appropriate framework for overlapping community detection
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[27–30]. MOSES [31] uses a local optimization scheme in which the fitness function is
defined based on the observed condition distribution. Zhang et al used nonnegative matrix
factorization (NMF) to detect overlapping communities when the number of communities
and the feature vectors are provided [32, 33]. Ding et al [34] employed the affinity
propagation clustering algorithm for overlapping detection. Recently, the BIGCLAM [35]
algorithm was also built on a NMF framework.

The label propagation algorithm has been extended to overlapping community
detection by allowing a node to have multiple labels. In COPRA [36], each node updates
its belonging coefficients by averaging the coefficients from all its neighbors at each time
step in a synchronous fashion. SLPA [37, 38] spreads labels between nodes according to
pairwise interaction rules. A game-theoretic framework is proposed in Chen et al [39] in
which a community is associated with a Nash local equilibrium.

Beside these, CONGA [7] extends GN algorithm [40] by allowing a node to split into
multiple copies. Zhang et al [41] proposed an iterative process that reinforces the network
topology and propinquity that is interpreted as the probability of a pair of nodes belonging
to the same community. István et al [42] proposed an approach focusing on centrality-based
influence functions. Recently, Gopalan and Blei [43] proposed an algorithm that naturally
interleaves subsampling from the network and updating an estimate of its communities.
The reader can get more details in a nice survey paper by Xie et al [8].

3. Test suite of networks

3.1. Synthetic networks

It is necessary to have good benchmarks to both study the behavior of a proposed
community detection algorithm and to compare the performance across various
algorithms. In light of this requirement, Lancichinetti et al [44] introduced LFR1

benchmark networks that take into account heterogeneity into degree and community
size distributions of a network. These distributions are governed by power laws with
exponents τ1 and τ2 respectively. To generate overlapping communities On, the fraction
of overlapping nodes is specified and each node is assigned to Om (�1) communities.
LFR also provides a rich set of parameters to control the network topology, including
the number of nodes n, the mixing parameter µ, the average degree k̄, the maximum
degree kmax, the maximum community size cmax, and the minimum community size cmin.
We vary these parameters depending on the experimental needs. Unless otherwise stated,
LFR graph is generated with the following configuration: µ = 0.2, N = 10 000, Om = 4,
On = 5%; other parameters being set to their default values. Results shown are the average
of 100 runs.

3.2. Real-world networks with ground-truth communities

We use four real-world networks2 proposed by Yang and Leskovec [35, 45] whose
underlying ground-truth community structures are known a priori and whose properties
are summarized in table 1. Figure 1 shows the distribution of the number of communities
memberships of vertices for the real-world networks.
1 http://sites.google.com/site/andrealancichinetti/files.
2 http://snap.stanford.edu.
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Table 1. Properties of the real-world networks used in this experiments. N :
number of nodes, C: number of communities, S: average size of a community,
Ōm: average number of community memberships per node.

Networks N E C S Ōm

DBLP 317 080 1049 866 13 477 429.79 2.57
Amazon 334 863 925 872 151 037 99.86 14.83
Youtube 1134 890 2987 624 8385 9.75 10.26
Orkut 3072 441 117 185 083 6288 363 34.86 95.93
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Figure 1. Distribution of the number of community memberships of vertices. X-
axis shows the number of community memberships of vertices and y-axis shows
the fraction of vertices with certain number of community memberships.

DBLP: It is a co-authorship network where nodes represent authors and edges connect
nodes whose corresponding authors have co-authored in at least one paper. Since research
communities stem around conferences or journals, the publication venues are used as
ground-truth communities in DBLP.

Amazon: It is a Amazon product co-purchasing network where nodes represent
products and edges connect commonly co-purchased products. Each product (i.e. node)
belongs to one or more product categories. Each product category is used to define a
ground-truth community.

Youtube: In the Youtube social network, users form friendship with each other and
users can create groups where other users can join. Here, such user-defined groups are
considered as ground-truth communities.

Orkut: Orkut is a free on-line social network where users form friendship with each
other. Orkut also allows users to form a group where other members can then join. Here
also such user-defined groups are considered as ground-truth communities.

4. Vertex-replication algorithm

Our proposed algorithm is motivated from an empirical study on the ground-truth
community structure of both synthetic and real-world networks. In this section, we first
describe the empirical observation and then illustrate a new algorithm that can detect
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Figure 2. An illustrative example to show the procedure followed in our empirical
study (NCDA: Non-overlapping Community Detection Algorithm).

overlapping communities from a network with the help of any standard disjoint community
detection algorithm.

4.1. Empirical observation

We empirically study the structure of the ground-truth communities. We speculated
that if we remove the vertices that are part of multiple communities from the ground-
truth structure, the rest of the portion, i.e. the community structure composed of only
non-overlapping vertices can be efficiently captured by the standard disjoint community
detection algorithm. To verify this intuition, we take all the networks with their ground-
truth communities and two standard disjoint community detection algorithms, namely
Louvain [10] and Infomap [11,46]. Then for each network, we run the following steps:

I We run each of these algorithms to obtain the disjoint community structure from the
network.

II Since we know the ground-truth community structure of the network, we remove from
the ground-truth those vertices (refer to set Vo) which belong to multiple communities.

III Similarly, we remove the constituent vertices of Vo from the disjoint community
structure obtained from Step I. This step makes sure that the filtered ground-truth
community structure and the filtered disjoint community structure obtained from the
algorithm contain same set of vertices.

IV Then we compare two community structures obtained from Step II and Step III.

A schematic example of the above procedure is shown in figure 2. Figure 1 shows
that in this process, we discard nearly 40% of the vertices (on an average) which belong
to multiple communities for each network. In table 2, we also report the number of
disjoint communities obtained from Louvain and Infomap algorithms for both synthetic
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Table 2. Number of communities in the ground-truth structure and that obtained
from Louvain and Infomap for LFR and real-world networks.

Algorithms

Networks Ground-truth Louvain Infomap

LFR 582 468 501
DBLP 8493 7987 8145
Amazon 151 037 142 098 149 876
Youtube 8385 7967 7132
Orkut 288 363 284 980 286 791

Note: Here for the LFR network, we consider the following configuration: N =
10 000, µ = 0.2, Om = 4, On = 5%. The result of LFR is averaged over 100 runs.

LFR DBLP Amazon Orkut Youtube
0

0.2

0.4

0.6

0.8

N
M

I

Louvain
Infomap

Figure 3. Similarity (in terms of NMI) of the community structure obtained
from two disjoint community detection algorithms (Louvain and Infomap) with
the ground-truth structures after excluding the overlapping vertices. Here for
the LFR network, we consider the following configuration: N = 10 000, µ = 0.2,
Om = 4, On = 5%.

and real-world networks and that present in the ground-truth structure. We use a standard
validation metric, namely normalized mutual information (NMI) [47] to compare these
two community structures. Figure 3 shows that the similarity is quite high for all the
networks; this observation indeed corroborates our earlier speculation. Therefore, we
hypothesize that a standard disjoint community detection algorithm might be able to
find the overlapping communities with a suitable post-processing step. This means that
a user wishing to find overlapping communities need no longer be forced to use any
overlapping community finding algorithm, rather a disjoint community structure followed
by a post-processing step might produce the expected overlapping community structure. In
the rest of this section, we shall use this observation to design a suitable post-processing
technique.

4.2. Permanence based vertex-replication algorithm

Through careful inspection mentioned above, we have found that a standard disjoint
community detection algorithms are quite efficient to detect the non-overlapping part of
the community structure. However there exist few vertices in the network, which are part
of multiple communities. We intend to design an efficient algorithm that would be able to
identify such overlapping vertices with their community memberships. For that, we use
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a vertex-based metric, called permanence, which by virtue of its underlying formulation
measures how intensely a vertex belongs to its community [9]. Below, we present a brief
overview of the formulation of permanence.

4.2.1. Formulation of permanence. In an earlier paper [9], we showed that the extent of
membership of a vertex to a community depends on the following two factors. (i) The first
factor is the distribution of external connections of the vertex to individual communities.
A vertex that has equal number of connections to all its external communities (e.g. a
vertex with total 6 external connections with 2 to each of 3 neighboring communities)
has equal ‘pull’ from each community whereas a vertex with more external connections
to one particular community (e.g. a vertex with total 6 external connections with
1 connection each to two neighboring communities and 4 connections to the third
neighboring community), will experience more ‘pull’ from that community due to large
number of external connections to it. (ii) The second factor is the density of its internal
connections. The internal connections of a community are generally considered together
as a whole. However, how strongly a vertex is connected to its internal neighbors can
differ. To measure this internal connectedness of a vertex, one can compute the clustering
coefficient of the vertex with respect to its internal neighbors. The higher this internal
clustering coefficient, the more tightly the vertex is connected to its community.

Combining these two factors together, we formulated permanence Perm(.) of a vertex
v as follows:

Perm(v) =
I(v)

Emax(v)
× 1

D(v)
− (1 − cin(v)) (1)

where I(v) is the number of internal connections of v, D(v) is the degree of v, Emax(v) is
the maximum connections of v to a single external community and cin(v) is the clustering
coefficient among the internal neighbors of v. An illustrative example is shown in figure 4.

For vertices that do not have any external connections, Perm(v) is considered to be
equal to the internal clustering coefficient (i.e. Perm(v) = cin(v)). The maximum value of
Perm(v) is 1 and is obtained when vertex v is an internal node and part of a clique. The
lower bound of Perm(v) is close to −1. This is obtained when I(v) � D(v), such that

I(v)
D(v)Emax(v) ≈ 0 and cin(v) = 0. Therefore for every vertex v, −1 < Perm(v) � 1.

4.2.2. The PVOC algorithm. Since permanence can assign a score to each of the
vertices, we can use it in our post-processing step to identify overlapping vertices from the
detected disjoint community structure. Subsequently, we develop a new algorithm, called
PVOC (Permanence based Vertex-replication algorithm for Overlapping Community
detection) that can combine any existing disjoint community detection algorithm with
the permanence based vertex-replication for detecting overlapping community structure
of a network. Algorithm 1 presents the pseudo-code of PVOC.

Given undirected network G(V , E) and a threshold θ, the algorithm works as follows:

I A standard disjoint community detection algorithm Ad is used to detect non-
overlapping community structure NC from G.

II A set of vertices Ve are identified from NC such that each constituent vertex in Ve has
at least one connection to any external community.

doi:10.1088/1742-5468/2015/05/P05017 9
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Figure 4. Toy example depicting permanence of two vertices u and v. Even if
vertex v has a large number of external connections than u, all these six external
connections are distributed equally into three neighboring communities, resulting
in the external pull proportional to 2; whereas u is attached with 4 external
neighbors, three of them constitute in one community and the rest is attached
with another community, resulting in the external pull proportional to 3. On the
other hand, v is connected to 3 internal neighbors which are further completely
connected among each other; whereas the neighbors of u are partially connected.
This results in high internal pull of v as compared to u. These two notions of
connectively are considered in the formulation of permanence.

III For each vertex v in Ve, we do the following steps:

(a) We calculate the sum of permanence of v and its neighbors in their assigned
communities.

(b) We remove v from its own community and place it to each of its external
communities separately. This assignment affects the permanence value of v and
its immediate neighbors.

(c) For each external community Cn, we measure the current sum of permanence of v
(in its new community) and its neighbors.

(d) If the absolute value of the difference of the permanence values obtained from
Step III(a) and Step III(c) is less than θ, a replica of v is placed into the new
community Cn, keeping v in its original community as well; otherwise v is assigned
back to its original community. This step identifies overlapping nodes along with
their memberships in different communities.

(e) The algorithm finally returns all the vertices with new community membership.

The threshold θ controls the extent to which one can relax the condition of replicating
a vertex into multiple communities. We vary the threshold from 0 to 0.2 and observe
that it produces maximum accuracy at 0.05 (see figure 6). Therefore, for the rest of the
experiment, we keep the value of θ as 0.05. Note that in the permanence-based post-
processing step, we only consider those vertices having at least one external connection.
The rationale behind this assumption is that vertices in the core of each community are
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Algorithm 1 PVOC: Permanence based vertex-replication algorithm for
overlapping community detection

Input: A graph G = (V , E); Ad= disjoint community detection algorithm; θ =threshold
Output: Detected overlapping communities

procedure VERTEX REPLICATION(G, NC, θ)
Ve = set of vertices having at least one external neighbor
for all do v ∈ Ve

Cv = current community of v
Measure current permanence of v, Op(v)
Measure current sum of permanences of all neighbor’s of v, On(v)
Sum Op = Op(v) + On(v)
for all do n ∈ N � N is the set of external neighbors of v

Cn =current community of n
Remove v from Cv and assign it in Cn

Measure new permanence of v in community Cn, Np(v)
Measure new sum of permanences of all neighbor’s of v, Nn(v)
Sum Np = Np(v) + Nn(v)
if (|Sum Np − Sum Op| <= θ) then

Assign a replica of v in Cn along with its original presence in Cv

else
Remove vertex v from Cn and place it back in Cv

return The updated overlapping community structure
procedure PVOC

Run Ad on G to obtain disjoint community structure NC
Call VERTEX REPLICATION(G,NC,θ)

often considered to be correctly placed by the disjoint community detection algorithm,
whereas vertices which are placed in the peripheral region of the community and are
loosely connected to the core of the community have high chance to be part of multiple
communities. Figure 5 shows an empirical observation where we plot the relation between
the number of external connections of a vertex in the detected disjoint community to the
number of overlapping memberships of the vertex in ground-truth community. We observe
that the correlation is increasing in nature, which indeed strengthens our hypothesis.

The time complexity of measuring the permanence of a vertex takes O(d2), where d
is the average degree of vertices in the network. In real-world networks, the value of d
is much lower than log(n), where n is the number of nodes in the network. Therefore,
the PVOC algorithm mostly depends on the underlying disjoint community detection
algorithm.

5. Experiments

We combine PVOC with two popular disjoint community detection algorithms, namely
Louvain3 [10] and Infomap4 [11, 46]. These are chosen because they are reasonably
3 https://sites.google.com/site/findcommunities/.
4 www.tp.umu.se/∼rosvall/code.html.
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Figure 5. The relation between the average number of external connections
of vertices (with the standard deviation) obtained from the output of the
disjoint community detection algorithm (here we use Louvian) and the number
of communities a vertex is a part of.

accurate algorithms with the potential to handle large networks, and implementation of
them, by their authors, are publicly available.

5.1. Baseline algorithms

We compare the performance of PVOC with the following state-of-the-art overlapping
community detection algorithms, whose codes are also available:

• Order statistics local optimization method (OSLOM): It is based on the local
optimization of a fitness function expressing the statistical significance of clusters
with respect to random fluctuations, which is estimated with tools of Extreme and
Order Statistics [5]. The code is available at http://www.oslom.org.

• Community overlap propagation algorithm (COPRA): This algorithm is based on
the label propagation technique of Raghavan et al [4], but is able to detect
communities that overlap. Like the original algorithm, vertices have labels that
propagate between neighboring vertices so that members of a community reach
a consensus on their community membership [36]. The code is available at
www.cs.bris.ac.uk/∼steve/networks/software/copra.html.

• Speaker listener propagation algorithm (SLPA): The algorithm is an extension of the
label propagation algorithm (LPA) [4]. In SLPA, each node can be a listener or a
speaker. The roles are switched depending on whether a node serves as an information
provider or information consumer. Typically, a node can hold as many labels as it
likes, depending on what it has experienced in the stochastic processes driven by the
underlying network structure. A node accumulates knowledge of repeatedly observed
labels instead of erasing all but one of them. Moreover, the more a node observes a
label, the more likely it will spread this label to other nodes [37]. The code is available
at https://sites.google.com/site/communitydetectionslpa.
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• Agglomerative hierarchical clustering based on maximal clique (EAGLE): It uses the
agglomerative framework to produce a dendrogram. First, all maximal cliques are
found and made to be the initial communities. Then, the pair of communities with
maximum similarity is merged. The optimal cut on the dendrogram is determined
by the extended modularity with a weight based on the number of overlapping
memberships [6]. The code is available at http://code.google.com/p/eaglepp/.

• Cluster-overlap Newman Griven algorithm (CONGA): The idea of this algorithm
is similar to our idea of finding overlapping communities from disjoint community
structure. CONGA is based on Griven Newman’s ‘GN’ algorithm [1] but extended
to detect overlapping communities. CONGA adds to the GN algorithm the ability to
split vertices between communities, based on the new concept of split betweenness.
At first, edge betweenness of edges and split betweenness of vertices are calculated.
Then an edge with maximum edge betweenness is removed or a vertex with maximum
split betweenness is split. After this step, edge betweenness and split betweenness are
recalculated. The above steps are repeated until no edges remain [7]. However, the
calculation of edge betweenness and split betweenness is expensive on large networks.
The code is available at www.cs.bris.ac.uk/∼steve/networks/congapaper/.

• Cluster affiliation model for big networks (BIGCLAM): In this algorithm, communities
arise due to shared community affiliations of nodes. Here the affiliation strength is
explicitly modeled for each node to each community. Then each node-community pair
is assigned a nonnegative latent factor which represents the degree of membership of
a node to the community. The probability of an edge between a pair of nodes is then
modeled in the network as a function of the shared community affiliations [35]. The
code is available at http://snap.stanford.edu.

Note that each algorithm is simply used with its default parameters.

5.2. Validation metrics

A stronger test of the correctness of the community detection algorithm, however, is by
comparing the obtained community with a given ground–truth structure. For evaluation,
we use three metrics that quantify the level of correspondence between the detected and
the ground–truth communities [35].

• Overlapping Normalized Mutual Information5 [48]

• Omega Index [24]

• Average F score [49]

Note that all the metrics are bounded between 0 (no matching) and 1 (perfect
matching).

5 https://github.com/aaronmcdaid/Overlapping-NMI.
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Figure 6. Accuracy of PVOC (in terms of three validation metrics) with the
increase of θ for LFR (µ = 0.3) and one real-world network (DBLP). Maximum
accuracy is obtained at θ = 0.05, which we use in rest of the experiment. Each
point in the plot is an average of the accuracies obtained from Louvain and
Infomap.

5.3. Experimental results

In this experiment, we use PVOC combined with Louvain and Informap separately, and
compare the results with six baseline algorithms. First, we check the dependency of PVOC
with the value of θ. Figure 6 shows that at θ = 0.05, PVOC achieves maximum accuracy
for LFR and one representative real-world network; however the result is almost same of
other networks. Therefore, we use θ = 0.05 in the rest of the experiments. One can tune θ
appropriately to control the extent of overlapping membership of vertices in the network.

In figure 7, we compare the outputs obtained from different competing algorithms
with the ground-truth communities for LFR networks with different parameter settings.
Figure 7 (top panel) shows the results for different values of µ ranging from 0.1 to 0.5. As
µ increases, the community structure becomes less evident and it becomes difficult for
all the algorithms to discover the actual community structure. OSLOM performs worst
compared to the other algorithms. However, for all the cases, PVOC+LVN is least affected
and outperforms other algorithms. This is followed by PVOC+INFO, CONGO and SLPA.

We then vary the average number of community memberships per vertex, Om from 2
to 8 keeping the other parameters same, and plot the performance of different algorithms
in figure 7 (middle panel). The effect is reasonably less on the accuracy of the competing
algorithms. Here we observe that the pattern is almost similar for PVOC+LVN and
PVOC+INFO, and are much superior than others.

Finally, in figure 7 (lower panel) we plot the accuracy of the algorithms with the
increasing value of On, percentage of overlapping vertices. Surprisingly, OSLOM shows an
unexpected behavior with the increasing accuracy after a certain value of On. However,
on an average the change in accuracy is almost consistent for all the algorithms in all
possibilities of On.

To understand the utility of including PVOC step with the disjoint community finding
algorithms in more details, we further measure the performance of Louvain and Infomap
in isolation without PVOC step. We observe that excluding PVOC step significantly
deteriorates the performance of Louvain algorithm: for LFR network (N = 10 000,
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Figure 7. Accuracy of all the competing algorithms for LFR by varying µ (top
panel, where N = 10 000, Om = 4, On = 5%), Om (middle point, where
N = 10 000, µ = 0.1, On = 5%) and On (bottom panel, where N = 10 000,
µ = 0.1, Om = 4)). Note that the value of On is expressed in % of n (LVN:
Louvain, INFO: Infomap).

Om = 4, On = 5% , µ = 0.2) ONMI (0.569), Omega Index (0.512), F-Score (0.523);
for DBLP network ONMI (0.495), Omega Index (0.521), F-Score (0.487); for Amazon
network ONMI (0.458), Omega Index (0.498), F-Score (0.447); for Youtube network ONMI
(0.512), Omega Index (0.522), F-Score (0.564); and for Orkut network ONMI (0.526),
Omega Index (0.556), F-Score (0.544). Similar trend is observed for Infomap algorithm.
This observation therefore strengthens the need of PVOC as a post-processing step with
the disjoint community detection algorithms.

Now, we run the competing algorithms on the real-world networks. As noted in [35],
most of the baseline community detection algorithms do not scale for networks of large
size. Therefore, we use the following technique proposed by Yan and Leskovec [35] to
obtain several small subnetworks with overlapping community structure from the large
real networks. We pick a random node u in the given graph G that belongs to at least two
communities. We then take the subnetwork to be the induced subgraph of G consisting
of all the nodes that share at least one ground-truth community membership with u.
In our experiments, we created 500 different subnetworks for each of the six real-world
datasets and the results are averaged over these 500 samples. For each validation metric
(ONMI, Ω Index, F-Score), we separately scale the scores of the methods so that the
best performing community detection method has the score of 1. Finally, we compute the
composite performance by summing up three normalized scores. If a method outperforms
all the other methods in all the scores, then its composite performance is 3.

Figure 8 displays the composite performance of the methods for different networks.
On an average, the composite performance of PVOC+INFO (2.88) and PVOC+LVN
(2.74) significantly outperform other competing algorithms: 6.27% higher than that of
BIGCLAM (2.71), 18.03% higher than that of SLPA (2.44), 101.3% higher than that
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Figure 8. Performance of various competing algorithms to detect the ground-
truth communities. For each evaluation metric separately we scale the score of
the methods so that the best performing community detection algorithm achieves
the score of 1. Thus if an algorithm outperforms all the methods in all the scores,
then its composite score would become 3.

Table 3. The performance of BIGCLAM and PVOC on large real-world networks.

BIGCLAM PVOC+LVN PVOC+INFO

Networks ONMI Omega F Score ONMI Omega F Score ONMI Omega F Score

DBLP 0.61 0.59 0.54 0.65 0.61 0.60 0.65 0.62 0.59
Amazon 0.73 0.69 0.74 0.72 0.71 0.75 0.73 0.74 0.76
Orkut 0.65 0.68 0.64 0.72 0.70 0.76 0.73 0.72 0.77
Youtube 0.68 0.76 0.78 0.77 0.78 0.72 0.71 0.68 0.78

of OSLOM (1.43), 36.4% higher than that of COPRA (2.11), 48.4% higher than that
of CONGA (1.94), and 77.8% higher than that of EAGLE (1.62). The absolute average
ONMI of PVOC+INFO (PVOC+LVN) for one LFR and six real networks taken together
is 0.85 (0.83), which is 4.93% (2.46%) and 26.8% (20.8%) higher than the two most
competing algorithms, i.e. BIGCLAM (0.81), and SLPA (0.67) respectively. In terms of
absolute values of scores, PVOC+INFO (PVOC+LVN) achieves the average F-Score of
0.84 (0.79) and average Ω Index of 0.83 (0.82). Overall, PVOC combined with Louvain
and Infomap gives the best results, followed by BIGCLAM, SLPA, COPRA, CONGO,
EAGLE and OSLOM.

As most of the baseline algorithms except BIGCLAM do not scale for large real
networks [35], we separately compare PVOC with BIGCLAM (which is scalable and also
the most competing algorithm) on actual large real datasets. Table 3 shows performance
of PVOC and BIGCLAM for different real networks. On average, PVOC+INFO
(PVOC+LVN) achieves 4.28% (5.63%) higher ONMI, 1.48% (2.85%) higher Ω Index,
and 6.94% (5.63%) higher F-Score. Overall, PVOC outperforms BIGCLAM in every
measure and for every network. The absolute values of the scores of PVOC+INFO and
PVOC+LVN averaged over all the networks are 0.70 and 0.71 (ONMI), 0.69 and 0.70 (Ω
Index), and 0.72 and 0.71 (F-Score) respectively.

Many optimization algorithms have the tendency to underestimate smaller size
communities [50] and sometimes tend to produce very large size communities. In our test
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Table 4. Size of the largest and smallest communities present in the ground-truth
and that obtained from BIGCLAM and PVOC based algorithms (the Jaccard
similarities between the results obtained from the algorithms with the ground-
truth structure are reported within parenthesis) for both LFR and real-world
networks.

Ground-truth BIGCLAM PVOC+LVN PVOC+INFO

Max Min Max Min Max Min Max Min
Networks Size size Size size Size size Size size

DBLP 3458 124 9876 (0.56) 877 (0.48) 4098 (0.71) 243 (0.82) 4143 (0.76) 204 (0.81)
Amazon 5987 245 10 109 (0.45) 765 (0.57) 6876 (0.69) 398 (0.75) 6367 (0.72) 323 (0.83)
Orkut 10 687 1876 13 768 (0.72) 2985 (0.69) 11 976 (0.74) 1908 (0.79) 11 345 (0.75) 1976 (0.79)
Youtube 8987 765 9976 (0.65) 1098 (0.62) 8876 (0.76) 987 (0.71) 9018 (0.74) 865 (0.82)

suite, we observe the similar tendency in BIGCLAM whereas the communities obtained by
PVOC based algorithms are comparable in size with respect to the ground-truth. Earlier
in table 2, we have mentioned the number of communities detected by PVOC based
algorithms (the number of communities does not change due to the inclusion of PVOC step
with Louvain and Infomap). In table 4, we show for both LFR and real-world networks
that the size of the largest and smallest communities detected by BIGCLAM is much
larger than that present in the ground-truth structure. We also measure the similarity
(using Jaccard coefficient) between the largest and smallest-size communities detected by
BIGCLAM and PVOC based algorithms with the communities in ground-truth structure
and notice that PVOC based algorithms are able to detect both largest and smallest-
size communities which are most similar to the ground-truth structure. Therefore, we
hypothesize that our algorithm has the potentiality to produce meaningful communities
which have high resemblance with the ground-truth structure.

6. Conclusions

In this paper, we presented a study to show that there is perhaps less need of
developing yet another algorithm for finding overlapping communities from the network.
We demonstrated how the output of an efficient disjoint community detection algorithm
can be leveraged to discover the overlapping community structure. For that, we proposed
a novel, two-phase framework, called PVOC that can be combined with any efficient
disjoint community detection algorithm. PVOC uses a new metric, called permanence in
the post-processing step on each vertex and detects the overlapping vertices from the non-
overlapping structure. We combined PVOC with two efficient and scalable algorithms,
Louvain and Informap. Experimental results showed that our approach is viable in
producing meaningful overlapping communities quite efficiently even from the large real
world networks in terms of high resemblance with the ground-truth community structure.
PVOC is controlled by only one parameter θ, which can be efficiently tuned to increase
the extent of overlapping memberships per vertex in a network.

However, a major drawback of PVOC is that it produces exactly the same number
of overlapping communities that the disjoint community detection algorithm produces.
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However, it might be possible that due to the overlapping nature of a community, new
community might emerge from the disjoint community structure. As an immediate step,
we would like to include a new module in the post-processing step that would consider the
emergence of new communities. Moreover, we would try to evaluate PVOC in conjunction
with even more disjoint community detection algorithms. To conclude, we would like to
emphasize on the fact that considering such a massive literature particularly on community
detection, it is perhaps the good time to put an end to such consistent effort of proposing
yet another algorithm, and to revisit some of the existing algorithms that are efficient
enough to fulfill both the purpose of discovering disjoint and overlapping communities
from the network.
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