On the Permanence of Vertices in Network Communities

> Tanmoy Chakraborty Google India PhD Fellow IIT Kharagpur, India

20th ACM SIGKDD, New York City, Aug 24-27, 2014

Tanmoy Chakraborty

Niloy Ganguly

Animesh Mukherjee

IIT Kharagpur, India

Sriram Srinivasan

Sanjukta Bhowmick

University of Nebraska, Omaha

Heuristic I

Total Internal connections > maximum external connections to any one of the external communities

Modularity, Conductance, Cut-ration consider total external connections

Heuristic II

Internal neighbors should be highly connected => high clustering coefficient among internal neighbors

Permanence

$$Perm(v) = \left[\frac{I(v)}{E_{max}(v)} \times \frac{1}{D(v)}\right] - (1 - C_{in}(v))$$

 $\begin{bmatrix} I(v) = \text{internal deg of } v \\ D(v) = \text{degree of } v \\ E_{max}(v) = \text{Max connection to an external neighbor} \\ C_{in}(v) = \text{clustering coefficient of internal neighbors} \end{bmatrix}$

Perm(v)=0.12

$$I(v) = 4, D(v) = 7, E_{max}(v) = 2$$

 $C_{in}(v) = 5/6$

Permanence

Permanence ~ 1

Permanence = 0

Wrong vertex-to-community assignment

Permanence ~ -1

Research Questions

1. Assigning every vertex in a community is reasonable?

- No one measures the intensity of belongingness of a vertex to a community
 - ✓ Only try to detect **best community structure** in the network
 - × Never ask for whether a <u>network possesses a strong community</u>

Permanence answers all these questions

Test Suite of Networks

Synthetic Networks

LFR networks with different values of mixing parameter (μ)

Real-world Networks

Football Network

Nodes: teams, Edges: matches, Communities: team-conference

(Girvan & Newman, PNAS, 02)

(Lancichinetti & Fortunato, PRE, 11)

Railway Network

Nodes: station, Edges: train-connections, Communities: state/provinces

(Ghosh et al., Acta Physica, 11)

Coauthorship Network

Nodes: authors, Edges: coauthorships, Communities: research field

(Chakraborty et al., ASONAM, 13)

Baseline Algorithms

Modularity based

- □ FastGreedy (*Newman*, *PRE*, 04)
- □ Louvain (Blondel et al, J. Stat. Mech., 08)
- CNM (Clauset et al, PRE, 04)

Random-walk based

□ WalkTrap (Pons & Latapy, J. Graph Algo and Appln, 06)

Compression based

- □ InfoMod (Rosvall & Bergstrom, PNAS, 07)
- □ InfoMap (*Rosvall & Bergstrom, PNAS, 08*)

Permanence: A Better Community Scoring Function

Methodology

- □ Approach (*Steinhaeuser & Chawla, PRL, 10*):
- 1. Consider a network
- Run N community detection algorithms (here N=6)
- 3. Compute community scoring functions on these outputs
- 4. Rank the algos based on these values
- 5. Compare outputs with the ground-truth using validation metrics and rank algos again
- 6. Find rank-correlation

Football	Network
Mod Per Con Cut	NMI ARI

	Mod Per	Con Cut	NMI	ARI PU
FastGreedy	0.2 5		0.3 4	
Louvain	0.6 2		0.5 2	
CNM	0.8 1		0.8 1	
WalkTrap	0.4 4		0.2 5	
InfoMod	0.5 3		0.4 3	
InfoMap	0.1 6		0.1 6	
	<u> </u>	L		I
		correlation		

Intuition: Ranking of good scoring function and the validation measures should be high

Results

Fig. : Heat maps depicting pairwise Spearman's rank correlation

Lighter color is better

Networks	Modularity	Permanence	Conductance	Cut
$LFR(\mu=0.1)$	0.88	0.88	0.88	0.02
$LFR(\mu=0.3)$	0.61	0.74	0.72	0.28
$LFR(\mu=0.6)$	0.87	0.96	-0.18	-0.44
Football	0.25	0.43	-0.29	-0.41
Railway	0.43	0.46	0.08	-0.48
Coauthorship	0.92	0.92	0.76	0.86

Table : Performance of the community scoring functions averaged over all the validation measures

Developing Community Detection Algorithm

Major Limitations

Limitations of optimization algorithms

- □ Resolution limit (Fortunato & Barthelemy, PNAS, 07)
- Degeneracy of solutions (Good et al., PRE, 10)
- □ Asymptotic growth (Good et al., PRE, 10)

Community Detection Based on Maximizing Permanence

- □ Follow similar strategy used in Louvain algorithm (a greedy modularity maximization) (*Blondel et al., J. Stat. Mech, 07*)
- Selecting seed nodes helps converge the process faster
- \Box We only consider those communities having size $\geq = 3$
- □ Communities having size <3 remain as singleton

Experimental Results

Why ????						
Algo	LFR	LFR	LFR	Football	Railway	Coauthors
	(µ=0.1)	(µ=0.3)	(µ=0.6)			hip
Louvain	0.02	0.00	-0.75	0.02	0.14	0.00
FastGrdy	0.00	0.87	0.02	0.01	0.37	0.14
CNM	0.14	0.40	-0.13	0.30	0.00	0.05
WalkTrap	0.00	0.00	-0.50	0.02	0.02	0.01
Infomod	0.06	0.08	-0.20	0.19	0.04	0.00
Infomap	0.00	0.00	-0.72	0.02	-0.02	0.03

Table: Differences of our algorithm with the other algorithms averaged over all validation measures

LFR ($\mu = 0.1$) vs. LFR ($\mu = 0.6$)

 μ = Avg. ratio between the number of external connections to its degree

Permanence is Nice

Permanence is not very sensitive to minor perturbation, but very sensitive after a certain threshold

Permanence finds small-size communities

□ Identify singleton (act as junction in Railway n/w) and small communities (subfields in Coauthorship n/w)

Issues Related with Modularity Maximization

Resolution limit

If a vertex is **very tightly connected** to a community and **very loosely connected** to another community, highest permanence is obtained when it joins the community to which it is more connected.

Degeneracy of solution

if a vertex is **sufficiently loosely connected** to its neighbouring communities and has equal number of connections to each community, then in most cases it will remain as **singleton**, rather than arbitrarily joining any of its neighbour groups.

Asymptotic growth of value

All the parameters of parameters are independent of the symmetric growth of

network size and the number of communities.

Analytical proofs: http://cnerg.org/permanence

Take Away

Permanence

- a better community scoring function
- sensitive to perturbation after a certain threshold
- indicates the eligibility of a network for community detection

Maximizing permanence

- a better community detection algorithm
- can detect small-size communities
- ameliorates existing limitations

□ Future work

- Recast permanence for overlapping communities
- Recast permanence for weighted graphs
- Recast permanence for dynamic community detection

Thank you

http://cnerg.org/permanence