On the Permanence of Vertices in Network Communities

Tanmov Chakraborty, Nilov Ganguly, Animesh Mukheriee Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur, India - 721302

http:// cnerg.org

Sriram Srinivasan, Sanjukta Bhowmick Department of Computer Science University of Nebraska, Omaha, Nebraska - 68182

http://cs.unomaha.edu/~bhowmick

http://cnerg.org/permanence

Introduction

· Community: Group of nodes within which the connection is dense, but between 88 (A) which the connection is relatively sparse

· Community structure indicates structural or functional similarities between nodes in a network

· Identifying and analyzing community structure are two fundamental research agenda since last 10 years

Background

- Community Finding Algorithms:
- · Modularity-based: FastGreedy [Newman, 14], Louvain [Blondel et al, 08] and CNM [Clause et al. 04] · Random walk-based: WalkTrap [Pons &
- Latapy, 06] · Compression-based: InfoMod and
- InfoMap [Rosvall & Bergstrom, 07]

Community Scoring Functions:

- Modularity [Newman, 06]
- Conductance [Leskovec et al., 09]
- · Cut-ratio [Leskovec et al., 10]

Limitations

- Existing algorithms are prone to · arbitrary network noise
- vertex ordering [Chakraborty et al, 13] · initial seed node selection
- □ Other limitations [Good et al, 10] · Resolution limit
- · Degeneracy of solution
- · Asymptotic growth
- No one measures the degree of belongingness of a vertex in its own community
- Q: Is a network eligible for community analysis?

Aims

Defining suitable community scoring metric that

· minimizes existing limitations · is sensitive to network perturbation · qualifies for a standard community goodness measurement metric

By-product: developing an **optimization** algorithm for detecting non-overlapping communities

Permanence

$$Perm(v) = \frac{I(v)}{D(v)} \times \frac{1}{E_{max}(v)} - (1 - C_{in}(v))$$

I(v) = Internal neighbors of v

D(v) = Degree of v

- $E_{max}(v) = Max$ connections to an external community of v
- $C_{in}(v)$ = Clustering co-efficient of internal neighbors of v

$I(v) = 4, D(v) = 7, E_{max}(v) = 2, C_{in}(v) = 5/6$

Perm(v) = 0.12

Permanence: A Community Scoring Function

Performance of the community scoring functions

averaged over all the validation measures

Maximizing Permanence for Community Detection

- Follow similar strategy used in Louvain algorithm (a greedy modularity maximization) [Blondel et al., 07]
- Selecting seed nodes helps converge the process faster

Heat maps depicting pair-wise Spearman rank correlation

- We only consider those communities having size >=3
- Communities having size <3 remain as singleton

Results: Differences of our algorithm with the other algorithms averaged over all validation measures

Algorithms	LFR (µ=0.1)	LFR (µ=0.3)	LF	R (µ=0.6)	Football	Railway	Coauthorship
Louvain	0.02	0.00		-0.75	0.02	0.14	0.00
FastGreedy	0.00	0.87		0.02	0.01	0.37	0.14
CNM	0.06	0.40	???	-0.13	0.30	0.00	0.05
WalkTrap	0.00	0.00		-0.50	0.02	0.02	0.01
Infomod	0.11	0.08		-0.20	0.19	0.04	0.00
Infomap	0.00	0.00		-0.72	0.02	-0.02	0.03

Acknowledgements

Google India Fellowship, College of IS&T, Graca grant for UNO-SPR, RISC Fellowship, MSR and Yahoo travel grants

- Test Suite of Networks
- Synthetic Networks: LFR benchmark networks with given community structure II ancichinetti & Fortunato, 20091

• a vertex should have more internal connections

• the internal neighbours should be highly connected

than the maximum connections to any one of the

Real-world Networks

Proposed metric

neighbouring community

among each other

Assumptions:

- · Football: Nodes: teams, Edges: matches, Communities: team-conferences [Girvan & Newman, 02]
- Railway: Nodes: stations, Edges: railway connections, Communities: states/provinces [Ghosh et al., 11]
- · Coauthorship: Nodes: authors, Edges: coauthorship, Communities: research area [Chakraborty et al, 13]

Properties Football Railway Coauthorship

# nodes	115	301	103677
# edges	613	1224	352183
# communities	12	21	24
Smallest size community	5	1	34
Largest size community	13	46	14404

Validation Metrics to compare with

- · Weighted ARI (W-ARI)
- Weighted PU (W-PU)
- [Manning et al, 09] [Labatut, 13]

around-truth communities

- · Normalized Mutual Information (NMI)
- · Adjusted Rand Index (ARI)
- Purity (PU)
- Weighted NMI (W-NMI)

Discussions

- · Value of permanence correlates to the community structure
- · Able to detect small-size communities
- · Minimizes the resolution limit, asymptotic growth and degeneracy problems theoretically

· Indicates the eligibility of the network for community detection