

Tanmoy Chakraborty

Google India PhD Fellow Indian Institute of Technology, Kharagpur (IIT-Kgp) India - 721302

In collaboration with:

Sandipan Sikdar, Niloy Ganguly, Animesh Mukherjee IIT-Kgp, India

Outline

- o Problem definition
- Dataset
- Community scores
- o Time-transition of scientific paradigms
- Reasons behind paradigm shift
- o Correlation with NSF
- Conclusion

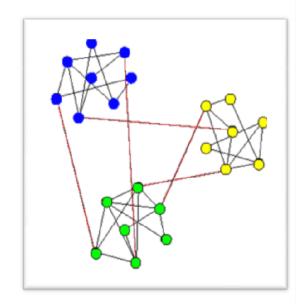
Outline Problem definition

Dataset

Time transition of scientific paradigms

Reasons behind paradigm shift

Correlation with NSF


Motivation: Community Detection

Communities:

groups of nodes within which the connection is dense but between which the connection is relatively sparse.

Problem in community detection:

Lack of **ground-truth community** for evaluating the algorithms

Motivation:

Temporal Interactions among Communities

- Longitudinal inter-cluster interactive patterns
- Dynamics behind community evolution
- Temporal authoritative ranking of communities

Problem Definition

- Ground-truth Communities
 - o Large citation network of computer science domain
 - Fields => ground-truth communities

- > Temporal analysis:
 - o **Temporal Impact** of scientific communities
 - Time transition of scientific paradigm
 - o Factors behind paradigm shift
 - Predicting forthcoming impactful communities

Problem definition

Dataset

Time transition of scientific paradigms Reasons behind paradigm shift

Correlation with NSF

Dataset

o Large **DBLP dump** used in Arnetminer project

[Tang et al., SIGKDD, 2008]

- Bibliographic information during 1960-2008
 - Paper name
 - Author(s)
 - Publication venue
 - Year of publication
 - Abstract
 - References

# of valid papers	702,973
# authors	495,311
Avg. number of papers/author	3.52
Avg. number of authors/paper	2.609
# unique venue name	1,705

Missing

Field information of each paper

Citation Network

Tagging Dataset

> Field Tagging

Automated crawling of Microsoft Academic Search

[http://academic.research.microsoft.com/]

AI	Bioinformatics	NLP
Algorithm	Graphics	WWW
Networking	Comp. Vision	Education
Database	Data Mining	OS
Dist Comp.	Prog. Lang.	Embedded Sys.
Architecture	Security	Simulation
Software Engg.	IR	НСІ
Machine Learning	Scientific Comp.	Multimedia

papers belong to multiple fields

Continent Tagging

Authors are tagged by one of the three continents
 (North America, Europe, Others)

Publicly available: http://cnerg.org

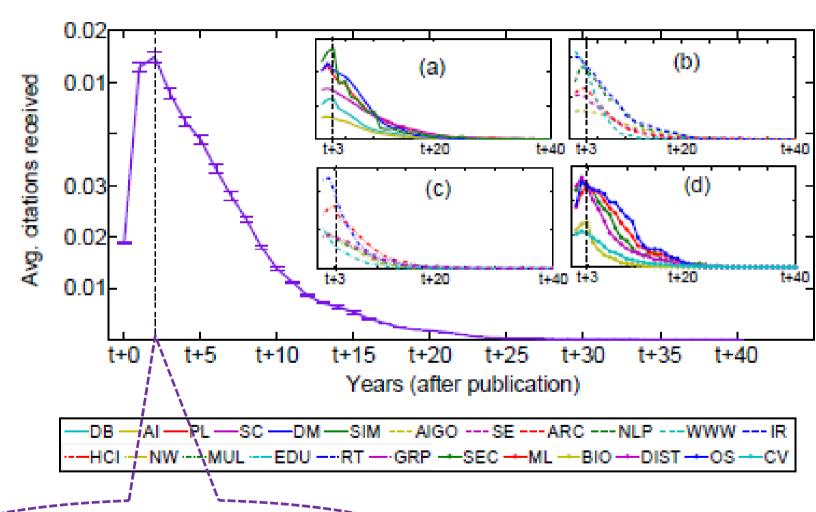
Problem definition

Dataset

Time-transition of scientific paradigms

Reasons behind paradigm shift

Correlation with NSF


• Measuring the **impact of each field** (its constituent papers) around a particular year.

• Local citation density is important

But

What should be the time window?

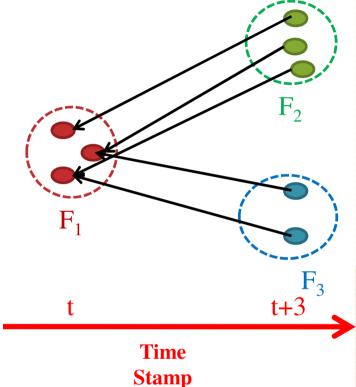
Average Inward Citations

Peaks within 3 years from publication, then declines

Authority of a Field

Inwardness of a field f_i at time t

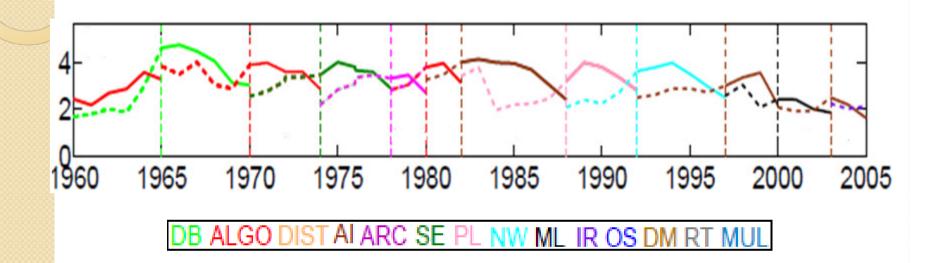
$$In(f_i^t) = \sum_{j \neq i} w_{j \to i}^t$$


where,

$$w_{j \to i}^{t} = \frac{C_{j \to i}^{t}}{P_{i}^{t}}$$

 $C_{j\rightarrow i}^{t}$ = # of citations received by the papers of field f_{i} from field f_{i}

$$P_i^t = \# \text{ of papers in field } f_i$$


 $1 \le t \le 3$ (current year + next 3 years)

$$In(F_1^t) = 5/3$$

We only consider crossfield citations

Scientific Paradigm Shift: Time Transition Diagram

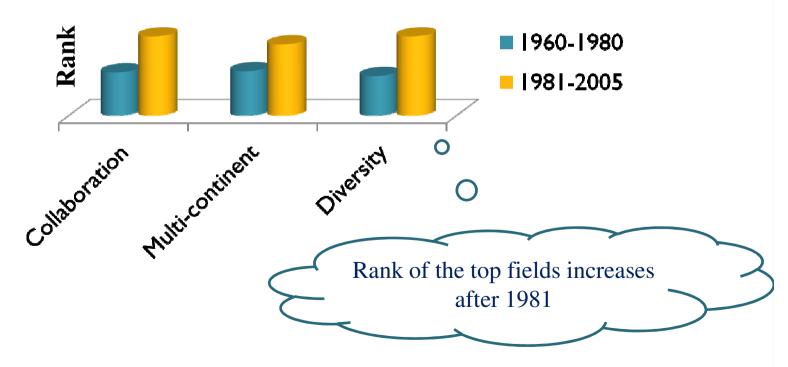
- Rise in inwardness & decline near transition throughout
- Second ranked field emerges as the leader in the next window.

Problem definition

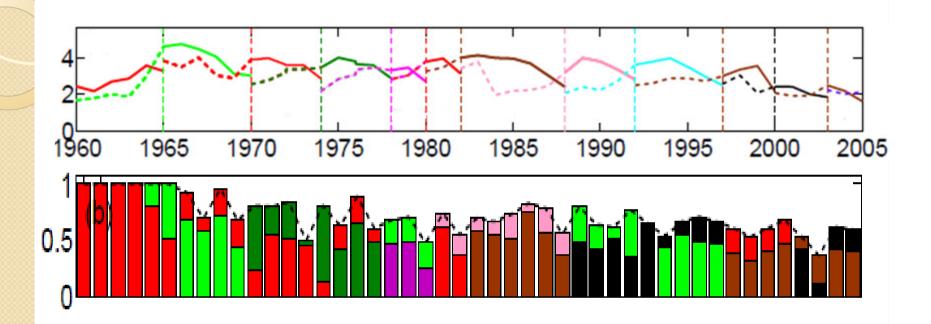
Dataset

Time transition of Scientific paradigms

Reasons behind paradigm shift

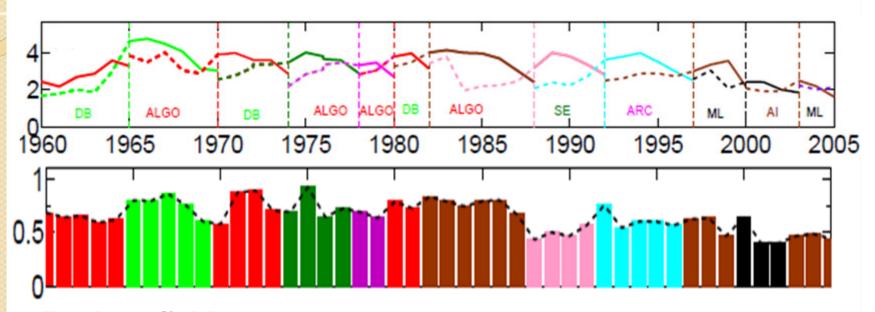

Correlation with NSF

Probable Reasons


- 1. Collaboration
- 2. High impact papers
- 3. Support from Backup fields

Reason 1: Collaborations

- Rank top fields based on:
 - Collaborative papers (papers with multiple authors)
 - Multi-continental papers
 - **Diversity of a papers** (average number of fields in which authors have worked)


Reason 2: High Impact papers

Frac. of top and second rank fields among the 10% high impact papers

• 82% cases → fraction of top ranked field's papers declines and second ranked field rises at the transition point.

Reason 3: Citations from Backup Fields

- Backup fields: fields that provide citations to other fields
- In 75% cases, citation patterns from the top backup fields decline at the transition period → citations get distributed among the fields.

Problem definition

Dataset

Community scores

Scientific paradigm shift through cross-citation interactions

Reasons behind paradigm shift

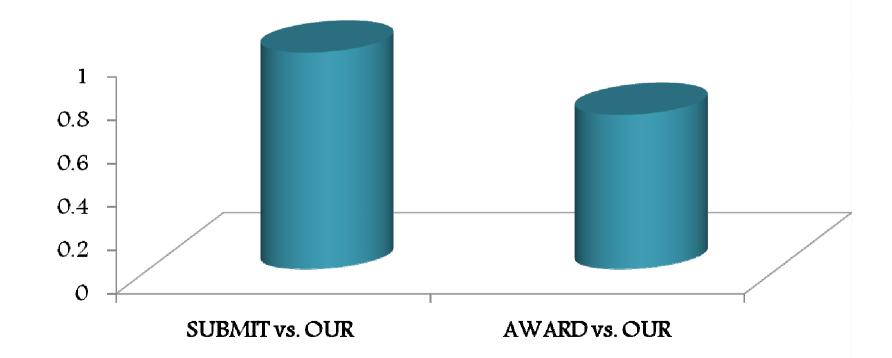
Correlation with NSF

National Science Foundation (NSF)

US government agency that supports
 fundamental research and education

- The NSF receives about 40,000 research
 proposals each year, and funds about 10,000 of them.
- NSF has its own submission/acceptance history in each year and these proposals can be categorized into fields.

Funding Statistics of NSF


		NSF		
Yrs	Inwardness	Proposal	Proposal	
	results	submitted	awarded	
03	AI/IR/NW	NW/AI/HCI	NW/ALGO/SE	
04	AI/IR/NW	AI/HCI/RT	RT/ARC/DIST	
05	AI/IR/NW	AI/ML/HCI	GRP/SE/ALGO	
06	IR/ML/AI	ML/ALGO/SEC	ALGO/SEC/ML	
07	ML/AI/ALGO	ALGO/ML/HCL	ALGO/HCI/SEC	
08	ML/AI/ALGO	ML/ALGO/SE	ALGO/ML/SE	

During 2003-2008, top three fields based on

- (i) Our prediction
- (ii) proposal submission statistics
- (iii) award statistics

Correlations with NSF Funding

• Correlation(ζ) = s/n; s = similarity pair (at least one out of top three)n = no of year = 46

Outline

Problem definition

Dataset

Community scores

Scientific paradigm shift through cross-citation interactions

Reasons behind paradigm shift

Correlation with NSF

Insights

- Computer Science Fields => ground-truth communities
- Temporal community interactions => scientific paradigm shift.
- Citation information => Dynamics of community evolution
- Predicted results perfectly correlates with the proposal submission statistics, and partially correlates with funds awarded.

Acknowledgements

Financial Support: Google India Pvt. Ltd.

Travel support:

Dept. of Science & Technology, Govt. of India

Providing NSF dataset.

Mr. Ansumana Cooper, NSF, US

Technical support:

All the members of CNeRG, IIT-Kgp

