
Backpropagation
Sudeshna Sarkar

19 Jan 2017

• Refer to notes from

• http://cs231n.github.io/optimization-2/

and slides for the corresponding course

http://cs231n.github.io/optimization-2/
http://cs231n.github.io/optimization-2/
http://cs231n.github.io/optimization-2/
http://cs231n.github.io/optimization-2/

Loss Function
• Mean square loss

• Hinge Loss

• Cross Entropy Loss

Backpropagation
• Backpropagation: a way of computing gradients of

expressions through recursive application of chain
rule.

• We are given some function f(x) where x is a vector
of inputs and we are interested in computing the
gradient of f at x (i.e. ∇f(x)).

• In NN, f will correspond to the loss function (L)
and the inputs x will consist of the training data and
the neural network weights.

• compute the gradient for the parameters (e.g. W,b)
so that we can use it to perform a parameter
update.

• Scores

• SVM Loss

• Data loss + regularization

• Want

Optimization

Gradient Descent
𝑑 𝑓(𝑥)

𝑑𝑥
= lim

ℎ→0

𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ

• Numerical gradient: slow, approximate, easy to
write

• Analytic gradient: fast, exact, error-prone

• In practice: Derive analytic gradient, check your
implementation with numerical gradient

Computational Graph

x

W
*

hinge

loss

R

+ L
s (scores)

Intuitive understanding of backpropagation

• Backpropagation: local process.

• Every gate gets some inputs and can compute two
things:

1. its output value

2. the local gradient of its inputs with respect to its output
value.

• once the forward pass is over, during backpropagation
the gate will eventually learn about the gradient of its
output value on the final output of the entire circuit.

• Chain rule : the gate should take that gradient and
multiply it into every gradient it normally computes for
all of its inputs.

e.g. x = -2, y = 5, z = -4

e.g. x = -2, y = 5, z = -4

Want

e.g. x = -2, y = 5, z = -4

Want

1

e.g. x = -2, y = 5, z = -4

Want

1

e.g. x = -2, y = 5, z = -4

Want

1

3

-4

e.g. x = -2, y = 5, z = -4

Want

1

3

-4

-4

Chain Rule:

e.g. x = -2, y = 5, z = -4

Want

1

3

-4

-4

Chain Rule:

-4

Activations

f

Activations

f

“local gradient”

Activations

f

“local gradient”

gradients

Activations

f

“local gradient”

gradients

Activations

f

“local gradient”

gradients

Another example

Another example

Another example

Another example

Another example

(-1) * (-0.20) = 0.20

Another example

[1] x [0.2] = 0.2

[1] x [0.2] = 0.2 (both inputs!)

[local gradient] [its gradient]

Another example

x0: [2] x [0.2] = 0.4

w0: [-1] x [0.2] = -0.2 (both inputs!)

[local gradient] [its gradient]

sigmoid function

sigmoid gate

(0.73) * (1 - 0.73) = 0.2

add gate: gradient distributor
max gate: gradient router
mul gate: gradient… “switcher”?

Patterns in backward flow

Gradients add at branches

+

Activation functions
Leaky RELU

max(0.1x, x)

Maxout:

tanh: tanh(x)

ReLU: max(0,x)

ELU:

Training Neural Networks

Activation Function : Sigmoid

Squashes numbers to range [0,1]

• Historically popular since they
have nice interpretation as a
saturating “firing rate” of a
neuron

3 problems:

1. Saturated neurons “kill” the
gradients

2. Sigmoid outputs are non
zero-centred

3. exp() is a bit compute
expensive

Sigmoids saturate and kill gradients.

• when the neuron’s activation saturates at either tail of 0 or 1, the
gradient at these regions is almost zero.

• During backpropagation, this (local) gradient will be multiplied to
the gradient of this gate’s output for the whole objective.

• Therefore, if the local gradient is very small, it will effectively “kill”
the gradient and almost no signal will flow through the neuron to
its weights and recursively to its data.

• Additionally, one must pay extra caution when initializing the
weights of sigmoid neurons to prevent saturation. For example, if
the initial weights are too large then most neurons would become
saturated and the network will barely learn.

Always all positive or all negative

(this is also why you want zero-mean data!)

hypothetical

optimal w

vector

zig zag path

allowed

gradient

update

directions

allowed

gradient

update

directions

Consider what happens when the
input to a neuron is always positive...

Activation function tanh(x)

• Squashes numbers to
range [-1,1]

• zero centered (nice)

• still kills gradients when
saturated

Activation function ReLU

• Computes f(x) = max(0,x)

• Does not saturate (in
+region)

- Very computationally
efficient

- Converges much faster
than sigmoid/tanh in
practice (e.g. 6x)

• ReLU

(Rectified Linear Unit)

Mini-batch SGD
Loop:

1. Sample a batch of data

2. Forward prop it through the graph, get loss

3. Backprop to calculate the gradients

4. Update the parameters using the gradient

Data Pre-processing
• There are three common forms of data pre-processing

a data matrix X, where we will assume that X is of size
[N x D] (N is the number of data, D is their
dimensionality).

• Mean subtraction: subtracting the mean across every
individual feature in the data -- centring the cloud of
data around the origin along every dimension.

• Normalization refers to normalizing the data
dimensions so that they are of approximately the same
scale.
• divide each dimension by its standard deviation, once it has

been zero-centred
• normalizes each dimension so that the min and max along

the dimension is -1 and 1 respectively

PCA and Whitening
• PCA

• Whitening: The whitening operation takes the data
in the eigenbasis and divides every dimension by
the eigenvalue to normalize the scale.

Weight Initialization

