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Loss Function 
• Mean square loss 

• Hinge Loss  

• Cross Entropy Loss 
 

 
 



Backpropagation 
• Backpropagation: a way of computing gradients of 

expressions through recursive application of chain 
rule. 

• We are given some function f(x) where x is a vector 
of inputs and we are interested in computing the 
gradient of f at x (i.e. ∇f(x) ). 

• In NN, f will correspond to the loss function ( L ) 
and the inputs x will consist of the training data and 
the neural network weights. 

• compute the gradient for the parameters (e.g. W,b) 
so that we can use it to perform a parameter 
update.  



• Scores 

 

• SVM Loss 

 

• Data loss + regularization 

 

• Want  

 

 

 



Optimization 



Gradient Descent 
𝑑 𝑓(𝑥)

𝑑𝑥
= lim

ℎ→0

𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
 

• Numerical gradient: slow, approximate, easy to 
write 

• Analytic gradient: fast, exact, error-prone 

• In practice: Derive analytic gradient, check your 
implementation with numerical gradient 
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Intuitive understanding of backpropagation 

• Backpropagation: local process.  

• Every gate gets some inputs and can compute two 
things:  

1. its output value  

2. the local gradient of its inputs with respect to its output 
value. 

• once the forward pass is over, during backpropagation 
the gate will eventually learn about the gradient of its 
output value on the final output of the entire circuit. 

• Chain rule : the gate should take that gradient and 
multiply it into every gradient it normally computes for 
all of its inputs. 
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Another example 

(-1) * (-0.20) = 0.20 



Another example 

[1] x [0.2] = 0.2 

[1] x [0.2] = 0.2  (both inputs!) 

[local gradient] [its gradient] 



Another example 

x0: [2] x [0.2] = 0.4 

w0: [-1] x [0.2] = -0.2  (both inputs!) 

[local gradient] [its gradient] 



sigmoid function 

sigmoid gate 

(0.73) * (1 - 0.73) = 0.2 



add gate: gradient distributor 
max gate: gradient router 
mul gate: gradient… “switcher”? 

Patterns in backward flow 



Gradients add at branches 

+ 



Activation functions 
Leaky RELU 

max(0.1x, x) 

Maxout: 

tanh:  tanh(x) 

ReLU: max(0,x) 

ELU: 



Training Neural Networks 



Activation Function : Sigmoid 

Squashes numbers to range [0,1] 

• Historically popular since they 
have nice interpretation as a 
saturating “firing rate” of a 
neuron 

 

3 problems: 

1. Saturated neurons “kill” the 
gradients 

2. Sigmoid outputs are non 
zero-centred 

3. exp() is a bit compute 
expensive 



Sigmoids saturate and kill gradients. 

• when the neuron’s activation saturates at either tail of 0 or 1, the 
gradient at these regions is almost zero.  

• During backpropagation, this (local) gradient will be multiplied to 
the gradient of this gate’s output for the whole objective.  

• Therefore, if the local gradient is very small, it will effectively “kill” 
the gradient and almost no signal will flow through the neuron to 
its weights and recursively to its data.  

• Additionally, one must pay extra caution when initializing the 
weights of sigmoid neurons to prevent saturation. For example, if 
the initial weights are too large then most neurons would become 
saturated and the network will barely learn. 



Always all positive or all negative  

(this is also why you want zero-mean data!) 
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Consider what happens when the 
input to a neuron is always positive... 



Activation function tanh(x) 

• Squashes numbers to 
range [-1,1] 

• zero centered (nice) 

• still kills gradients when 
saturated  

 



Activation function ReLU 

• Computes f(x) = max(0,x) 

• Does not saturate (in 
+region) 

- Very computationally 
efficient 

- Converges much faster 
than sigmoid/tanh in 
practice (e.g. 6x) 

• ReLU 

(Rectified Linear Unit) 



Mini-batch SGD 
Loop: 

1. Sample a batch of data 

2. Forward prop it through the graph, get loss 

3. Backprop to calculate the gradients 

4. Update the parameters using the gradient 



Data Pre-processing 
• There are three common forms of data pre-processing 

a data matrix X, where we will assume that X is of size 
[N x D] (N is the number of data, D is their 
dimensionality). 

• Mean subtraction: subtracting the mean across every 
individual feature in the data -- centring the cloud of 
data around the origin along every dimension. 

• Normalization refers to normalizing the data 
dimensions so that they are of approximately the same 
scale. 
• divide each dimension by its standard deviation, once it has 

been zero-centred 
• normalizes each dimension so that the min and max along 

the dimension is -1 and 1 respectively 





PCA and Whitening 
• PCA 

• Whitening: The whitening operation takes the data 
in the eigenbasis and divides every dimension by 
the eigenvalue to normalize the scale. 



Weight Initialization 
 


