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Preliminaries

Local computation and distant communication

When quantum resources (apparatus) are distributed in two or more
geographically separated locations, we may not be able to implement
unitary operations without resorting to either quantum or classical
communication.

So, local operations and communication may be combined to achieve
quantum computation.

It is therefore necessary to determine the amount of communication
necessary in such operations.

Such costs may be deterministic worst case costs or even probabilistic
costs, such as average communication costs over discrete
distributions.

We develop the necessary fundamentals and illustrate a few examples
of analyses.
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Preliminaries Shannon entropy

Shannon entropy

For a random source of symbols from a certain discrete distribution,
we know that (as small as) expected H(X ) bits of information (on the
average), can be used for coding information coming out of X .

If p(x) is the probability of x in the source X , then this (Shannon
Entropy) H(X ) or H(p(x)) is

∑
x p(x) log 1

p(x) .

Once we have two such generators X and Y on the same set of
symbols, we can define H(X ,Y ) as

∑
(x ,y) p(x , y) log 1

p(x ,y) , where

p(x , y) is the probability that x comes out of X and y out of Y .

If X and Y are independent (that is, p(x , y) = p(x)p(y)), then
H(X ,Y ) = H(X ) + H(Y ). Otherwise, H(X ,Y ) is less than the sum
of H(X ) and H(Y ).

Naturally, joint entropy is less than sum of entropies if the processes
are dependent.
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Preliminaries Shannon entropy

Shannon entropy (cont.)

We may view the joint entropy H(X ,Y ) of X and Y as the sum of
the entropy H(Y ) of Y and the conditional entropy H(X |Y ) of X
given Y . In other words H(X |Y ), called the conditional entropy of X
given Y , is the difference between the joint entropy and original
entropy, i.e., H(X |Y ) = H(X ,Y )− H(Y ).

H(X |Y ) defined as H(X ,Y )− H(Y ) can now be written as∑
(x ,y) p(x , y) log p(y)

p(x ,y) =
∑

(x ,y) p(x , y) log 1
p(x |y) .

The conditional entropy is like the uncommon information between X
and Y , because this information is needed for X conditional over Y .

So, subtracting the conditional entropy H(X |Y ) from H(X ) gives the
mutual or common information H(X : Y ) between the two sources X
and Y , that is, H(X )− H(X |Y ) = H(Y )− H(Y |X ), usually denoted
as H(X : Y ) or I (X : Y ).
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Preliminaries Shannon entropy

Shannon entropy (cont.)

We may now view H(X : Y ) as H(X )− H(X |Y ) =
H(X )− (H(X ,Y )− H(Y )) = H(X ) + H(Y )− H(X ,Y ), and the
symmetry in its definition.
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Preliminaries Density operators and von Neumann entropy

Density operators and von Neumann entropy

Given the density operator ρ for a quantum state, determining the
von Neumann entropy S(ρ) amounts to determining the (real)
eigenvalues λx of ρ and computing

∑
x λx log 1

λx
.

Indeed, the spectral decomposition of ρ is
∑

x λx |ψx〉〈ψx |, where |ψx〉
are the eigenvectors defining an orthonormal basis for the Hilbert
space.

We will now see how these density operators can operate on individual
states. If ρ operates on an eigenstate |ψx〉 then we get λxρx .
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Preliminaries Postulates and traces

Traces and postulates

We already know that the expectation of a projective measurement
with Hermitian observable M of a pure state |ψ〉 is 〈ψ|M|ψ〉.
Writing the state as a density operator ρ = |ψ〉〈ψ|, this expectation is
tr(Mρ) = tr(ρM) = tr(|ψ〉〈ψ|M)= 〈ψ|M|ψ〉.
For density operators of mixed states and measurements using POVM
measurement operators Mm for results m, see section 2.4 in [NC00].
Here, the measurement elements are Em = M+

mMm, where (by
definition, measurement postulate), Em are positive,

∑
m Em = I .

[M+
m is the adjoint of Mm.]

Further, for a pure state |ψ〉, p(m) = 〈ψ|Em|ψ〉.
Such measurements are called POVM and Mm is written as

√
Em.

For a mixed state denoted by a density operator ρ, a unitary
operation would take it to a state represented by the density operator
ρ′ = UρU+.
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Preliminaries Postulates and traces

Traces and postulates (cont.)

A measurement yields m with probability p(m) = tr(M+
mMmρ). The

state resulting due to measurement of m is MmρM+
m

tr(M+
mMmρ)

.

We use POVM measurements in applications where the Holevo bound
is used to estimate upper bounds on the mutual information between
a quantum information source at one end and a measured result at
the other end.
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Preliminaries Logarithms of density operators

Logarithms of the density operator

A method for finding logA for a diagonalizable matrix A is as follows.

Let V be the matrix of eigenvectors of A (each column of V is an
eigenvector of A). Find the inverse V−1 of V .

Consider AV ; observe that AV = VA′, where A′ is a diagonal matrix
whose diagonal elements are eigenvalues of A.

We get logA′ by replacing each diagonal element of A′ by its
logarithm.

Now, we can write logA as V logA′V−1. [It is now easy to check
that the operator e log A is identical to the operator A.

In other words, verify that e log A|ψ〉 = A|ψ〉, for all ψ〉.]
So, for a density operator A, we can write
S(A) = −tr(A logA) = −tr(AV logA′V−1) = −tr(V−1AV logA′) =
−tr(A′ logA′) =

∑
x λx log 1

λx
. [Note also that

(logA)n = V (logA′)nV−1.]
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Preliminaries Klein’s inequality

Klein’s inequality

This is from [NC00], Theorem 11.7, page 511. The relative entropy
S(ρ||σ) is defined as −S(ρ)− tr(ρ log σ).

Using the orthonormal decomposition of ρ =
∑

i pi |i〉〈i |, the first
term is

∑
i pi log pi .

Since unitary operators preserve trace, the second term can be written
as −

∑
i 〈i |ρ log σ|i〉.

Also, 〈i |ρ = pi 〈i |.
Since we have the orthonormal decompostion of σ =

∑
j qj |j〉〈j |, we

know that log σ is V log σ′V−1, where σ′ is the diagonal matrix with
log qj as the jst diagonal element and V is the matrix with columns
given by the eigenvectors |j〉 of σ.

Sudebkumar Prasant Pal (IIT Kharagpur) Course on Quantum Information and Computation July 30, 2023 10 / 83



Preliminaries Klein’s inequality

Klein’s inequality (cont.)

So, the second term would be
−
∑

i pi 〈i |V log σ′V−1|i〉 = −
∑

i pi
∑

j Pij log qj , where
Pij = 〈i |j〉〈j |i〉.
The rest of the proof that the relative entropy is non-negative is
based on the double stochasticity of the matrix represented by P ′ijs,
and the concavity of the log function.
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Preliminaries Projective measurements and entropy change

Projective measurements and increase in entropy

We know that entropy changes from S(ρ) to S(ρ′) where
ρ′ =

∑
i PiρPi .

Here, Pi are elements of the complete set of projectors of the
Hermitian observable.

We need to show that Pi commutes with log ρ′ = V ′ log ρ′′V ′−1,
where V is the matrix of eigenvectors of ρ′ and ρ′′ is the diagonal
matrix of eigenvalues of ρ′.

It is easy to show that ρ′Pi = PiρPi = Piρ
′.

Also, Pi log ρ′ = λ′i |v ′i 〉〈v ′i | = log ρ′Pi .

That is, Pi commutes with ρ′ as well as with log ρ′.

Here, λ′i and |v ′i 〉 are eigenvalues and eigenvectors of ρ′.

We also use the facts (i)
∑

i Pi = I , and (ii) P2
i = Pi .
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Preliminaries Projective measurements and entropy change

Projective measurements and increase in entropy (cont.)

By Klein’s inequality we know that S(ρ||ρ′) = −S(ρ)− tr(ρ log ρ′) is
non-negative.

We show that S(ρ′) = −tr(ρ log ρ′), thereby establishing
S(ρ′) ≥ S(ρ).

We have

−tr(ρ log ρ′) = −tr((
∑
i

Pi )ρ log ρ′)

= −tr(
∑
i

Piρ log ρ′) = −tr(
∑
i

Piρ log ρ′Pi )

= −tr(
∑
i

PiρPi log ρ′)

= −tr(ρ′ log ρ′) = S(ρ′)
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Holevo’s bound

Holevo’s bound

Bob is presented with a (mixed) state ρ =
∑n

i=0 piρi because Alice
encodes X = 0, 1, · · · , n as states ρ0, ρ1, · · · , ρn (each of which could
be mixed states) with probabilities p0, p1, · · · , pn, respectively, for
state ρ.

Bob performs a measurement described by POVM elements
{Ey} = {E0,E1, · · · ,Em} on the (mixed) state provided by Alice and
gets outcome Y .

The Holevo (upper) bound on H(X : Y ) is S(ρ)−
∑

i piS(ρi ), often
called the Holevo Chi quantity, χ(ρX ).

The superscipt X for ρ here is simply indicative of the probability
distribution over the index set X of messages x (with probability px),
from the classical generator X .
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Holevo’s bound

Holevo’s bound (cont.)

We consider the trio of the preparation system P, the quantum
system Q, and the measuring device M and observe that initially the
entire system may be viewed as represented by

ρPQM =
∑
x

px |x〉〈x | ⊗ ρx ⊗ |0〉〈0|

This is like the system P with Alice, providing the state ρx to Bob for
measurement into the system M through the set of POVM
measurement elements {Ey} in the quantum system Q.

The subsystem QM realizes the POVM measurement operation
defined by ε(σ ⊗ |0〉〈0|) creating the state∑

y

√
Eyσ

√
Ey ⊗ |y〉〈y |
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Holevo’s bound

Holevo’s bound (cont.)

Observe that in the combined system QM, covering all the elements
of the POVM measurement sets the result of the measurement in M ′s
register.

Naturally, the mutual information between source X with Alice and
measured Y with Bob, depends on the initial state ρ and POVM
measurement.

Now note that S(P : Q) = S(P : Q,M) since M is initially isolated
and therefore uncorrelated with P and Q.

Applying the quantum operation ε to subsystem QM cannot increase
mutual information between P and Q.

So, S(P : Q,M) ≥ S(P ′ : Q ′,M ′).

Finally, discarding Q ′ does not increase mutual information, i.e.,
S(P ′ : Q ′,M ′) ≥ S(P ′ : M ′).
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Holevo’s bound

Holevo’s bound (cont.)

So, we have

S(P ′ : M ′) ≤ S(P : Q)

The quantity S(P : Q) is easily shown to be the expression of the
Holevo χ quantity by using the definition of S(ρ) and the Joint
Entropy Thoerem, Theorem 11.10 in [NC00]1,

whence S(P : Q) = S(P) + S(Q)− S(P,Q) =
H(px) + S(ρ)− (H(px) +

∑
x pxS(ρx)).

So, all we need to do in order to establish Holevo’s bound now is
show that

H(X : Y ) = S(P ′ : M ′)
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Holevo’s bound

Holevo’s bound (cont.)

This is done by tracing out Q ′ from P ′Q ′M ′ and showing that

ρP
′M′ =

∑
x ,y

p(x , y)|x〉〈x | ⊗ |y〉〈y |

where
ρP
′Q′M′ =

∑
xy

px |x〉〈x | ⊗
√
Eyρx

√
Ey ⊗ |y〉〈y |

To see this, recall the definition of POVM measurements and the
expression for the probability of the result y as tr(ρxEy ), so that
p(y |x) = tr(ρxEy ) = tr(

√
Eyρx

√
Ey )).

So, tracing out Q ′ results in the above state ρP
′M′ , whose mutual

information comes out directly from the joint entropy
S(ρP

′M′) = S(P ′,M ′) = H(X ,Y ) and the two traced out systems’
von Neumann entropies S(P) = H(X ) and S(M ′) = H(Y ).
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Holevo’s bound

Holevo’s bound (cont.)

These von Neumann entropies are identical to the Shannon entropies,
where H(X : Y ) = H(X ) + H(Y )− H(X ,Y ), and where
S(P ′ : M ′) = S(P ′) + S(M ′)− S(P ′,M ′) =
H(X ) + H(Y )− H(X ,Y ) = H(X : Y ).

1Observe that ρPQ =
∑

x px |x〉〈x | ⊗ ρx , and thus S(P) = H(px), S(Q) = S(ρ), and
S(P,Q) = H(px) +

∑
x pxS(px)
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Qubit communication complexity results: Application of Holevo’s
bound [Cle+13]

Qubit communication complexity

Alice and Bob run a quantum protocol exchanging qubits. However,
they do not exploit any pre-shared quantum entanglement resource.

We show that at least dn2e qubits must be sent from Alice to Bob if
Alice wishes to convey n bits of (classical) information to Bob
[Cle+13].

Bob wishes to extract n bits of information.

What matters is the Holevo chi quantity at the end of the protocol in
the quantum system with Bob.

Let ρi be the density operator representing the state defined by the
collection of qubits with Bob at the end of the ist step.

Clearly, the information generator provides the states ρxi , from the
mixed state ρi = Σxpxρ

x
i .

Sudebkumar Prasant Pal (IIT Kharagpur) Course on Quantum Information and Computation July 30, 2023 20 / 83



Qubit communication complexity results: Application of Holevo’s
bound [Cle+13]

Qubit communication complexity (cont.)

The upper bound on the mutual information on measurements by
Bob is the Holevo chi quantity χ(ρXi ) = S(ρi )− ΣxpxS(ρxi ).

It is easy to see that Alice’s unitary operations on its own qubits do
not alter this χ quantity; the qubits in Bob’s system are not tampered
within such operations at Alice’s end.

That is, it does not alter ρXi , and therefore does not alter either S(ρi )
or χ(ρXi ).

Moreover, χ and S are invariant under unitary transformations at
Bob’s site.

So, we consider only two non-trivial cases (i) when Alice sends a qubit
to Bob, and (ii) when Bob sends a qubit to Alice.

In case (i), let B denote the subsystem of qubits after i steps with
Bob and Q the single new qubit obtained from Alice in the (i + 1)st
step.
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Qubit communication complexity results: Application of Holevo’s
bound [Cle+13]

Qubit communication complexity (cont.)

We know that S(Q) ≤ 1 (a single qubit !).

Also, by subadditivity property,

S(BQ) ≤ S(B) + S(Q) ≤ S(B) + 1

We can also show (Araki-Lieb inequality [NC00]) that

S(BQ) ≥ S(B)− S(Q) ≥ S(B)− 1

Clearly therefore,
S(ρi+1) ≤ S(ρi ) + 1

(due to subadditivity as shown above), and

χ(ρXi+1) = S(ρi+1)− ΣxpxS(ρxi+1)

≤ (S(ρi ) + 1)− Σxpx(S(ρxi )− 1)
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Qubit communication complexity results: Application of Holevo’s
bound [Cle+13]

Qubit communication complexity (cont.)

= χ(ρXi ) + 2

(due to the Araki-Lieb inequality as shown above)

In case (ii), χ cannot increase [NC00]; we are tracing out a single
qubit from Bob’s site.

So,

χ(ρXi+1) ≤ χ(ρXi )

Further, by the Araki-Lieb inequality, we have

S(ρi+1) ≤ S(ρi ) + 1

We therefore conclude that the χ quantity goes up (by 2 units), only
when a qubit is sent from Alice to Bob.
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Qubit communication complexity results: Application of Holevo’s
bound [Cle+13]

Qubit communication complexity (cont.)

It is now clear that Alice would have to send at least dn2e qubits to
Bob to raise the χ quantity at Bob’s end to at least n, so that Bob
may extract n bits of information.

Further, observe that whenever a qubit is communicated (either way),
the von Neumann entropy does not decrease at Bob’s end.

The entropy may rise by at most one unit.

So, the total rise in entropy at Bob’s end is less that the total number
of qubits comunicated either way.

Since the entropy was initially zero and second term in the χ quantity
is also initially zero and finally non-zero, we can say that the rise in
entropy exceeds the rise in the χ quantity, or equivalently, exceeds the
final χ quantity.

This χ quantity clearly must be larger than n, the number of classical
bits conveyed from Alice to Bob.

Sudebkumar Prasant Pal (IIT Kharagpur) Course on Quantum Information and Computation July 30, 2023 24 / 83



Qubit communication complexity results: Application of Holevo’s
bound [Cle+13]

Qubit communication complexity (cont.)

Since the total number of qubits communicated exceeds the net rise
in entropy, we can say that this also exceeds the total number of
classical bits conveyed.

So, although at least dn2e qubits need to be comminicated from Alice
to Bob, a total of at least n qubits need to be communicated in order
to transfer n bits of classical information from Alice to Bob.
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Inner product

Inner product lower bound

We consider the computation of the boolean inner product of two
n-bit vectors, X and Y , given to respectively, Alice and Bob.

They, run a quantum protocol exchanging only qubits and finally
come up with the inner product.

We present the proof as in [Cle+13], that any such protocol where
Bob first comes with the inner product (and then conveys it to Alice),
must result in the communication of n classical bits of information
from Alice to Bob.

The main idea lies in the elegant use of the Hadamard operator
simultaneously on all the qubits at Bob’s end, after doing the highly
parallel step of executing the quantum protocol on the balanced
superposition of an exponential number of basis states at Bob’s end.
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Inner product

Inner product lower bound (cont.)

More precisely, Bob creates an equal superposition state of 2n

standard basis vectors and this quantum state interacts in the
quantum protocol with Alice.

Assuming that the protocol is clean, that is (i) all qubits used as
ancillaes are reversed in transformations by (reversible) quantum
operations, and (ii) all states except the ones storing/coding the bits
of interaction in the inner product protocol are reset to initial
conditions, we have the following scenario.

We have the inner product of each of the basis vectors on Bob’s side
with X , stored as a superposition of 2n results in a single answer
register (a single qubit), at Bob’s end.
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Quantum algorithms Probabilistic Deustch’s algorithm

Probabilistic Deustch’s algorithm

Deustch’s problem is to decide whether a 1-bit input boolean function
f : {0, 1} ⇒ {0, 1}, is flat or uneven, or in other words, whether
f (0)⊕ f (1) is 0 or 1.

The problem is equivalent to guessing whether a given coin is genuine
or fake.

The question is how many times we need to look at the coin to find
out which case it is. In the quantum world we show that only one
look works, but we need to see the quantum superposition of both
the sides!

Note that any classical approach to solving this problem would require
evaluating the function f two times.

However, using quantum parallelism, only one quantum circuit for
realizing a quantum (unitary) evalution of f suffices in solving this
problem, as follows.
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Quantum algorithms Probabilistic Deustch’s algorithm

Probabilistic Deustch’s algorithm (cont.)

We create a superposition of the two basis states in the first qubit by
doing a Hadamard operation2, on the |0〉 state to create the
|X+〉 = |0′〉 = 1√

2
(|0〉+ |1〉 state, and then perform a controlled-Uf

with this superposition on the |0〉 state in the second qubit. 3

If f (0) = f (1) then we get,

1√
2

(|0, f (0)〉+ |1, f (1)〉)

= 1√
2

(|0, 0〉+ |1, 0〉) [f (0) = 0]

(= 1√
2

(|0, 1〉+ |1, 1〉) [f (0) = 1])
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Quantum algorithms Probabilistic Deustch’s algorithm

Probabilistic Deustch’s algorithm (cont.)

For f (0) = 0:

1√
2

(|0〉+ |1〉) |0〉

= |0′〉 (|0′〉+|1′〉)√
2

= |0′0′〉√
2

+ |0′1′〉√
2

Here, |1′〉 = |X−〉.
For f (0) = 1:

1√
2

(|0〉+ |1〉) |1〉

= |0′〉 (|0′〉−|1′〉)√
2

= |0′0′〉√
2
− |0

′1′〉√
2
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Quantum algorithms Probabilistic Deustch’s algorithm

Probabilistic Deustch’s algorithm (cont.)

In both cases if the second qubit measures |1′〉, then the first qubit
measures |0′〉 (see [Gru99]).

On the other hand, if f (0) 6= f (1) then,
For f (0) = 0:

1√
2

(|00〉+ |11〉)

= 1√
2

(|0′0′〉+ |1′1′〉)

For f (0) = 1:

1√
2

(|01〉+ |10〉)

= 1√
2

(
|0′〉+|1′〉√

2
⊗ |0

′〉−|1′〉√
2

)
+ 1√

2

(
|0′〉−|1′〉√

2
⊗ |0

′〉+|1′〉√
2

)
= 1√

2

(
|0′0′〉−|0′1′〉+|1′0′〉−|1′1′〉+|0′0′〉−|1′1′〉+|0′1′〉−|1′0′〉

2

)
= 1√

2
(|0′0′〉 − |1′1′〉)
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Quantum algorithms Probabilistic Deustch’s algorithm

Probabilistic Deustch’s algorithm (cont.)

We summarize our observations and conclude that in either case,
measuring state |1′〉 on the second qubit gives state |1′〉 on the first
qubit too (see [Gru99]).

On the other hand, observe that for the four cases above, the |0′〉
measured on qubit 2 gives no definite information in the first qubit !

So, we see that this method has 50% success probability since the
second qubit can settle into each of the two X -basis states |0′〉 and
|1′〉 with equal probabilities on measurement.

2The Hadamard operation is defined as H|0〉 = |0〉+|1〉√
2

, and H|1〉 = |0〉−|1〉√
2

.
3The operation is Uf (|x , y〉)⇒ |x , y ⊕ f (x)〉, quite like the CNOT operation

|x , y〉 ⇒ |x , x ⊕ y〉.
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Quantum algorithms Deterministic Deustch’s algorithm

Deterministic Deustch’s algorithm

Now consider the second approach. Instead of |0〉, we start with a |1〉
for the second qubit and do a Hadamard on both, the fisrt as well as
the second qubit. The rest is explained below (see [NC00; Gru99]).

|0〉|1〉 H
⊗2

→ 1

2
(|0〉+ |1〉) (|0〉 − |1〉)

Uf→ 1

2

(
1∑

x=0

(−1)f (x)|x〉

)
(|0〉 − |1〉)

=
1

2
(−1)f (0)

(
|0〉+ (−1)f (0)⊕f (1)|1〉

)
(|0〉 − |1〉)
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Deterministic Deustch’s algorithm (cont.)

The Uf step can be explained as follows:

1

2
(|0〉 (|0〉 − |1〉) + |1〉 (|0〉 − |1〉))

Uf→ 1

2
(|0〉 (|0⊕ f (0)〉 − |1⊕ f (0)〉) + |1〉 (|0⊕ f (1)〉 − |1⊕ f (1)〉))

=
1

2

[(
(−1)f (0)|0〉 (|0〉 − |1〉)

)
+
(

(−1)f (1)|1〉 (|0〉 − |1〉)
)]

=
(−1)f (0)

2

[
|0〉+ (−1)f (0)⊕f (1)|1〉

]
(|0〉 − |1〉)

So, with 100% success we get f (0)⊕ f (1), if we do a H on first
qubit! This is explained as follows.
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Deterministic Deustch’s algorithm (cont.)

Let R = f (0)⊕ f (1). Then, we have the following simplification of
the first qubit of the above state.

|0′〉+|1′〉
2
√

2
+ (−1)R |0

′〉−|1′〉
2
√

2

= |0′〉√
2

(1 + (−1)R) + |1′〉√
2

(1− (−1)R)

If R = 1, i.e.,f (0) 6= f (1), then the above expression is |1′〉,
measuring |1〉 in the standard basis after a Hadamard operation.
Otherwise R = 0, i.e., f (0) = f (1), and the above expression is |0′〉,
measuring |0〉 in the standard basis after a Hadamard operation.

The Hadamard operation is used to change the basis from standard
to dual, and finally used again to revert back to the standard basis.
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The Bernstein-Vazirani problem

The Bernstein-Vazirani problem, like the previous ones, is another
example of a problem of mathematical interest that is solvable
efficiently on a quantum computer.

The problem is as follows. Let a be an unknown positive integer,
0 ≤ a < 2n. Let f be the evaluation function for this problem that
takes another bit string in the range 0 ≤ x < 2n and outputs the
modulo 2 sum of the bitwise product of a and x , denoted by a.x .

What we want to determine here is, the number of invocations of the
algorithm for evaluating or deciphering a.

Surprisingly we need only one invocation quantum mechanically.
Doing classically would have taken n invocations.
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The Bernstein-Vazirani problem (cont.)

We show this below. Consider Uf applied to |x〉n|y〉 flipping y if and
only if f (x) = 1. So, we have

Uf |x〉n
(|0〉 − |1〉)√

2

= (−1)f (x)|x〉n
(|0〉 − |1〉)√

2

where we prepared |y〉 as HX |0〉 =

H|1〉 =
(|0〉 − |1〉√

2
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The Bernstein-Vazirani problem (cont.)

To recap, we know that

H|x〉 = (|0〉+ (−1)x |1〉)/
√

2

= (
1∑

y=0

(−1)xy |y〉)/
√

2

So, now consider

(H⊗n ⊗ 1)Uf (H⊗n ⊗ H)|0〉n|1〉

=
1

2n/2
(H⊗n ⊗ 1)Uf (

2n−1∑
x=0

|x〉)(|0〉 − |1〉)√
2

=
1

2n/2
(H⊗n

2n−1∑
x=0

(−1)f (x)|x〉)(|0〉 − |1〉)√
2
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The Bernstein-Vazirani problem (cont.)

=
1

2n

2n−1∑
x=0

2n−1∑
y=0

(−1)f (x)+x .y |y〉)(|0〉 − |1〉)√
2

Now consider the sum for a y over all x (we are given that
f (x) = a.x):

2n−1∑
x=0

(−1)a.x(−1)x .y

=
2n−1∑
x=0

(−1)a0.x0(−1)a1.x1 ...(−1)an−1.xn−1(−1)y0.x0(−1)y1.x1 ...(−1)yn−1.xn−1

=
2n−1∑
x=0

(−1)(a0+y0)x0 · · · (−1)(an−1+yn−1)xn−1
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The Bernstein-Vazirani problem (cont.)

= Πn
j=1

1∑
xj=0

(−1)(aj+yj )xj

At least one sum in the product vanishes if aj 6= yj , i.e., the product
equals 0, unless y = a.

So, if we measure the input register finally, we get |a〉 because all
y 6= a will give a zero.

That is,

H⊗(n+1)UfH
⊗(n+1)|0〉n|1〉 = |a〉n|1〉

if f (x) = a.x .
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Simon’s problem

In the previous sections we have discussed Deutsch’s algorithm and
the Deutsch-Jozsa algorithm. They deterministically answer whether
(i) a given 1-bit Boolean function is constant or balanced, and (ii) a
given n-bit Boolean function is constant or balanced (with a promise
restriction on the n input bits), respectively.

The promise in the second case is that the input string is either
constant or balanced. The computation is possible with a single
quantum gate for the given function realized as a control gate for
that function.

The Bernstein-Vazirani problem seeks a deterministic solution; finding
an unknown bit string a by using a single quantum gate for the
function realized as a control gate, in contrast to several evaluations
in the classical case.
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Simon’s problem (cont.)

In this discussion, we study another problem that has a probabilistic
solution within quantum polynomial computation time, and whose
best known classical probabilistic algorithm takes exponential time,

about 2(log n)
1
3 steps, for acheveing a certain lower bound of success

probability.

We may use Yao’s lemma as in Lemma 3.1.15 in [Gru99] for this
negative result.

The problem is due to Daniel Simon and this exposition is based on
[Gru99].

The function f is defined as f : {0, 1}n → {0, 1}n, a two-to-one
periodic mapping.
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Simon’s problem (cont.)

The problem deals with computing the period of this function. That
is, for two distinct elements x , y (n-bit integers) from the domain,
f (x) = f (y) if and only if y = x ⊕ s, where (i) ⊕ is the bitwise
modulo 2 addition, (ii) x , y differ by an integral multiple, and (iii) s,
the period, is an n-bit integer.

The problem is to determine s, the period, given a quantum circuit,
function control gate for f . So, we may find out two integers x and y ,
from the domain, that give rise to a match in f (x) = f (y), giving
period s = y ⊕ x .

Finding a match and thereby the period, requires an exponential
number of trials in the classical case for finding the period using a
probabilistic approach and a given lower bound of success probability.
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Simon’s problem (cont.)

To formulate the above problem in mathematical form we state it as
follows.
Input: An integer m ≥ 1 and a function f : F n

2 → R, where R is finite
set.
Promise: Does there exists a nonzero element s ∈ F n

2 such that for all
x , y ∈ F n

2 , f (x) = f (y) if and only if x = y ⊕ s.
Output: Element s.

As the domain of the problem is of n bits, there will be a total of
N = 2n elements.

Below, we present an argument of the necessity of an exponential
number of trials for solving the problem classically.

We pick elements at random. The probability that we will fail to find
a match after the first trial (or for the second trial) is N−2

N−1 , as we
have N − 1 remaining elements for selection in next trials and N − 2
unfavourable.
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Simon’s problem (cont.)

After the second trial we have N − 2 remaining elements to select
from and N − 4 unfavourable cases for in the third choice.

So, the probability of failure after the second trial is N−4
N−2 .

Continuing in this manner, the (m + 1)st has probability of failure
N−2m
N−m .

So, the failure probability for (m + 1) trials is,

N − 2

N − 1
×N − 4

N − 2
×. . .×N − 2m

N −m
=

1− 2/N

1− 1/N
×1− 4/N

1− 2/N
×. . .×1− 2m/N

1−m/N

For sufficiently large N and small x we use 1− x ≈ e−x and simplify
the above as

= e−2/N × e−4/N × . . . e−2m/N/e−1/N × e−2/N × . . . e−m/N

= e−(2/N+4/N+...+2m/N)+(1/N+2/N+...+m/N)

= e−(1/N+2/N+...+m/N) = e−m(m+1)/2N
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Simon’s problem (cont.)

This failure probability can be made sufficiently small if m(m + 1)/2
comparable to N.

In other words, appreciable success probability results if m is be of the
order of

√
N, and therefore exponential in n.

If n = 100 bits then we need approximately 2n/2 = 250 = 1015 trials
to get an appreciable chance for finding s.

Now we will see how we can solve this problem using a quantum
algorithm which uses polynomial time probabilistic quantum
computation.

The procedure is as follows: The initial or input state is

|0〉n|0〉n
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Simon’s problem (cont.)

The application of the Hadamard operator on the first |0〉n yields the
superposition state

1

2n/2

2n−1∑
x=0

|x〉n|0〉n

The unitary operator (Uf : |x , y〉 → |x , y ⊕ f (x)〉) converts the state
to

1

2n/2

2n−1∑
x=0

|x〉n|f (x)〉n

Now, applying H⊗n on the first n-bit register we obtain,

1

2n

2n−1∑
x=0

2n−1∑
y=0

(−1)x .y |y〉n|f (x)〉n
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Simon’s problem (cont.)

We observe the resulting state on both vectors to get |y , f (x)〉.
Now for two distinct x say x , x1, as per the assumption in the problem
definition, f (x) = f (x1)⇔ x1 = x ⊕ s and s 6= 0n.

So, for both x1 = x ⊕ s and x , |y , f (x)〉 and |y , f (x ⊕ s〉) are identical.

So their total amplitude is

1

2n
((−1)x .y + (−1)(x⊕s).y )

If y .s = 0 mod2 then x .y = (x ⊕ s).y mod 2. So the total amplitude
becomes

(−1)x .y ∗ 2 ∗ 2−n = (
1

2
)n−1(−1)x .y

Suppose we have run the process repeatedly and obtained n − 1 such
linearly independent vectors y1, y2, ..., yn−1 such that
y1.s = 0, y2.s = 0, y3.s = 0, . . . yn−1.s = 0.
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Simon’s problem (cont.)

Solving this set of n− 1 equations we determine the non-zero value of
s, the required period.

Since we have defined f to be a two-to-one mapping, we do not have
to check for f (0) or f (s).

However, if the definition of f is not restricted in the beginning, then
we have to check whether f is one-one (f (0) 6= f (s)) or two-to-one
(f (0) = f (s)).

The total computation time is proportional to the number of
repetitions and the time required for a single evaluation of f on an
n-bit input.

Let t(n) be and the time required to execute the quantum circuit
once. Let the time required to solve these n − 1 linearly independent
equations be g(n). Then, the total required time is O(nt(n) + g(n)).
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Simon’s problem (cont.)

Now we show that the n− 1 observed vectors are linearly independent
with probability at least 1

4 .

Consider y1, y2, . . . , yn−1, the n − 1 vectors measured in as many
runs. For any set of i − 1 vectors there are 2i−1 vectors resulting due
to linear combination of these vectors. The probability that y i is one
of these (dependent vectors) is

2i−1

2n−1
=

1

2n−i

because the total number of vectors satisfying y .s = 0mod2 is 2n−1

(the null space has dimension n − 1). So, the probability that
y1, y2, · · · , yn−2 are dependent is at most

n−2∑
i=2

1

2n−i
≤ 1

2
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Simon’s problem (cont.)

.

So, the probability that the n − 2 vectors are independent is at least
1
2 . Also, the probability that yn−1 is independent of the previous
n − 2 vectors is at least 1− 1

2n−(n−1) ≥ 1
2 . Whence, the result.
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Quantum Fourier transforms and phase estimation

We now consider more problems that lie in the class
BQP ⊆ PSPACE , intuitively the class of problems solvable in
probabilistic polynomial time on a QTM, such as order finding and
integer factorization (see Definition 10.9 in [AB06]).

Shor’s factorization algorithm lies in BQP, and is not believed to be
in BPP ⊆ BQP.

Consider the unitary transformation of x =
∑N−1

j=0 xj |j〉 to

y =
∑N−1

k=0 yk |k〉 for N-dimensional vectors, where xj and yk are
complex numbers, N = 2n, and n is the number of qubits.

If y1, y2,. . ., yk ,. . .,yN−1 form the DFT of x1, x2,. . ., xj ,. . .,xN−1 then
this transformation is called the QFT.
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Quantum Fourier transforms and phase estimation (cont.)

DFT is defined as follows:

yk ≡
1√
N

N−1∑
j=0

xje
2πijk/N

Naturally QFT is as follows, depicting how basis vector |j〉 is mapped
by the unitary operator:

|j〉 = |j1j2...jn〉 →
1√
N

N−1∑
k=0

e2πijk/N |k〉

Viewing the unitary operator written in matrix form transforming x to
y, we observe that |j〉 gets rotated to the vector whose components
are the elements of the jth column in the transformation matrix.
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Quantum Fourier transforms and phase estimation (cont.)

Note that the inverse of this transformation would get back |j〉 from
1√
N

∑N−1
k=0 e2πijk/N |k〉.

So what goes into the phase of QFT viz., j , comes back by inverse
QFT as |j〉.
We see below a more complete construction using inverse QFT for
estimating the phase in the eigenvalue of a unitary transformation U
with eigenvalue e2πiφ and eigenvector |u〉. That is,

U(|u〉) = e2πiφ|u〉

Here, the phase φ need be only a fraction as any integral part turns
the phase by four right angles. Let the binary representation of (the
fraction) φ be 0.φ1φ2 . . . φn.
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Quantum Fourier transforms and phase estimation (cont.)

We initially assume that the binary representation of this phase is
finite and well within n bits so that n qubits suffice in representing a
standard basis vector |φ1φ2 . . . φn〉.
The first step in generating the QFT of the standard basis state
|φ1φ2 . . . φn〉 in the 2n = N dimensional Hilbert space is the
randomization step on the n qubits, where each of the qubits is
initialized to |0〉.
The ist qubit (1 ≤ i ≤ n) then performs a controlled-U2i−1

operation
on the eigen vector |u〉. The first such operation is for i = 1,
accumulating a phase .φ1φ2 . . . φn × 20 = φ; the last one for i = n,
collects phase .φ1φ2 . . . φn × 2n−1 = 0.φn.

The ist qubit gathers phase .φ1φ2 . . . φn × 2i−1 = 0.φiφi+1 . . . φn.
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Quantum Fourier transforms and phase estimation (cont.)

These phases lead to the computation of the tensor product of qubit
states

1

2
n
2

Πn
i=1(|0〉+ e2πi0.φiφi+1...φn |1〉)

This is precisely the QFT of the basis vector |φ1φ2 . . . φn〉 ! [See
Nielsen and Chuang [NC00], Equations 5.2 through 5.10].

So, an inverse QFT would take this state to the basis state
|φ1φ2 . . . φn〉.
In this manner the n bits of the binary representation of the fractional
phase can be determined.

All we now need to do is to work out a quantum circuit for QFT
followed by its counterpart, the quantum circuit for inverse-QFT.

We know that the unitary transformation of QFT has its conjugate
transpose operator as its inverse.
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Quantum Fourier transforms and phase estimation (cont.)

So, we can construct the circuit for inverse-QFT.

In summary, we have now the mechanism for computing the phase
exactly, for the eigenvector of an operator U given its eigenvector u.

There are therefore two steps in the ensuing order finding algorithm
for the integer multiplication operator (modulo a prime N) (see
[NC00]).

First, we determine an eigenvector for the operator, and then we
determine the phase of the eigenvalue.

Determining/creating the eigenvector is tricky; so, even if we do not
have such an eigenstate, we can use any vector |ψ〉 =

∑
u cu|u〉 for

eigenstates |u〉 of U.

Use of such a vector would lower the lower bound of 1− ε, on the
success probability of estimating the right phase by a factor of |cu|2.
See Exercise 5.8 [Nielsen and Chuang] [NC00].
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Quantum Fourier transforms and phase estimation (cont.)

To illustrate an example, we consider the unitary operator based on
modulo N multiplication with a fixed number x < N as

U|y〉 = |xy(modN)〉, y ∈ {0, 1}L, L = logN

[Show that U is unitary.]

If r is the order of x i.e, x r = 1(modN), then there are r eigen vectors
|us〉 of U, 0 ≤ s ≤ r − 1 as follows.

|us〉 =
1√
r

r−1∑
k=0

e
−2Πisk

r |xk(modN)〉
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Quantum Fourier transforms and phase estimation (cont.)

We can see that

U|us〉 =
1√
r

r−1∑
k=0

e
−2Πisk

r |xk+1(modN)〉

= e
2Πis
r |us〉

This can be seen as (i) taking the eigenvalue exponent out increases
the negative exponent in the term k by one unit, thereby matching
xk+1 in the summation and (ii) rolling cyclically as r is the order of x .

Now it is not hard to show that 1√
r

∑r−1
s=0 |us〉 = |1〉 (see Exercise

5.13, Nielsen and Chuang [NC00]).

So, even in the absence of an eigenvector, we may proceed creating
the state |1〉, which is easy to create.
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Quantum Fourier transforms and phase estimation (cont.)

This will however erode the success probability as mentioned above.
Nevertheless, we can proceed with phase estimation, initially
assuming we have a sufficient number of qubits to represent the
binary form of the fractional phase φ = 0.φ1φ2 . . . φn
encoded/interpreted as the standard basis state |φ1φ2 . . . φn〉.
When we do not have enough (qu)bits for exactly representing an
unknown φ, certain errors creep leading to approximations upto a
limited number of bits with provably specified (high) probability as
shown in the standard literature [NC00].

Phase estimation has several applications, the most well-known being
factoring the product of two large primes as in Peter Shor’s seminal
paper [shor].
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Quantum Fourier transforms and phase estimation (cont.)

In summary, phase estimation uses a sufficient number
t = L + dlog2(2 + 1

2ε)e of qubits in the first register to compute an
approximation of the phase φu of the eigenvalue of the eigenvector
|u〉 of U with probability at least 1− ε, running using O(t2)
operations, including one call to each of the L = n = log2 N
controlled-U j operations.
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Order finding and factoring

Phase estimation for the eigenvalue(s) of the unitary operator
U|y〉 = |xy(modN)〉 yields fractional phase s

r , 0 ≤ s ≤ r , if there are
a sufficient number of qubits to fully encode this fraction in as many
binary digits.

From the fraction s
r computed correctly to at least 2L + 1 bits, it is

possible to determine r ; this is done using the continued fraction
expansion of the fractional estimate of the phase s

r in O(L3) time (see
Theorem 5.1 in [NC00]). Here L = n = log2 N.

Now we detail an alternative scheme and its analysis, yielding the
same results for the implementation of Shor’s algorithm.

The second (controlled) register |y〉 has n = log2 N qubits, where N
is the product of two large primes.
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Order finding and factoring (cont.)

The first register |j〉 requires t = 2n + 1 + dlog2(2 + 1
2ε)e qubits; the

additional n qubits are required for modular exponentiation (see Box
5.2, [NC00]).

The phase s
r is estimated accurately upto 2L + 1 bits with probability

exceeding (1−ε)
r . The order of a random x ≤ N is r ≤ N(= 2n), i.e.,

x r = 1 mod N.

We use the function f (k) = xk mod N, 0 ≤ k ≤ M − 1. Here,
t = log2 M. The (qu)bit basis vector (integer) k , in the randomized
superposition of the first register of t = log2 M qubits, does a control
operation over the second register of n = log2 N qubits.
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Order finding and factoring (cont.)

The first step is the usual randomization step of t Hadamard
operations, one on each of the t qubits of the first register. This gives
the transition

|0〉t |0〉n ⇒ 1√
M

(
M−1∑
k=0

|k〉|0〉n)

Using a controlled-Uf we further get

1√
M

(
M−1∑
k=0

|k〉|xkmod(N)〉n)

which may be written (using periodicity of f ) as follows.

1√
M

r−1∑
l=0

(

sl∑
q=0

|qr + l〉|x lmod(N)〉n) (1)
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Order finding and factoring (cont.)

Here, l stands for each partition of the periodic function, q
determines the starting index of each run of r elements, and sl gives
the number of full periods for the periods with offset l . Clearly, for
0 ≤ l ≤ r − 1, (M − r) ≤ sl r + l + 1 ≤ M
In an initial and simplified analysis, we first measure the second
register, yielding y = x l mod N, for some l , and thereby the state

1√
sl + 1

sl∑
q=0

|qr + l〉 (2)

by ignoring the second register.
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Order finding and factoring (cont.)

Assume for simplicity that sl + 1 = M
r , that is, there is exact

matching of full periods for index l . Now perform a QFT on the
following state yielding the state√

r

M

sl∑
q=0

|qr + l〉 (3)

yielding the state

1√
M

M−1∑
c=0

√
r

M

sl∑
q=0

e2Πic(qr+l)/M |c〉 (4)

Note that the probability amplitude of |c〉 is non-zero if and only if c
is a multiple of M

r . Even when non-zero, the problematic item l
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Order finding and factoring (cont.)

appears in the complex exponent, making its effect irrelevant to the
final probability of the different periodic outputs !
A slightly complicated analysis is required when sl + 1 is not the same
as M

r . Continuing with the state in Equation 1, we perform a QFT on
the first register yielding

1√
M

r−1∑
l=0

sl∑
q=0

1√
M

M−1∑
p=0

e
2Πip(qr+l)

M |p〉|x lmod(N)〉n

The summation over sl + 1 values of q determines the probability

amplitude for each value of l . The multiplicative term e
2Πipl
M is

inconsequential inspite of l , as it has unit modulus. So, we need only
determine

bp,l =
1

M

sl∑
q=0

e
2Πiprq
M
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Order finding and factoring (cont.)

approximated as

1

M
(

1− e
2Πipr(sl+1)

M

1− e
2Πipr
M

)

Now it is easy to show that bp,lb
∗
p,l is

1

M2

sin2( Πpr(sl+1)
M )

sin2( Πpr
M )

The outcome p is measured with this probability for a fixed l . This
probability is roughly the same for all l since sl is nearly M

r for all
0 ≤ l ≤ r − 1. Therefore, the probability of measuring p is about
r |bp,l |2, which can be shown to be at least 2

5r for p’s such that p

differs for an integral multiple of M
r by at most 1

2 . Now these integral
multiples can be from 0 through r − 1, that is, r values, thereby
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Order finding and factoring (cont.)

rendering the probability of measuring such a p to be at least
r × 2

5r = 0.40, which is 40% guaranteed success !
The probability calculation goes as follows. We underestimate the
numerator and overestimate the denominator in order to show the
40% lower bound on the probability of getting such outcomes p as

|p − dM

r
| < 1

2

where d is an integer. So, the overestimation is done by substituting
Πpr
M by Π(d + e) where e is either positive or negative with |e| = r

2M .

The denominator M2sin2( Πpr
M ) is therefore

M2sin2(Π(d + e)) = M2sin2(Πe) ≤ M2(Πe)2
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Order finding and factoring (cont.)

The numerator sin2( Πpr(sl+1)
M ) is underestimated as

sin2(Π(sl +1)(d+e)) = sin2(Π(sl +1)e) ≥ (Π(sl +1)e)2g2(Π(sl +1)e)

where g(x) = sin(x)
x . But |g(Π(sl + 1)e)| = |g( Π

2 (1 + ε))| since
(sl + 1)r is nearly M and no lesser, whereas |e| = r

2M . The
numerator’s underestimate is therefore

(Π(sl + 1)e)2g2(
Π

2
(1 + ε))

which is nearly

=
(Π(sl + 1)e)2

( Π
2 )2

= 4(sl + 1)2e2
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Order finding and factoring (cont.)

The probability estimate is therefore 4
r2Π2 , which when multiplied by r

gives 4
rΠ2 , nearly 2

5r . Furthermore, d can take r values as already
mentioned above, thereby enhancing the probability to at least 0.4 or
40%.
Now we have observation outcome p satisfying

| p
M
− d

r
| < 1

2M
≤ 1

2N2
<

1

2r2

This enables computing r from the continued fraction of p
M because p

(and therefore this fraction), has been computed correct to at least
2n + 1 binary bits (see itemize [NC00]).
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Grover’s search

The problem we consider is to identify for a given function f (x) (f (x)
is a function from {0, 1}n to {0, 1}), that x (x ∈ {0, 1}n) for which
f (x) is 1.

In the classical sense this problem will take N = 2n evaluations of the
function f (x) in the worst case. There can be one or more values of x
for which f (x) is 1.

Intuitively, however the problem of finding such a x in case f (x)
evaluates to 1 for just one x , is at least as hard as finding a x in the
scenario where f (x) evaluates to 1 for more that one values of x .

We therefore consider the somewhat simpler case of where f (x) is 1
for just one x , and will see that the method we develop can be
generalized.
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Grover’s search (cont.)

This method we consider uses quantum parallelism (and other clever
techniques) to achieve quadratic speed up (

√
N) over classical

methods.

We are given the quantum implementation of the function f as below

O :|x〉n|y〉 7→ |x〉n|y
⊕

f (x)〉

If we prepare |y〉 as |X−〉 (H⊗|1〉), we can re-write above as

O :|x〉n |0〉−|1〉√
2
7→ (−1)f (x)|x〉n |0〉−|1〉√

2

Ignoring the state of the last qubit, the action of O on a general state
of quantum register is

O :
∑

x∈{0,1}n
αx |x〉 7→

∑
x∈{0,1}n

(−1)f (x)αx |x〉
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Grover’s search (cont.)

The quantum register is prepared in the state |0〉⊗n, which is then put
by applying the Hadamard transform H⊗n, in superposition state

|ψ〉n = 1√
N

N−1∑
x=0

|x〉n

We now apply the following sequence of operations calsled Grover
operator:

G = H⊗nP0H
⊗nO

Where the conditional phase shift P0 is given by

P0|x〉 7→
{

|x〉 x = 0
−|x〉 x > 0,

OR
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Grover’s search (cont.)

P0 = 2|0〉〈0| − I

One can easily verify that the following holds

H⊗n(2|0〉〈0| − I )H⊗n = 2|ψ〉〈ψ| − I

Now, (2|ψ〉〈ψ| − I )(
∑
x

αx |x〉) = 2
∑
x

|ψ〉〈ψ|αx |x〉 −
∑
x

αx |x〉

= 2|ψ〉
∑
x

αx〈ψ|x〉 −
∑
x

αx |x〉

= 2|ψ〉
∑
x

αx√
N
−
∑
x

αx |x〉

= 2
∑
x

|x〉
∑
x

αx

N
−
∑
x

αx |x〉
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Grover’s search (cont.)

=
∑
x

(−αx + 2〈α〉)|x〉 where 〈α〉 is
∑
x

αx

N

It can be noted from the result of application of (2|ψ〉〈ψ| − I ) on an
arbitrary quantum state(in standard basis representation) that if we
had negative amplitude(s), then they get boosted up (positively) at
the cost of the remaining positive ones (remember that the square of
probability amplitude is normalized to 1).

In other words as much as the positive amplitudes of the arbitrary
state before application were above the mean value, they will fall
down the mean by the same amount after the application. And the
negative ones will be boosted over the old mean by the amount they
were negative with.
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Grover’s search (cont.)

Application of O is precisely meant to negate the amplitude of those
x for which f (x) evaluates to 1 and therefore the above observation
become applicable.

Also, it is to be note that multiple application of G will keep on
increasing the probability amplitude of those x in the original state
|ψ〉 for which f (x) is 1.

After a ”sufficient” number of applications of G we can expect to find
such an x with high probability, completing our search.

What exactly do we mean by this sufficient number of applications is
discussed now.

Let us define T = x for which f (x) is 1, and S = {0, 1}n/T
|σ〉 = 1√

N−1

∑
x∈S
|x〉 And |τ〉 = |x〉 ; x ∈ T
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Grover’s search (cont.)

Now, any state in the hyper plane (of n-dimentional space) induced
by |σ〉 and |τ〉 can be written as a|σ〉+ b|τ〉 with a2 + b2 = 1

We have O(a|σ〉+b|τ〉) = a|σ〉−b|τ〉, which shows that the action of
O on the hyper plane induced by |σ〉 and |τ〉 is a reflection about |σ〉.

We can write |ψ〉 as (
√

N−1
N |σ〉+

√
1
N |τ〉).

It can therefore easily be shown that the action of (2|ψ〉〈ψ| − I ) in
the |σ〉 and |τ〉 plane is a reflection about |ψ〉.
Since the composition of two reflections is a rotation 1, it follows that
one application of G rotates state vectors in the |σ〉, |τ〉 plane by θ
towards |τ〉, where θ

2 is the angle between |ψ〉 and |σ〉, i.e.

|ψ〉 = cos( θ2 )|σ〉+ sin( θ2 )|τ〉
Hence, after m iterations we have:

Gm|ψ〉 = cos( 2m+1
2 θ)|σ〉+ sin( 2m+1

2 θ)|τ〉
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Grover’s search (cont.)

| τ>

|σ>

θ
θ/2

θ/2

|ψ>O

|ψ>G = (2 |ψ> <ψ| − Ι) |ψ>O

|ψ>

Figure: Action of Grover’s operation.
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Grover’s search (cont.)

It follows that when 2m+1
2 θ ≈ π

2 , i.e. roughly after ( π2θ −
1
2 ) iterations,

the state vector is within an angle ≤ π
4 of |τ〉.

Measurement of the state vector now will give a solution with
probability at least cos2(π4 ) = 1

2 .

Therefore in the light of the following

θ
2 ≥ sin( θ2 ) =

√
1
N

we obtain an upper-bound for the number of iterations of G needed
to find a solution: m ≤ bπ4

√
Nc.

The intuition for the general case will be as follows. If f (x) is 1 for
more that one values of x , and because θ depends on the angle
between |ψ〉 and |σ〉, θ will be larger than in the case discussed above.

In other words the worst case (in terms of the number of iterations
req.) will happen if f (x) is 1 for just one value of x and θ will be very
small.
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Grover’s search (cont.)

In the general case the situation can only improve, which is also
rational since it is easier to find something with more repetition in a
set of fixed size than something which occurs just once.
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