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1 Probabilistic Deustch’s algorithm

Deustch’s problem is to decide whether a 1-bit input boolean function f : {0, 1} ⇒ {0, 1},
is flat or uneven, or in other words, whether f(0) ⊕ f(1) is 0 or 1. Note that any classi-
cal approach to solving this problem would require evaluating the function f two times.
However, using quantum parallelism, only one quantum circuit for realizing a quantum
(unitary) evalution of f suffices in solving this problem, as follows.

We create a superposition of the two basis states in the first qubit by doing a Hadamard
operation1, on the |0〉 state to create the |X+〉 = |0′〉 = 1√

2
(|0〉 + |1〉 state, and then

perform a controlled-Uf with this superposition on the |0〉 state in the second qubit. 2 If
f(0) = f(1) then we get,

1√
2
(|0, f(0)〉 + |1, f(1)〉)

= 1√
2
(|0, 0〉 + |1, 0〉) [f(0) = 0]

(= 1√
2
(|0, 1〉 + |1, 1〉) [f(0) = 1])

For f(0) = 0:

1√
2
(|0〉 + |1〉) |0〉

= |0′〉 (|0′〉+|1′〉)√
2

= |0′0′〉√
2

+ |0′1′〉√
2

Here, |1′〉 = |X−〉.
1The Hadamard operation is defined as H |0〉 = |0〉+|1〉√

2
, and H |1〉 = |0〉−|1〉√

2
.

2The operation is Uf (|x, y〉) ⇒ |x, y ⊕ f(x)〉, quite like the CNOT operation |x, y〉 ⇒ |x, x ⊕ y〉.
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For f(0) = 1:

1√
2
(|0〉 + |1〉) |1〉

= |0′〉 (|0′〉−|1′〉)√
2

= |0′0′〉√
2

− |0′1′〉√
2

In both cases if second qubit measures |1′〉, then first qubit measures |0′〉 (see [2]).
On the other hand, if f(0) 6= f(1) then,
For f(0) = 0:

1√
2

(|00〉 + |11〉)
= 1√

2
(|0′0′〉 + |1′1′〉)

For f(0) = 1:

1√
2

(|01〉 + |10〉)

= 1√
2

(

|0′〉+|1′〉√
2

⊗ |0′〉−|1′〉√
2

)

+ 1√
2

(

|0′〉−|1′〉√
2

⊗ |0′〉+|1′〉√
2

)

= 1√
2

( |0′0′〉−|0′1′〉+|1′0′〉−|1′1′〉+|0′0′〉−|1′1′〉+|0′1′〉−|1′0′〉
2

)

= 1√
2

(|0′0′〉 − |1′1′〉)

We summarize our observations and conclude that in either case that measuring state |1′〉
on the second qubit gives state |1′〉 on the first qubit too (see [2]).

On the other hand, observe that for the four cases above, the |0′〉 measured on qubit
2 gives no definite information in the first qubit ! So, we see that this method has 50%
success probability since the second qubit can measure one of the two X-basis states |0′〉
and |1′〉 with equal probabilities.

2 Deterministic Deustch’s algorithm

Now consider the second approach. Instead of |0〉, we start with a |1〉 for the second qubit
and do a Hadamard on both, the fisrt as well as the second qubit. The rest is explained
below (see [1, 2]).

|0〉|1〉 H⊗2

→ 1

2
(|0〉 + |1〉) (|0〉 − |1〉)

Uf→ 1

2

(

1
∑

x=0

(−1)f(x)|x〉
)

(|0〉 − |1〉)

=
1

2
(−1)f(0)

(

|0〉 + (−1)f(0)⊕f(1) |1〉
)

(|0〉 − |1〉)

The Uf step can be explained as follows:

1

2
(|0〉 (|0〉 − |1〉) + |1〉 (|0〉 − |1〉))
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Uf→ 1

2
(|0〉 (|0 ⊕ f(0)〉 − |1 ⊕ f(0)〉) + |1〉 (|0 ⊕ f(1)〉 − |1 ⊕ f(1)〉))

=
1

2

[(

(−1)f(0)|0〉 (|0〉 − |1〉)
)

+
(

(−1)f(1)|1〉 (|0〉 − |1〉)
)]

=
(−1)f(0)

2

[

|0〉 + (−1)f(0)⊕f(1)|1〉
]

(|0〉 − |1〉)

So, with 100% success we get f(0) ⊕ f(1), if we do a H on first qubit! This is explained
as follows.

Let R = f(0) ⊕ f(1). Then, we have the following simplification of the above state.

|0′〉+|1′〉
2
√

2
+ (−1)R |0′〉−|1′〉

2
√

2

= |0′〉√
2
(1 + (−1)R) + |1′〉√

2
(1 − (−1)R)

If R = 1, i.e.,f(0) 6= f(1), then the above expression is |1′〉, measuring |1〉 in the standard
basis after a Hadamard operation. Otherwise R = 0, i.e., f(0) = f(1), and the above
expression is |0′〉, measuring |0〉 in the standard basis after a Hadamard operation.

3 The Bernstein-Vazirani problem

The Bernstein-Vazirani problem, like the previous ones, is another example of a problem
of mathematical interest that is solvable efficiently on a quantum computer. The problem
is as follows. Let a be an unknown positive integer, 0 ≤ a < 2n. Let f be the evaluation
function for this problem that takes another bit string in the range 0 ≤ x < 2n and
outputs the modulo 2 sum of the bitwise product of a and x, denoted by a.x. What we
want to determine here is, the number of invocations of the algorithm for evaluating or
deciphering a. Surprisingly we need only one invocation quantum mechanically. Doing
classically would have taken n invocations. We show this below. Consider Uf applied to
|x〉n|y〉 flipping y if and only if f(x) = 1. So, we have

Uf |x〉n
(|0〉 − |1〉)√

2

= (−1)f(x)|x〉n
(|0〉 − |1〉)√

2

where we prepared |y〉 as HX|0〉 =

H|1〉 =
(|0〉 − |1〉√

2

To recap, we know that

H|x〉 = (|0〉 + (−1)x|1〉)/
√

2

= (
1
∑

y=0

(−1)xy|y〉)/
√

2
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So, now consider
(H⊗n ⊗ 1)Uf (H⊗n ⊗H)|0〉n|1〉

=
1

2n/2
(H⊗n ⊗ 1)Uf (

2n−1
∑

x=0

|x〉)(|0〉 − |1〉)√
2

=
1

2n/2
(H⊗n

2n−1
∑

x=0

(−1)f(x)|x〉)(|0〉 − |1〉)√
2

=
1

2n

2n−1
∑

x=0

2n−1
∑

y=0

(−1)f(x)+x.y|y〉)(|0〉 − |1〉)√
2

Now consider the sum for a y over all x (we are given that f(x) = a.x):

2n−1
∑

x=0

(−1)a.x(−1)x.y

=
2n−1
∑

x=0

(−1)a0.x0(−1)a1.x1(−1)an−1.xn−1(−1)y0.x0(−1)y1.x1(−1)yn−1.xn−1

=
2n−1
∑

x=0

(−1)(a0+y0)x0 · · · (−1)(an−1+yn−1)xn−1

= Πn
j=1

1
∑

xj=0

(−1)(aj+yj)xj

At least one sum in the product vanishes if aj 6= yj, i.e., the product equals 0, unless
y = a. So, if we measure the input register finally, we get |a〉 because all y 6= a will give a
zero. That is,

H⊗(n+1)UfH
⊗(n+1)|0〉n|1〉 = |a〉n|1〉

if f(x) = a.x.

4 Simon’s Problem

In the previous sections we have discussed Deutsch’s algorithm and the Deutsch-Jozsa
algorithm. They deterministically answer whether (i) a given 1-bit Boolean function is
constant or balanced, and (ii) a given n-bit Boolean function is constant or balanced (with
a promise restriction on the n input bits), respectively. The promise in the second case is
that the input string is either constant or balanced. The computation is possible with a
single quantum gate for the given function realized as a control gate for that function. The
Bernstein-Vazirani problem seeks a deterministic solution; finding an unknown bit string
a by using a single quantum gate for the function realized as a control gate, in contrast to
several evaluations in the classical case. In this discussion, we study another problem where
we have a probabilistic solution with linear computation time, in contrast to a provably
exponential time requirement in the classical case. This problem is due to Daniel Simon
and this exposition is based on [2]. The function f is defined as f : {0, 1}n → {0, 1}n, a two-
to-one periodic mapping. The problem deals with computing the period of this function.
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That is, for two distinct elements x, y (n-bit integers) from the domain, f(x) = f(y) if
and only if y = x ⊕ s, where (i) ⊕ is the bitwise modulo 2 addition, (ii) x, y differ by an
integral multiple, and (iii) s, the period, is an n-bit integer. We problem is to determine s,
the period, given a quantum circuit, function control gate for f . So, we may find out two
integers x and y, from the domain, that give rise to a match in f(x) = f(y), giving period
s = y ⊕ x. Finding a match and thereby the period, requires an exponential number of
trials in the classical case. To formulate the above problem in mathematical form we state
it as follows.
Input: An integer m ≥ 1 and a function f : Fn

2 → R, where R is finite set.
Promise: Does there exists a nonzero element s ∈ Fn

2 such that for all x, y ∈ Fn
2 , f(x) =

f(y) if and only if x = y ⊕ s.
Output: Element s.

As the domain of the problem is of n bits, there will be a total of N = 2n elements.
Below, we present an argument of the necessity of an exponential number of trials for
solving the problem classically. We pick elements at random. The probability that we will
fail to find a match after the first trial (or for the second trial) is N−2

N−1 , as we have N − 1
remaining elements for selection in next trials and N − 2 unfavourable. After the second
trial we have N − 2 remaining elements to select from and N − 4 unfavourable cases for
in the third choice. So, the probability of failure after the second trial is N−4

N−2 . Continuing

in this manner, the (m+ 1)st has probability of failure N−2m
N−m . So, the failure probability

for (m+ 1) trials is,

N − 2

N − 1
× N − 4

N − 2
× . . .× N − 2m

N −m
=

1 − 2/N

1 − 1/N
× 1 − 4/N

1 − 2/N
× . . . × 1 − 2m/N

1 −m/N

For sufficiently large N and small x we use 1 − x ≈ e−x and simplify the above as

= e−2/N × e−4/N × . . . e−2m/N/e−1/N × e−2/N × . . . e−m/N

= e−(2/N+4/N+...+2m/N)+(1/N+2/N+...+m/N) = e−(1/N+2/N+...+m/N) = e−m(m+1)/2N

This failure probability is can be made sufficiently small if m(m+ 1)/2 comparable to N .
In other words, appreciable success probability results if m is be of the order of

√
N . So,

we observe that an exponential number of trials are required for expecting the result. If
n = 100 bits then we need approximately 2n/2 = 250 = 1015 trials to get an appreciable
chance for finding s.

Now we will see how we can solve this problem using a quantum algorithm. The
procedure is as follows: The initial or input state is

|0〉n|0〉n
The application of the Hadamard operator on the first |0〉n yields the superposition state

1

2n/2

2n−1
∑

x=0

|x〉n|0〉n

The unitary operator (Uf : |x, y〉 → |x, y ⊕ f(x)〉) converts the state to

1

2n/2

2n−1
∑

x=0

|x〉n|f(x)〉n
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Now, applying H⊗n on the first n-bit register we obtain,

1

2n

2n−1
∑

x=0

2n−1
∑

y=0

(−1)x.y|y〉n|f(x)〉n

We observe the resulting state on both vectors to get |y, f(x)〉. Now for two distinct x say
x, x1, as per the assumption in the problem definition, f(x) = f(x1) ⇔ x1 = x ⊕ s and
s 6= 0n. So, for both x1 = x ⊕ s and x, |y, f(x)〉 and |y, f(x ⊕ s〉) are identical. So their
total amplitude is

1

2n
((−1)x.y + (−1)(x⊕s).y)

If y.s = 0 mod2 then x.y = (x⊕ s).y mod 2. So the total amplitude becomes

(−1)x.y ∗ 2 ∗ 2−n = (
1

2
)n−1(−1)x.y

Suppose we have run the process repeatedly and obtained n− 1 such linearly independent
vectors y1, y2, ..., yn−1 such that y1.s = 0, y2.s = 0, y3.s = 0, . . . yn−1.s = 0. Solving this set
of n−1 equations we determine the non-zero value of s, the required period. Since we have
defined f to be a two-to-one mapping, we do not have to check for f(0) or f(s). However,
if the definition of f is not restricted in the beginning, then we have to check whether
f is one-one (f(0) 6= f(s)) or two-to-one (f(0) = f(s)). The total computation time is
proportional to the number of repetitions and the time required for a single evaluation of
f on an n-bit input. Let t(n) be and the time required to execute the quantum circuit
once. Let the time required to solve these n − 1 linearly independent equations be g(n).
Then, the total required time is O(nt(n) + g(n)).

Now we show that the n−1 observed vectors are linearly independent with probability
at least 1

4 . Consider y1, y2, . . . , yn−1, the n − 1 vectors measured in as many runs. For
any set of i− 1 vectors there are 2i−1 vectors resulting due to linear combination of these
vectors. The probability that yi is one of these (dependent vectors) is

2i−1

2n−1
=

1

2n−i

because the total number of vectors satisfying y.s = 0mod2 is 2n−1 (the null space has
dimension n− 1). So, the probability that y1, y2, · · · , yn−2 are dependent is at most

n−2
∑

i=2

1

2n−i
≤ 1

2

. So, the probability that the n − 2 vectors are independent is at least 1
2 . Also, the

probability that yn−1 is independent of the previous n−2 vectors is at least 1− 1
2n−(n−1) ≥ 1

2 .
Whence, the result.

5 Quantum Fourier transforms and phase estimation

Consider the transformation of
∑N−1

j=0 xj |j〉 to
∑N−1

k=0 yk|k〉 for N -dimensional vectors,
where xj and yk are complex numbers, and N = 2n, n is the number of qubits. If
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y1, y2,. . ., yk,. . .,yN−1 form the DFT of x1, x2,. . ., xj ,. . .,xN−1 then this transformation is
called the QFT. DFT is defined as follows:

yk ≡ 1√
N

N−1
∑

j=0

xje
2πijk/N

Naturally QFT is as follows:

|j〉 → 1√
N

N−1
∑

k=0

e2πijk/N |k〉

Note that the inverse of this transformation would get back |j〉 from
1√
N

∑N−1
k=0 e

2πijk/N |k〉. So what goes into the phase of QFT viz., j, comes back by inverse

QFT as |j〉. We see below a more complete construction using inverse QFT for estimat-
ing the phase in the eigenvalue of a unitary transformation U with eigenvalue e2πiφ and
eigenvector |u〉. That is,

U(|u〉) = e2πiφ|u〉
Here, the phase φ need be only a fraction as any integral part turns the phase by

four right angles. Let the binary representation of (the fraction) φ be 0.φ1φ2 . . . φn. We
initially assume that the binary representation of this phase is finite and well within n bits
so that n qubits suffice in representing a standard basis vector |φ1φ2 . . . φn〉.

The first step in generating the QFT of the standard basis state |φ1φ2 . . . φn〉 in the
2n = N dimensional Hilbert space is the randomization step on the n qubits, where each of
the qubits is initialized to |0〉. The ist qubit (1 ≤ i ≤ n) then performs a controlled-U2i−1

operation on the eigen vector |u〉. The first such operation is for i = 1, accumulating a
phase .φ1φ2 . . . φn×20 = φ; the last one for i = n, collects phase .φ1φ2 . . . φn×2n−1 = 0.φn.
The ist qubit gathers phase .φ1φ2 . . . φn ×2i−1 = 0.φiφi+1 . . . φn. These phases lead to the
computation of the tensor product of qubit states

1

2
n
2

Πn
i=1(|0〉 + e2πi0.φiφi+1...φn |1〉)

This is precisely the QFT of the basis vector |φ1φ2 . . . φn〉 ! [See Nielsen and Chuang
[1]]. So, an inverse QFT would take this state to the basis state |φ1φ2 . . . φn〉. In this
manner the n bits of the binary representation of the fractional phase can be determined.
All we now need to do is to work out a quantum circuit for QFT followed by its counterpart,
the quantum circuit for inverse-QFT. We know that the unitary transformation of QFT
has its the conjugate transpose operator as its inverse. So, we can construct the circuit for
inverse-QFT. In summary, we have now the mechanism for computing the phase exactly,
for the eigenvector of an operator U given its eigenvector u.

There are therefore two steps in the ensuing order finding algorithm for the integer
multiplication operator (modulo a prime N) (see [1]). First, we determine an eigenvector
for the operator, and then we determine the phase of the eigenvalue.

Determining/creating the eigenvector is tricky; so, even if we do not have such an
eigenstate, we can use any vector |ψ〉 =

∑

u cu|u〉 for eigenstates |u〉 of U . Use of such
a vector would lower the lower bound on the success probability of estimating the right
phase by a factor of |cu|2. See Exercise 5.8 [Nielsen and Chuang] [1].
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To illustrate an example, we consider the unitary operator based on modulo N multi-
plication with a fixed number x < N as

U |y〉 = |xy(modN)〉, y ∈ {0, 1}L, L = logN

[Show that U is unitary.] If r is the order of x i.e, xr = 1(modN), then there are r eigen
vectors |us〉 of U , 0 ≤ s ≤ r − 1 as follows.

|us〉 =
1√
r

r−1
∑

k=0

e
−2Πisk

r |xk(modN)〉

We can see that

U |us〉 =
1√
r

r−1
∑

k=0

e
−2Πisk

r |xk+1(modN)〉

= e
2Πis

r |us〉
This can be seen as (i) taking the eigenvalue exponent out increases the negative

exponent in the term k by one unit, thereby matching xk+1 in the summation and (ii)
rolling cyclically as r is the order of x.

Now it is not hard to show that 1√
r

∑r−1
s=0 |us〉 = |1〉 (see Exercise 5.13, Nielsen and

Chuang [1]). So, even in the absence of an eigenvector, we may proceed creating the
state |1〉, which is easy to create. This will however erode the success probability as
mentioned above. Nevertheless, we can proceed with phase estimation, initially assuming
we have a sufficient number of qubits to represent the binary form of the fractional phase
φ = 0.φ1φ2 . . . φn encoded/interpreted as the standard basis state |φ1φ2 . . . φn〉. When
we do not have enough (qu)bits for exactly representing an unknown φ, certain errors
creep leading to approximations upto a limited number of bits with provably specified
(high) probability as shown in the standard literature [1]. Phase estimation has several
applications, the most well-known being factoring the product of two large primes as in
Peter Shor’s seminal paper [3].

6 Order finding and factoring

Phase estimation for the eigenvalue(s) of the unitary operator U |y〉 = |xy(modN)〉 yields
fractional phase s

r , 0 ≤ s ≤ r, if there are a sufficient number of qubits to fully encode
this fraction in as many binary digits. From the fraction s

r computed correctly to at least
2n + 1 bits, it is possible with finite probability to determine r; this is done using the
continued fraction expansion of the fractional estimate of the phase s

r (see Theorem 5.1 in
[1]).

Now we detail an alternative scheme and its analysis, yielding the same results for
the implementation of Shor’s algorithm. The second (controlled) register |y〉 has n =
log2N qubits, where N is the product of two large primes. The first register |j〉 requires
t = 2n + 1 + ⌈log2(2 + 1

2ǫ)⌉ qubits; the additional n qubits are required for modular
exponentiation (see Box 5.2, [1]). The phase s

r is estimated accurately upto 2n + 1 bits

with probability exceeding (1−ǫ)
r . The order of a random x ≤ N is r ≤ N(= 2n), i.e.,

xr = 1 mod N . We use the function f(k) = xk mod N , 0 ≤ k ≤M − 1. Here, t = log2M .
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The (qu)bit basis vector (integer) k, in the randomized superposition of the first register of
t = log2M qubits, does a control operation over the second register of n = log2N qubits.

The first step is the usual randomization step of t Hadamard operations, one on each
of the t qubits of the first register. This gives the transition

|0〉t|0〉n ⇒ 1√
M

(
M−1
∑

k=0

|k〉|0〉n)

Using a controlled-Uf we further get

1√
M

(
M−1
∑

k=0

|k〉|xkmod(N)〉n)

which may be written (using periodicity of f) as follows.

1√
M

r−1
∑

l=0

(
sl
∑

q=0

|qr + l〉|xlmod(N)〉n) (1)

Here, l stands for each partition of the periodic function, q determines the starting index
of each run of r elements, and sl gives the number of full periods for the periods with
offset l. Clearly, for 0 ≤ l ≤ r − 1, (M − r) ≤ slr + l + 1 ≤M

In an initial and simplified analysis, we first measure the second register, yielding
y = xl mod N , for some l, and thereby the state

1√
sl + 1

sl
∑

q=0

|qr + l〉 (2)

by ignoring the second register.
Assume for simplicity that sl + 1 = M

r , that is, there is exact matching of full periods
for index l. Now perform a QFT on the following state yielding the state

√

r

M

sl
∑

q=0

|qr + l〉 (3)

yielding the state

1√
M

M−1
∑

c=0

√

r

M

sl
∑

q=0

e2Πic(qr+l)/M |c〉 (4)

Note that the probability amplitude of |c〉 is non-zero if and only if c is a multiple of
M
r . Even when non-zero, the problematic item l appears in the complex exponent, making
its effect irrelevant to the final probability of the different periodic outputs !

A slightly complicated analysis is required when sl+1 is not the same as M
r . Continuing

with the state in Equation 1, we perform a QFT on the first register yielding

1√
M

r−1
∑

l=0

sl
∑

q=0

1√
M

M−1
∑

p=0

e
2Πip(qr+l)

M |p〉|xlmod(N)〉n
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The summation over sl + 1 values of q determines the probability amplitude for each

value of l. The multiplicative term e
2Πipl

M is inconsequential inspite of l, as it has unit
modulus. So, we need only determine

bp,l =
1

M

sl
∑

q=0

e
2Πiprq

M

approximated as

1

M
(
1 − e

2Πipr(sl+1)

M

1 − e
2Πipr

M

)

Now it is easy to show that bp,lb
∗
p,l is

1

M2

sin2(Πpr(sl+1)
M )

sin2(Πpr
M )

The outcome p is measured with this probability for a fixed l. This probability is roughly
the same for all l since sl is nearly M

r for all 0 ≤ l ≤ r − 1. Therefore, the probability
of measuring p is about r|bp,l|2, which can be shown to be at least 2

5r for p’s such that p
differs for an integral multiple of M

r by at most 1
2 . Now these integral multiples can be

from 0 through r − 1, that is, r values, thereby rendering the probability of measuring
such a p to be at least r × 2

5r = 0.40, which is 40% guaranteed success !
The probability calculation goes as follows. We underestimate the numerator and

overestimate the denominator in order to show the 40% lower bound on the probability of
getting such outcomes p as

|p− dM

r
| < 1

2

where d is an integer. So, the overestimation is done by substituting Πpr
M by Π(d+e) where

e is either positive or negative with |e| = r
2M . The denominator M2sin2(Πpr

M ) is therefore

M2sin2(Π(d+ e)) = M2sin2(Πe) ≤M2(Πe)2

The numerator sin2(Πpr(sl+1)
M ) is underestimated as

sin2(Π(sl + 1)(d+ e)) = sin2(Π(sl + 1)e) ≥ (Π(sl + 1)e)2g2(Π(sl + 1)e)

where g(x) = sin(x)
x . But |g(Π(sl + 1)e)| = |g(Π

2 (1 + ǫ))| since (sl + 1)r is nearly M and
no lesser, whereas |e| = r

2M . The numerator’s underestimate is therefore

(Π(sl + 1)e)2g2(
Π

2
(1 + ǫ))

which is nearly

=
(Π(sl + 1)e)2

(Π
2 )2

= 4(sl + 1)2e2

The probability estimate is therefore 4
r2Π2 , which when multiplied by r gives 4

rΠ2 , nearly
2
5r . Furthermore, d can take r values as already mentioned above, thereby enhancing the
probability to at least 0.4 or 40%.
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Now we have observation outcome p satisfying

| p
M

− d

r
| < 1

2M
≤ 1

2N2
<

1

2r2

This enables computing r from the continued fraction of p
M because p (and therefore this

fraction), has been computed correct to at least 2n+ 1 binary bits (see [1]).

7 Grover’s Search

The problem we consider is to identify for a given function f(x) (f(x) is a function from
{0, 1}n to {0, 1}), that x (x ∈ {0, 1}n) for which f(x) is 1. In the classical sense this
problem will take N = 2n evaluations of the function f(x) in the worst case. There can
be one or more values of x for which f(x) is 1. Intuitively, however the problem of finding
such a x in case f(x) evaluates to 1 for just one x, is at least as hard as finding a x in the
scenario where f(x) evaluates to 1 for more that one values of x.

We’ll therefore consider the somewht simpler case of where f(x) is 1 for just one x,
and will see that the method we develop can be generalized. This method we consider uses
quantum parallelism (and other clever techniques) to achieve quadratic speed up (

√
N)

over classical methods. Here it goes:-
We are given the quantum implementation of the function f as below

O: |x〉n|y〉 7→ |x〉n|y
⊕

f(x)〉

If we prepare |y〉 as |x−〉 ( H⊗|1〉 ), we can re-write above as

O: |x〉n |0〉−|1〉√
2

7→ (−1)f(x)|x〉n |0〉−|1〉√
2

Ignoring the state of the last qubit, the action of O on a general state of quantum register
is

O:
∑

x∈{0,1}n

αx|x〉 7→
∑

x∈{0,1}n

(−1)f(x)αx|x〉.

The quantum register is prepared in the state |0〉⊗n, which is then put by applying the
Hadamard transform H⊗n, in superposition state

|ψ〉n = 1√
N

N−1
∑

x=0

|x〉n

We now apply the following sequence of operations called Grover operator:

G = H⊗nP0H
⊗nO

Where the conditional phase shift P0 is given by

P0|x〉 7→
{

|x〉 x = 0
−|x〉 x > 0,

OR
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P0 = 2|0〉〈0| − I

One can easily verify that the following holds

H⊗n(2|0〉〈0| − I)H⊗n = 2|ψ〉〈ψ| − I

Now,

(2|ψ〉〈ψ| − I)(
∑

x

αx|x〉) = 2
∑

x

|ψ〉〈ψ|αx|x〉 −
∑

x

αx|x〉

= 2ψ
∑

x

αx〈ψ|x〉 −
∑

x

αx|x〉

= 2ψ
∑

x

αx√
N

−
∑

x

αx|x〉

= 2
∑

x

|x〉
∑

x

αx√
N

−
∑

x

αx|x〉

=
∑

x

(−αx + 2〈α〉)|x〉 where 〈α〉 is
∑

x

αx

N

It can be noted from the result of application of (2|ψ〉〈ψ| − I) on an arbitrary quan-
tum state(in standard basis representation) that if we had negative amplitude(s), then
they get boosted up (positively) at the cost of the remaining positive ones (remember that
the square of probability amplitude is normalized to 1). In other words as much as the
positive amplitudes of the arbitrary state before application were above the mean value,
they will fall down the mean by the same amount after the application; the negative ones
will be boosted over the old mean by the amount they were negative with. Application
of O is precisely meant to negate the amplitude of those x for which f(x) evaluates to 1
and therefore the above observation become applicable. Also, it is to be note that mul-
tiple application of G will keep on increasing the probability amplitude of those x in the
original state |ψ〉 for which f(x) is 1. After a “sufficient” number of applications of G we
can expect to find such an x with high probability, completing our search. What exactly
do we mean by this sufficient number of applications is discussed now.

Let T = {x} for which f(x) = 1, and S = {0, 1}n \ T .

|σ〉 = 1√
N−1

∑

x∈S

|x〉 and |τ〉 = |x〉 ;

Now, any state in the hyperplane (of n-dimentional space) induced by |σ〉 and |τ〉 can
be written as a|σ〉+ b|τ〉 with |a|2 + |b|2 = 1. We have O(a|σ〉+ b|τ〉) = a|σ〉 − b|τ〉, which
shows that the action of O on the hyper plane induced by |σ〉 and |τ〉 is a reflection about

|σ〉. We can write |ψ〉 as (
√

N−1
N |σ〉 +

√

1
N |τ〉). It can therefore easily be shown that

the action of (2|ψ〉〈ψ| − I) in the |σ〉 and |τ〉 plane is a reflection about |ψ〉. Since the
composition of two reflections is a rotation 1, it follows that one application of G rotates
state vectors in the |σ〉, |τ〉 plane by θ towards |τ〉, where θ

2 is the angle between |ψ〉 and

|σ〉, i.e. |ψ〉 = cos(θ
2 )|σ〉 + sin(θ

2 )|τ〉. Hence, after m iterations we have:
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Gm|ψ〉 = cos(2m+1
2 θ)|σ〉 + sin(2m+1

2 θ)|τ〉

| τ>

|σ>

θ
θ/2
θ/2

|ψ>O

|ψ>G = (2 |ψ> <ψ| − Ι) |ψ>O

|ψ>

Figure 1: Action of Grover’s operation.

It follows that when 2m+1
2 θ ≈ π

2 , i.e. roughly after ( π
2θ − 1

2) iterations, the state vector

is within an angle θ
2 ≤ π

4 of |τ〉. Measurement of the state vector now will give a solution
with probability at least cos2(π

4 ) = 1
2 . Therefore in the light of the following

θ
2 ≥ sin(θ

2 ) =
√

1
N

we obtain an upper-bound for the number of iterations of G needed to find a solution:
m ≤ ⌊π

4

√
N⌋. The intuition for the general case will be as follows. If f(x) is 1 for more

that one values of x, and because θ depends on the angle between |ψ〉 and |σ〉, θ will be
larger than in the case discussed above. In other words the worst case (in terms of the
number of iterations req.) will happen if f(x) is 1 for just one value of x and θ will be
very small. In the general case the situation can only improve, which is also rational since
it is easier to find something with more repetition in a set of fixed size than something
which occurs just once.
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