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1. For any graph G show that there are at least
(
χ(G)
2

)
edges.

[Hints: We know that χ(Kn) = n and χ(Cn) is 2 for n even and 3,
otherwise, for all n ≥ 3.]

2. Is it true that χ(G)+χ(Ḡ) ≤ n+1, where n is the number of vertices of
the perfect graph G? Why? Does this hold for general graphs? Why?

[Solution: Let G be a general n-vertex graph. Let all (n − 1)-vertex
graphs H be such that χ(H) + χ(H̄) ≤ n. Let v be any vertex of G.
So, H = G − v and H̄ = Ḡ − v. Let the degree of v in G be d so
that the degree of v in Ḡ is n − d − 1. Obviously, χ(G) ≤ χ(H) + 1
and χ(Ḡ) ≤ χ(H̄) + 1. Suppose both of these are equalities. Then,
χ(H) ≤ d and χ(H̄) ≤ n− d− 1, whence χ(G) + χ(Ḡ) ≤ n + 1. Else,
say wlog χ(G) < χ(H) + 1. Then χ(G) ≤ χ(H). So, χ(G) + χ(Ḡ) ≤
χ(H) + χ(H̄) + 1 ≤ n+ 1.]

3. Suppose a simple graph has a quadrilateral then show that it has more

than n
4
(1 +

√
(4n− 3)) edges.

[Hints: For any two vertices x and y, we cannot have two common

neighbours if we wish to exclude C4 or a quadrilateral. So, an
(
n
2

)
upper bound is immediate on the number of such pairs that have a
common neighbour. A vertex z having two neighbours x and y can
have more such pairs of neighbours if its degree d(z) is more than two.
You can use Jensen’s inequality suitably.]

4. We say that a graph is randomly traceable if a spanning path always re-
sults upon starting at any vertex of G and then successively proceeding
to any vertex not yet chosen until no new vertices are available. Show
that an even graph G with n > 4 vertices exists, that is randomly
traceable, but which is neither a Cn nor a Kn.

We say that a graph is arbitrarily traversable from a vertex v0, if starting
a traversal at v0, we traverse any incident edge, and on arriving at a
vertex u, we depart from u by traversing any incident edge not yet
used, and continue until no new edges remain. Show that if a graph G
is arbitrarily traversable from a vertex v0 then v0 has maximum degree.

5. We wish to show that intersections of subtrees of a tree obey the Helly
property, whereby the set S = {T |T ∈ T } of pairwise intersecting sub-
trees of a tree T also has a non-empty intersection ∩T∈ST . Complete
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the following argument for establishing this Helly property for inter-
secting subtrees of a tree.

[Hints: Suppose we use induction on the number k of subtrees of an
n-vertex tree T . Conisder k subtrees T1, T2, ..., Tk of T which inter-
sect pairwise. For the sake of contradiction we assume that they do
not have a common intersection. However, by the induction hypothesis
T1, T2, ..., Tk−1 intersect in say a subtree T0. As Tk misses T0 let us find
a connecting path P from T0 to Tk with a vertex x ∈ P ∩ Tk and a
vertex y adjacent to x on P closer to T0. Now T − xy has connected
components where the edge xy separates T0 from Tk.]

6. Show that a graph G is perfect if and only if it has the property that
every induced subgraph H contains an independent set A ⊆ V (H) such
that ω(H − A) < ω(H).

Is the above property characterizing perfect graphs equivalent to the
property “every induced subgraph H of G has an independent set meet-
ing every clique of H of size ω(H)”.

[Hint: Use induction.]

7. A graph G is such that in every induced subgraph H each maximal
independent set of H meets every maximal complete subgraph of H.
Show that such a graph G is perfect. Does the converse hold as well?
Why?

[Hint: Use induction.]

8. (Szekeres-Wilf (1968)) Show that for any graphG, χ(G) ≤ 1+max δ(G′),
where the maximum is taken over all induced subgraphs of G. Also,
show that χ(G) ≤ n − α(G) + 1, where n is the number of vertices of
G.

[Hint: Let χ(G) = c ≥ 2. If H is any smallest induced subgraph such
that χ(H) = c, then show that for all induced subgraphs H ′ of H, we
have max δ(H ′) ≥ δ(H) ≥ c− 1. ]

9. Show that an edge e in a graph G is a cut-edge if and only if e is con-
tained in no cycle of G. (Theorem 2.3 in Bondy and Murty’s textbook.)

10. Study exercise 1: Whitney’s 1932 theorem on characterizing 2-connected
graphs as those that have internally disjoint u, v-paths for every pair
{u, v} of vertices. (Theorem 3.2 from Bondy and Murty’s textbook.)

[Hint: Use induction on the length of the path or the non-trivial part,
where Theorem 2.3 is used in the basis case. For the easier part, since
there are two internally disjoint paths between u and v, dropping just
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one vertex cannot disconnect the graph. So, κ(G) ≥ 2 implying G is
2-connected.]

11. Study exercise 2: Whitney’s 1932 theorem on characterizing 2-connected
graphs as those that have an ear decomposition. Show also that every
cycle in a 2-connected graph is the initial cycle in some ear decompo-
sition.

[An ear of a graph G is a maximal path whose internal vertices have de-
gree 2 in G. An ear decomposition of G is a decomposition P0, P1, ..., Pk
such that P0 is a cycle and Pi for i ≥ 1 is an ear of P0 ∪ P1... ∪ Pi.]

12. Try Exercises 5.19, 5.21 and 5.22 from the textbook of Harary.
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