
CS60020: Foundations of
Algorithm Design and Machine

Learning
Sourangshu Bhattacharya

Neural Network Basics

§ Given several inputs:
and several weights:
and a bias value:

§ A neuron produces a single output:

§ This sum is called the activation of the neuron
§ The function s is called the activation function for

the neuron
§ The weights and bias values are typically initialized

randomly and learned during training

McCulloch–Pitts “unit”

3

Output is a “squashed” linear function of the inputs:

Output

S

Input
Links

Activation
Function

Input
Function

Output
Links

a0 =-1 ai = g(ini)

ai

g
iniWj,i

W0,i

Bias Weight

aj

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

Activation functions

+1 +1

iniini

g(ini) g(ini)

(a) (b)

(a)is a step function or threshold function

(b)is a sigmoid function 1/(1 + e−x)

Changing the bias weight W0,i moves the threshold location

Feed forward example

Expressiveness of perceptrons

Feed Forward Neural Networks

Hidden-Layer

• The hidden layer (L2, L3) represent learned non-linear
combination of input data

• For solving the XOR problem, we need a hidden layer
– some neurons in the hidden layer will activate only for some combination of

input features
– the output layer can represent combination of the activations of the hidden

neurons

• Neural network with one hidden layer is a universal
approximator
– Every function can be modeled as a shallow feed forward network
– Not all functions can be represented efficiently with a single hidden layer

Þ we still need deep neural networks

Going from Shallow to Deep Neural Networks
• Neural Networks can have several hidden layers
• Initializing the weights randomly and training all

layers at once does hardly work
• Instead we train layerwise on unannotated data

(a.k.a. pre-training):
– Train the first hidden layer
– Fix the parameters for the first layer and train the

second layer.
– Fix the parameters for the first & second layer, train the

third layer

• After the pre-training, train all layers using your annotated data
• The pre-training on your unannotated data creates a high-level

abstractions of the input data
• The final training with annotated data fine tunes all parameters in the

network

How to learn the weights

• Initialise the weights i.e. Wk,j Wj,i with random values
• With input entries we calculate the predicted output
• We compare the prediction with the true output
• The error is calculated
• The error needs to be sent as feedback for updating the weights

BACKPROPAGATION

How to Train a Neural Net?

Input
(Feature Vector)

Output
(Label)

• Put in Training inputs, get the output
• Compare output to correct answers: Look at loss function J
• Adjust and repeat!
• Backpropagation tells us how to make a single adjustment

using calculus.

How have we trained before?

• Gradient Descent!

1. Make prediction
2. Calculate Loss
3. Calculate gradient of the loss function w.r.t. parameters
4. Update parameters by taking a step in the opposite

direction
5. Iterate

𝑦"

Feedforward Neural Network

𝑥"

𝑥$

𝑥%
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎
'𝑦"

'𝑦$

'𝑦%

𝑦$

𝑦%

𝑦"

Forward Propagation

𝑥"

𝑥$

𝑥%
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎
'𝑦"

'𝑦$

'𝑦%

𝑦$

𝑦%

Pass in
Input

𝑦"

Forward Propagation

𝑥"

𝑥$

𝑥%
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎
'𝑦"

'𝑦$

'𝑦%

𝑦$

𝑦%

Calculate each Layer

𝑦"

Forward Propagation

𝑥"

𝑥$

𝑥%
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎
'𝑦"

'𝑦$

'𝑦%

𝑦$

𝑦%

Get Output

𝑦"

Forward Propagation

𝑥"

𝑥$

𝑥%
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎
'𝑦"

'𝑦$

'𝑦%

𝑦$

𝑦%

Evaluate:
𝐽 𝑦), +𝑦)

How have we trained before?

• Gradient Descent!

1. Make prediction
2. Calculate Loss
3. Calculate gradient of the loss function w.r.t. parameters
4. Update parameters by taking a step in the opposite

direction
5. Iterate

How to Train a Neural Net?

• How could we change the weights to make our Loss
Function lower?

• Think of neural net as a function F: X -> Y

• F is a complex computation involving many weights W_k

• Given the structure, the weights “define” the function F (and
therefore define our model)

• Loss Function is J(y,F(x))

How to Train a Neural Net?

• Get ,-
,./

for every weight in the network.

• This tells us what direction to adjust each Wk if we want to
lower our loss function.

• Make an adjustment and repeat!

𝑦"

Feedforward Neural Network

𝑥"

𝑥$

𝑥%
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎
'𝑦"

'𝑦$

'𝑦%

𝑦$

𝑦%

𝜕𝐽 𝑦), +𝑦)
𝜕𝑊2

𝑊(") 𝑊($) 𝑊(%) Want:

Backpropagation

𝜕𝐽
𝜕𝑊($) = ('𝑦 − 𝑦) ⋅ 𝑊 % ⋅ 𝜎8 𝑧(%) ⋅ 𝑎($)

𝜕𝐽
𝜕𝑊(") = '𝑦 − 𝑦 ⋅ 𝑊 % ⋅ 𝜎8 𝑧(%) ⋅ 𝑊 $ ⋅ 𝜎8 𝑧 $ ⋅ 𝑋

𝜕𝐽
𝜕𝑊(%) = ('𝑦 − 𝑦) ⋅ 𝑎(%)

• Use calculus, chain rule.
• Functions are chosen to have derivatives
• Numerical issues to be considered

𝑦"

Backpropagation

𝑥"

𝑥$

𝑥%
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎
'𝑦"

'𝑦$

'𝑦%

𝑦$

𝑦%

𝜕𝐽 𝑦), +𝑦)
𝜕𝑊2

𝑊(") 𝑊($) 𝑊(%) Want:

𝑦"

Backpropagation

𝑥"

𝑥$

𝑥%
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎
'𝑦"

'𝑦$

'𝑦%

𝑦$

𝑦%

𝑊(") 𝑊($) 𝜕𝐽 𝑦), +𝑦)
𝜕𝑊%

𝑦"

Backpropagation

𝑥"

𝑥$

𝑥%
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎
'𝑦"

'𝑦$

'𝑦%

𝑦$

𝑦%

𝜕𝐽 𝑦), +𝑦)
𝜕𝑊%

𝜕𝐽 𝑦), +𝑦)
𝜕𝑊$

𝑊(")

𝑦"

Backpropagation

𝑥"

𝑥$

𝑥%
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎
'𝑦"

'𝑦$

'𝑦%

𝑦$

𝑦%

𝜕𝐽 𝑦), +𝑦)
𝜕𝑊%

𝜕𝐽 𝑦), +𝑦)
𝜕𝑊$

𝜕𝐽 𝑦), +𝑦)
𝜕𝑊"

How have we trained before?

Gradient Descent!

1. Make prediction
2. Calculate Loss
3. Calculate gradient of the loss function w.r.t. parameters
4. Update parameters by taking a step in the opposite

direction
5. Iterate

Computational Graph

Definition: a data structure for storing gradients of variables used
in computations.

● Node v represents variable
○ Stores value
○ Gradient
○ The function that created the node

● Directed edge (u,v) represents the partial derivative of u w.r.t. v

● To compute the gradient dL/dv, find the unique path from L to v
and multiply the edge weights.

Backpropagation for neural nets

Given softmax activation, L2 loss, a point (x1, x2, x3, y) = (0. 1, 0.15, 0.2, 1),
compute the gradient

Backpropagation for neural nets: forward pass

Backpropagation for neural nets: backward pass

Computation Graphs

CONVOLUTIONAL NEURAL
NETWORKS

Motivation – Image Data

• So far, the structure of our neural network treats all inputs
interchangeably.

• No relationships between the individual inputs
• Just an ordered set of variables

• We want to incorporate domain knowledge into the
architecture of a Neural Network.

Motivation

• Image data has important structures, such as;

• ”Topology” of pixels
• Translation invariance
• Issues of lighting and contrast
• Knowledge of human visual system
• Nearby pixels tend to have similar values
• Edges and shapes
• Scale Invariance – objects may appear at different sizes in

the image.

Motivation – Image Data

• Fully connected would require a vast number of parameters
• MNIST images are small (32 x 32 pixels) and in grayscale
• Color images are more typically at least (200 x 200) pixels x

3 color channels (RGB) = 120,000 values.
• A single fully connected layer would require (200x200x3)2 =

14,400,000,000 weights!
• Variance (in terms of bias-variance) would be too high
• So we introduce “bias” by structuring the network to look

for certain kinds of patterns

Motivation

• Features need to be “built up”
• Edges -> shapes -> relations between shapes
• Textures

• Cat = two eyes in certain relation to one another + cat fur
texture.

• Eyes = dark circle (pupil) inside another circle.
• Circle = particular combination of edge detectors.
• Fur = edges in certain pattern.

Kernels

• A kernel is a grid of weights “overlaid” on image, centered
on one pixel

• Each weight multiplied with pixel underneath it
• Output over the centered pixel is ∑=>"? 𝑊= ⋅ 𝑝𝑖𝑥𝑒𝑙=
• Used for traditional image processing techniques:

o Blur
o Sharpen
o Edge detection
o Emboss

Kernel: 3x3 Example

Input Kernel Output

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

Kernel: 3x3 Example

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

Output

Kernel: 3x3 Example

Input Kernel Output

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

= 3 ⋅ −1 + 2 ⋅ 0 + 1 ⋅ 1
+ 1 ⋅ −2 + 2 ⋅ 0 + 3 ⋅ 2
+ 1 ⋅ −1 + 1 ⋅ 0 + 1 ⋅ 1

= −3 + 1 − 2 + 6 − 1 + 1 = 2

2

Kernel: Example

Kernels as Feature Detectors

Can think of kernels as a ”local feature detectors”

Vertical Line Detector

-1 1 -1

-1 1 -1

-1 1 -1

Horizontal Line Detector

-1 -1 -1

1 1 1

-1 -1 -1

Corner Detector

-1 -1 -1

-1 1 1

-1 1 1

Convolutional Neural Nets

Primary Ideas behind Convolutional Neural Networks:

• Let the Neural Network learn which kernels are most useful
• Use same set of kernels across entire image (translation

invariance)
• Reduces number of parameters and “variance” (from bias-

variance point of view)

Convolutions

Convolution Settings – Grid Size

Grid Size (Height and Width):
• The number of pixels a kernel “sees” at once
• Typically use odd numbers so that there is a “center” pixel
• Kernel does not need to be square

Height: 3, Width: 3 Height: 1, Width: 3 Height: 3, Width: 1

Convolution Settings - Padding

Padding
• Using Kernels directly, there will be an “edge effect”
• Pixels near the edge will not be used as “center pixels” since

there are not enough surrounding pixels
• Padding adds extra pixels around the frame
• So every pixel of the original image will be a center pixel as

the kernel moves across the image
• Added pixels are typically of value zero (zero-padding)

Without Padding

With Padding

Convolution Settings

Stride
• The ”step size” as the kernel moves across the image
• Can be different for vertical and horizontal steps (but usually

is the same value)
• When stride is greater than 1, it scales down the output

dimension

Stride 2 Example – No Padding

3

0

Stride 2 Example – With Padding

-1 2

3

Convolutional Settings - Depth

• In images, we often have multiple numbers associated with
each pixel location.

• These numbers are referred to as “channels”
o RGB image – 3 channels
o CMYK – 4 channels

• The number of channels is referred to as the “depth”
• So the kernel itself will have a “depth” the same size as the

number of input channels
• Example: a 5x5 kernel on an RGB image

o There will be 5x5x3 = 75 weights

Convolutional Settings - Depth

• The output from the layer will also have a depth
• The networks typically train many different kernels
• Each kernel outputs a single number at each pixel location
• So if there are 10 kernels in a layer, the output of that layer

will have depth 10.

Pooling

• Idea: Reduce the image size by mapping a patch of pixels to
a single value.

• Shrinks the dimensions of the image.
• Does not have parameters, though there are different types

of pooling operations.

Pooling: Max-pool
• For each distinct patch, represent it by the maximum
• 2x2 maxpool shown below

Pooling: Average-pool
• For each distinct patch, represent it by the average
• 2x2 avgpool shown below.

ConvNet: CONV, RELU, POOL
and FC Layers

Convolution Layer

Convolution Layer
consider a second,
green filter

Convolution Layer

ReLU (Rectified Linear Units)Layer

• This is a layer of neurons that
applies the activation function
f(x)=max(0,x).
• It increases the nonlinear properties

of the decision function and of the
overall network without affecting
the receptive fields of the
convolution layer.
• Other functions are also used to

increase nonlinearity, for example
the hyperbolic tangent
f(x)=tanh(x), and the sigmoid
function.
• This is also known as a ramp

function.

A Basic ConvNet

What is convolution of an
image with a filter

Details about the
convolution layer

Details about the
convolution layer

Details about the
convolution layer

Convolution layer
examples

Pooling Layer

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016Lecture 7 - 7
4Where ReLu is used as f.

Convolutional Neural Networks

+
ReLu

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016Lecture 7 - 7
5

Kernel= [1,0,1
0,1,0
1,0,1]

Convolutional Neural Networks

1 0 1
0 1 0
1 0 1

Applications

Applications

Is deep learning all about CNNs?

• Consider a language modelling task
• Given a vocabulary, the task is to predict the

next word in a sentence
• Sequence information of words are important
• Typically in cases where sequential data is

involved, recurrent neural networks (RNNs)
are widely used

References

• CS231n: Convolutional Neural Networks for Visual
Recognition. Andrej Karpathy
http://cs231n.github.io/convolutional-networks/

• https://medium.com/@sidereal/cnns-architectures-lenet-
alexnet-vgg-googlenet-resnet-and-more-666091488df5

• CSE 446 - Machine Learning - Spring 2015,
University of Washington. Pedro Domingos.
https://courses.cs.washington.edu/courses/cse446/15sp/

http://cs231n.stanford.edu/
http://cs.stanford.edu/people/karpathy/
http://cs231n.github.io/convolutional-networks/
https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
http://www.cs.washington.edu/homes/pedrod/
https://courses.cs.washington.edu/courses/cse446/15sp/

