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Neural Network Basics

§ Given several inputs:
and several weights:
and a bias value:

§ A neuron produces a single output:

§ This sum is called the activation of the neuron
§ The function s is called the activation function for 

the neuron
§ The weights and bias values are typically initialized 

randomly and learned during training



McCulloch–Pitts “unit”
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Output is a “squashed” linear function of the inputs:
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A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do



Activation functions
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(a)is a step function or threshold function

(b)is a sigmoid function 1/(1 + e−x)

Changing the bias weight W0,i moves the threshold location



Feed forward example



Expressiveness of perceptrons



Feed Forward Neural Networks



Hidden-Layer

• The hidden layer (L2, L3) represent learned non-linear 
combination of input data

• For solving the XOR problem, we need a hidden layer
– some neurons in the hidden layer will activate only for some combination of 

input features
– the output layer can represent combination of the activations of the hidden 

neurons 

• Neural network with one hidden layer is a universal 
approximator
– Every function can be modeled as a shallow feed forward network
– Not all functions can be represented efficiently with a single hidden layer 

Þ we still need deep neural networks



Going from Shallow to Deep Neural Networks
• Neural Networks can have several hidden layers
• Initializing the weights randomly and training all 

layers at once does hardly work 
• Instead we train layerwise on unannotated data 

(a.k.a. pre-training):
– Train the first hidden layer
– Fix the parameters for the first layer and train the 

second layer.
– Fix the parameters for the first & second layer, train the 

third layer

• After the pre-training, train all layers using your annotated data
• The pre-training on your unannotated data creates a high-level 

abstractions of the input data
• The final training with annotated data fine tunes all parameters in the 

network



How to learn the weights

• Initialise the weights i.e. Wk,j Wj,i  with random values
• With input entries we calculate the predicted output
• We compare the prediction with the true output
• The error is calculated
• The error needs to be sent as feedback for updating the weights



BACKPROPAGATION



How to Train a Neural Net?

Input
(Feature Vector)

Output
(Label)

• Put in Training inputs, get the output
• Compare output to correct answers: Look at loss function J
• Adjust and repeat!
• Backpropagation tells us how to make a single adjustment 

using calculus. 



How have we trained before?

• Gradient Descent!

1. Make prediction
2. Calculate Loss
3. Calculate gradient of the loss function w.r.t. parameters
4. Update parameters by taking a step in the opposite 

direction
5. Iterate
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How have we trained before?

• Gradient Descent!

1. Make prediction
2. Calculate Loss
3. Calculate gradient of the loss function w.r.t. parameters
4. Update parameters by taking a step in the opposite 

direction
5. Iterate



How to Train a Neural Net?

• How could we change the weights to make our Loss 
Function lower?

• Think of neural net as a function F: X -> Y

• F is a complex computation involving many weights W_k

• Given the structure, the weights “define” the function F (and 
therefore define our model)

• Loss Function is J(y,F(x))



How to Train a Neural Net?

• Get ,-
,./

for every weight in the network.

• This tells us what direction to adjust each Wk if we want to 
lower our loss function.

• Make an adjustment and repeat!
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Backpropagation

𝜕𝐽
𝜕𝑊($) = ('𝑦 − 𝑦) ⋅ 𝑊 % ⋅ 𝜎8 𝑧(%) ⋅ 𝑎($)
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𝜕𝐽
𝜕𝑊(%) = ('𝑦 − 𝑦) ⋅ 𝑎(%)

• Use calculus, chain rule.
• Functions are chosen to have derivatives
• Numerical issues to be considered
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How have we trained before?

Gradient Descent!

1. Make prediction
2. Calculate Loss
3. Calculate gradient of the loss function w.r.t. parameters
4. Update parameters by taking a step in the opposite 

direction
5. Iterate









Computational Graph

Definition: a data structure for storing gradients of variables used 
in computations.

● Node v represents variable
○ Stores value
○ Gradient
○ The function that created the node

● Directed edge (u,v) represents the partial derivative of u w.r.t. v

● To compute the gradient dL/dv, find the unique path from L to v 
and multiply the edge weights.



Backpropagation for neural nets

Given softmax activation, L2 loss, a point (x1, x2, x3, y) = (0. 1, 0.15, 0.2, 1), 
compute the gradient



Backpropagation for neural nets: forward pass



Backpropagation for neural nets: backward pass



Computation Graphs



CONVOLUTIONAL NEURAL 
NETWORKS



Motivation – Image Data

• So far, the structure of our neural network treats all inputs 
interchangeably.

• No relationships between the individual inputs
• Just an ordered set of variables

• We want to incorporate domain knowledge into the 
architecture of a Neural Network.



Motivation

• Image data has important structures, such as;

• ”Topology” of pixels
• Translation invariance
• Issues of lighting and contrast
• Knowledge of human visual system
• Nearby pixels tend to have similar values
• Edges and shapes
• Scale Invariance – objects may appear at different sizes in 

the image.



Motivation – Image Data

• Fully connected would require a vast number of parameters
• MNIST images are small (32 x 32 pixels) and in grayscale
• Color images are more typically at least (200 x 200) pixels x 

3 color channels (RGB) = 120,000 values.
• A single fully connected layer would require (200x200x3)2 = 

14,400,000,000 weights!
• Variance (in terms of bias-variance) would be too high
• So we introduce “bias” by structuring the network to look 

for certain kinds of patterns



Motivation

• Features need to be “built up”
• Edges -> shapes -> relations between shapes
• Textures

• Cat = two eyes in certain relation to one another  + cat fur 
texture.

• Eyes = dark circle (pupil) inside another circle.
• Circle = particular combination of edge detectors.
• Fur = edges in certain pattern.



Kernels

• A kernel is a grid of weights “overlaid” on image, centered 
on one pixel

• Each weight multiplied with pixel underneath it
• Output over the centered pixel is ∑=>"? 𝑊= ⋅ 𝑝𝑖𝑥𝑒𝑙=
• Used for traditional image processing techniques:

o Blur
o Sharpen
o Edge detection
o Emboss



Kernel: 3x3 Example

Input Kernel Output

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1



Kernel: 3x3 Example

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

Output



Kernel: 3x3 Example

Input Kernel Output

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

= 3 ⋅ −1 + 2 ⋅ 0 + 1 ⋅ 1
+ 1 ⋅ −2 + 2 ⋅ 0 + 3 ⋅ 2
+ 1 ⋅ −1 + 1 ⋅ 0 + 1 ⋅ 1

= −3 + 1 − 2 + 6 − 1 + 1 = 2

2



Kernel: Example



Kernels as Feature Detectors

Can think of kernels as a ”local feature detectors”

Vertical Line Detector

-1 1 -1

-1 1 -1

-1 1 -1

Horizontal Line Detector

-1 -1 -1

1 1 1

-1 -1 -1

Corner Detector

-1 -1 -1

-1 1 1

-1 1 1



Convolutional Neural Nets

Primary Ideas behind Convolutional Neural Networks:

• Let the Neural Network learn which kernels are most useful
• Use same set of kernels across entire image (translation 

invariance)
• Reduces number of parameters and “variance” (from bias-

variance point of view)



Convolutions



Convolution Settings – Grid Size

Grid Size (Height and Width):
• The number of pixels a kernel “sees” at once
• Typically use odd numbers so that there is a “center” pixel
• Kernel does not need to be square

Height: 3, Width: 3 Height: 1, Width: 3 Height: 3, Width: 1



Convolution Settings - Padding

Padding
• Using Kernels directly, there will be an “edge effect”
• Pixels near the edge will not be used as “center pixels” since 

there are not enough surrounding pixels
• Padding adds extra pixels around the frame
• So every pixel of the original image will be a center pixel as 

the kernel moves across the image
• Added pixels are typically of value zero (zero-padding)



Without Padding



With Padding



Convolution Settings

Stride
• The ”step size” as the kernel moves across the image
• Can be different for vertical and horizontal steps (but usually 

is the same value)
• When stride is greater than 1, it scales down the output 

dimension



Stride 2 Example – No Padding

3

0



Stride 2 Example – With Padding

-1 2

3



Convolutional Settings - Depth

• In images, we often have multiple numbers associated with 
each pixel location.

• These numbers are referred to as “channels”
o RGB image – 3 channels
o CMYK – 4 channels

• The number of channels is referred to as the “depth”
• So the kernel itself will have a “depth” the same size as the 

number of input channels
• Example: a 5x5 kernel on an RGB image 

o There will be 5x5x3 = 75 weights



Convolutional Settings - Depth

• The output from the layer will also have a depth
• The networks typically train many different kernels
• Each kernel outputs a single number at each pixel location
• So if there are 10 kernels in a layer, the output of that layer 

will have depth 10.



Pooling

• Idea: Reduce the image size by mapping a patch of pixels to 
a single value.

• Shrinks the dimensions of the image.
• Does not have parameters, though there are different types 

of pooling operations.



Pooling: Max-pool
• For each distinct patch, represent it by the maximum
• 2x2 maxpool shown below



Pooling: Average-pool
• For each distinct patch, represent it by the average
• 2x2 avgpool shown below.



ConvNet: CONV, RELU, POOL
and FC Layers



Convolution Layer



Convolution Layer
consider a second, 
green filter



Convolution Layer



ReLU (Rectified Linear Units)Layer

• This is a layer of neurons that
applies  the activation function
f(x)=max(0,x).
• It increases the nonlinear properties

of the decision function and of the
overall network without affecting
the receptive fields of the
convolution layer.
• Other functions are also used to  

increase nonlinearity, for example
the  hyperbolic tangent 
f(x)=tanh(x), and  the sigmoid
function.
• This is also known as a ramp

function.



A Basic ConvNet



What is convolution of an
image  with a filter



Details about the 
convolution layer



Details about the 
convolution layer



Details about the 
convolution layer



Convolution layer
examples



Pooling Layer



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016Lecture 7 - 7
4Where ReLu is used as f.

Convolutional Neural Networks

+ 
ReLu



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016Lecture 7 - 7
5

Kernel= [1,0,1 
0,1,0 
1,0,1]

Convolutional Neural Networks

1 0 1
0 1 0
1 0 1



Applications



Applications



Is deep learning all about CNNs?

• Consider a language modelling task
• Given a vocabulary, the task is to predict the 

next word in a sentence
• Sequence information of words are important
• Typically in cases where sequential data is 

involved, recurrent neural networks (RNNs)
are widely used
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