CS60020: Foundations of
Algorithm Design and Machine
Learning

Neural Network Basics

= Given several inputs:
and several weights:
and a bias value: Ty T2, T3 e

wy, w2, w3, ...

output

= A neuron produces a single output: belR

01 — S(Zz Wi T + b)

= This sum is called the activation of the neuron

= The function s 1s called the activation function for
the neuron

* The weights and bias values are typically initialized
randomly and learned during training

McCulloch-Pitts “unit”

Output is a “squashed’ linear function of the inputs:

a; «— g(in;) = quv Wi
BlasWelght
ao=-1 a;=g(in;)
aj— .D ‘

Input Input Activation Output Output
Links Functlon Function utpu Links

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

Activation functions

4 &ni)
f
(a) (b)

(a)is a step function or threshold function
(b)is asigmoid function 1/(1 +¢e™)
Changing the bias weight /7 ; moves the threshold location

Feed forward example

w;

1.3

Feed-forward network = a parameterized family of nonlinear functions:

as = g(W35-a3+ Wys-ay)
= g(Ws5-gWis-a1+Wys-ag) +Wys-g(Wi4-a1+Wyy-ag))

Adjusting weights changes the function: do learning this way!

Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc., but not XOR
Represents a linear separator in input space:

SiWz; >0 or W-x>0

X X
1 o 1 O
?
0 0
0 1 X 0 1 X
(a) x; and x, (b) x; or; X5 (c) xq xor x,

Minsky & Papert (1969) pricked the neural network balloon

Feed Forward Neural Networks

Layers are usually fully connected:;
numbers of hidden units typically chosen by hand

Output units a;

Hidden units a

Input units aj

Hidden-Layer

* The hidden layer (L,, L) represent learned non-linear
combination of input data

* For solving the XOR problem, we need a hidden layer

— some neurons in the hidden layer will activate only for some combination of
input features

— the output layer can represent combination of the activations of the hidden
neurons
* Neural network with one hidden layer is a universal
approximator

— Every function can be modeled as a shallow feed forward network

— Not all functions can be represented efficiently with a single hidden layer
= we still need deep neural networks

Going from Shallow to Deep Neural Networks

Neural Networks can have several hidden layers

Initializing the weights randomly and training all
layers at once does hardly work

Instead we train layerwise on unannotated data
(a.k.a. pre-training):
— Train the first hidden layer

— Fix the parameters for the first layer and train the
second layer.

input layer

— Fix the parameters for the first & second layer, train the
third layer

After the pre-training, train all layers using your annotated data

The pre-training on your unannotated data creates a high-level
abstractions of the input data

The final training with annotated data fine tunes all parameters in the
network

How to learn the weights

Initialise the weights i.e. W, ; W;; with random values

With input entries we calculate the predicted output

We compare the prediction with the true output

The error is calculated

The error needs to be sent as feedback for updating the weights

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Output units a;

Hidden units a.

Input units ay

BACKPROPAGATION

How to Train a Neural Net?

Input

(Feature Vector)

Output
(Label)

« Putin Training inputs, get the output

« Compare output to correct answers: Look at loss function J

* Adjust and repeat!

* Backpropagation tells us how to make a single adjustment
using calculus.

How have we trained before?

e QGradient Descent!

Make prediction

Calculate Loss

Calculate gradient of the loss function w.r.t. parameters
Update parameters by taking a step in the opposite
direction

S. lterate

=W =

Feedforward Neural Network

@
44

o®

Forward Propagation

4y
r<4r<4
Y U Y

o®

Pass in
Input

Forward Propagation
Calculate eac

W
-4

}& 4[)\?)\(
-

Forward Propagation
Get Output

Ty

) Wi 9
o0
-4

Forward Propagation

4y
r<4r<4
Y U Y

o®

Evaluate:
](yir }/I\l)

How have we trained before?

e QGradient Descent!

Make prediction

Calculate Loss

Calculate gradient of the loss function w.r.t. parameters
Update parameters by taking a step in the opposite
direction

S. lterate

=W =

How to Train a Neural Net?

* How could we change the weights to make our Loss
Function lower?

e Think of neural net as a function F: X ->Y
« Fisacomplex computation involving many weights W_k

* Given the structure, the weights “define” the function F (and
therefore define our model)

* Loss Function is J(y,F(x))

How to Train a Neural Net?

. Get L for every weight in the network.
Wk

« This tells us what direction to adjust each W, if we want to
lower our loss function.

* Make an adjustment and repeat!

Feedforward Neural Network
748% w® w®) Want: Y001

oW,

H@H
Il ’é
oo

Backpropagation

 Use calculus, chain rule.
e Functions are chosen to have derivatives
e Numerical issues to be considered

dJ .

RO at
0

aW](Z) — (5} —_ y) . W(3) . 0’(z(3)) . a(z)
dj

aW(l) — (5} —_ y) . W(B) . O',(Z(B)) . W(z) . O-,(Z(Z)) . X

Backpropagation
w @

o0
e

W@ 46 Want: Y001
oW

Backpropagation
w@®

‘ v Ws
44

o®

e (v, yi)

Backpropagation

W@ o] ¥i) 9] (yi, 57)

|3 0
SN
L Y

o®

Backpropagation
5()’1’: Vi) oJYuJi) a)(y;,57)
oW,

‘ , IWs
® e
&M&W P
Y Ul

o®

How have we trained before?

Gradient Descent!

Make prediction

Calculate Loss

Calculate gradient of the loss function w.r.t. parameters
Update parameters by taking a step in the opposite
direction

S. lterate

BN =

Derivative of weight Wi;:

Training with backpropagation

:_()(Ii ()Z,
COf(z) 0z

o,

U; ['(z;)

Uy () 2 2

3
<q == ‘I'-I..I' —— hi = Z ”-U"r,.' L])-‘
J=1

Siz)

(1;

Derivative continued ...

0 o OW,.x + b,
Uiea; = Uif'(2)———
O i OW i)
(‘)
= U.; ! 21) o ”',' e
HOP T UL
= U-,;f,(Z,')-I.';
W—/
Local error Localinput
signal signal

where f'(z) = f(z)(1 — f(z)) for logistic f

From single weight Wj; to full W:

ds
oW

— 8,')(]'

e We want all combinationsof i =1,2,...andj=1,2,3,...
@ Solution: Outer product
JaJ

R
W ox

Computational Graph

Definition: a data structure for storing gradients of variables used
in computations.

e Node v represents variable
o Stores value
o Gradient
o The function that created the node

e Directed edge (u,v) represents the partial derivative of u w.r.t. v

e To compute the gradient dL/dv, find the unique path from L to v
and multiply the edge weights.

Backpropagation for neural nets

X o(x) o'(x)

-5 0.01 0.01
-4 0.02 0.02
-3 0.05 0.05
-2 0.12 0.10
-1 0.27 0.20
0 0.50 0.25
1 0.73 0.20
2 0.88 0.10
3 0.95 0.05
4 0.98 0.02
5 0.99 0.01

Given softmax activation, L2 loss, a point (x1, x2, x3,y) =(0. 1, 0.15, 0.2, 1),

compute the gradient 9L
ow,

Backpropagation for neural nets: forward pass

S1 =1 -w1 +xo-we+ xr3- w3

=01-14+015%24+0.2%3

Backpropagation for neural nets: backward pass

8_L L 0L 8@ 881
ow, 0y 0s; Ow

=2||g — yl|| x 6'(s1) x 21

=2-(o(1)—1) xo'(1) x 0.1

S1 =X w1 + T - w2+ x3 - w3 e —0.0106

0.1-14+0.15%x2402%x3

[a—y

<
[l [l [[[
)

Computation Graphs

)
R

(b)
do sqr,
é OXO

CONVOLUTIONAL NEURAL
NETWORKS

Motivation — Image Data

* So far, the structure of our neural network treats all inputs
interchangeably.

* No relationships between the individual inputs

« Just an ordered set of variables

* We want to incorporate domain knowledge into the
architecture of a Neural Network.

Motivation

* Image data has important structures, such as;

« "Topology” of pixels

* Translation invariance

* Issues of lighting and contrast

« Knowledge of human visual system

* Nearby pixels tend to have similar values

* Edges and shapes

* Scale Invariance — objects may appear at different sizes in
the image.

Motivation — Image Data

* Fully connected would require a vast number of parameters

* MNIST images are small (32 x 32 pixels) and in grayscale

* Color images are more typically at least (200 x 200) pixels x
3 color channels (RGB) = 120,000 values.

« Asingle fully connected layer would require (200x200x3)? =
14,400,000,000 weights!

« Variance (in terms of bias-variance) would be too high

* So we introduce “bias” by structuring the network to look
for certain kinds of patterns

Motivation

» Features need to be “built up”
* Edges -> shapes -> relations between shapes
* Textures

« Cat = two eyes in certain relation to one another + cat fur
texture.

* Eyes = dark circle (pupil) inside another circle.

+ Circle = particular combination of edge detectors.

« Fur = edges in certain pattern.

Kernels

« A kernelis a grid of weights “overlaid” on image, centered
on one pixel
* Each weight multiplied with pixel underneath it
» Output over the centered pixel is Y., W, - pixel,,
 Used for traditional image processing techniques:
o Blur
o Sharpen
o Edge detection
o Emboss

Kernel: 3x3 Example

Input
3121
1] 2| 3
11 1] 1

Kernel
-1 ©
-2 @
-1 ©

Output

Kernel: 3x3 Example

Output

Kernel: 3x3 Example

Input
3121
1] 2| 3
11 1] 1

Kernel
-1 ©
-2 @
-1 ©

=@ -D+Q-0)+(1-1)
+(1--2)+(2-0)+ (3-2)
+(1-—1D+1-0)+ (1-1)

= 341-24+6-1+1=2

Output

Kernel: Example
1 1 1 0 1 0 0 1 0 1 1 1
1 1 1 1 4 1 -1 |5 -1 -9 |-
1 1 1 0 1 0 0 -1 0 -1 -1 -1
Unweighted 3x3 Weighted 3x3 smqothing Kernel to make Intensified sharper
smoothing kernel kernel with Gaussian blur image sharper image

Gaussian Blur Sharpened image

Kernels as Feature Detectors

Can think of kernels as a "local feature detectors”

Vertical Line Detector Horizontal Line Detector Corner Detector

-1 1 (-1 -1 -1(-1 -1]-1(-1

-1 1 (-1 1 111 -1 1 (1

Convolutional Neural Nets

Primary Ideas behind Convolutional Neural Networks:

 Let the Neural Network learn which kernels are most useful

« Use same set of kernels across entire image (translation
invariance)

* Reduces number of parameters and “variance” (from bias-
variance point of view)

Convolutions

Convolution Settings — Grid Size
Grid Size (Height and Width):

* The number of pixels a kernel “sees” at once

» Typically use odd numbers so that there is a “center” pixel
» Kernel does not need to be square

Height: 3, Width: 3 Height: 1, Width: 3 Height: 3, Width: 1

Convolution Settings - Padding

Padding
« Using Kernels directly, there will be an “edge effect”

* Pixels near the edge will not be used as “center pixels” since
there are not enough surrounding pixels

« Padding adds extra pixels around the frame

+ So every pixel of the original image will be a center pixel as
the kernel moves across the image

« Added pixels are typically of value zero (zero-padding)

Without Padding

1 2 0 3 1

1 0 0 2 2 -1 1 2 -2

2 1 2 1 1 1 1 0

0 0 1 0 0 -1 1-210

1 2 1 1 1 kernel output

input

With Padding

input

-1 1

1 1

-1 -2
kernel

output

Convolution Settings

Stride

* The "step size” as the kernel moves across the image

 Can be different for vertical and horizontal steps (but usually
is the same value)

* When stride is greater than 1, it scales down the output
dimension

Stride 2 Example — No Padding

1 2 0
1 0 0
2 1 2
0 0 1
1 2 1

input

-1 1

1 1

-1 -2
kernel

Stride 2 Example — With Padding

o170 012 210 -1 1|2 11 2
o211 211 1]o0 1]111]0

3
oflolol 1]l0/f|o0] o0 -1]1-210
o1l 212|212 1]o0 kernel

output
ololoflo]|lof o] o

input

Convolutional Settings - Depth

* In images, we often have multiple numbers associated with
each pixel location.

* These numbers are referred to as “channels”
o RGB image — 3 channels
o CMYK -4 channels

* The number of channels is referred to as the “depth”

* So the kernel itself will have a “depth” the same size as the
number of input channels

* Example: a 5x5 kernel on an RGB image
o There will be 5x5x3 = 75 weights

Convolutional Settings - Depth

* The output from the layer will also have a depth

* The networks typically train many different kernels

» Each kernel outputs a single number at each pixel location

* So it there are 10 kernels in a layer, the output of that layer
will have depth 10.

Pooling

* |dea: Reduce the image size by mapping a patch of pixels to
a single value.

 Shrinks the dimensions of the image.

* Does not have parameters, though there are different types

of pooling operations.

Pooling: Max-pool

 For each distinct patch, represent it by the maximum
* 2x2 maxpool shown below

2 (1]0 (-1
-3 |1 825 8 [5
>
1 |-1 3 4 maxpoo | 1 4

Pooling: Average-pool

* For each distinct patch, represent it by the average
« 2x2 avgpool shown below.

2| 1]0 (-1
-3 | 8| 2|5 2 |1.5
>
1 _1 3 4 avgpoo] 0.25] 1.5
Ol 1(1]-2

, POOL

RELU

4

ConvNet: CONV

and FC Layers

RELU RELU
CONV

=,
—
L
e
c,
=3
(HN)
o

RELU RELU

|

CONV

CONV

l

CONV

- Eﬁn!!,w m,mwT,S ™

Ci““\

l

CONV

— AN TR TR ,J_ﬁj

Convolution Layer

: Filters always extend the full
32x3ex3 Image depth of the input volume

/ 55x3 filter

30 height
(/

I| Convolve the filter with the image
|.e. “slide over the image spatially,
A width computing dot products”

3 depth

consider a second,

Convolution Layer o=

o 32x32x3 image activation maps

5x5x3 filter %
2
Zi>@ 28

convolve (slide) over all

spatial locations
32 / 28

Convolution Layer

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

yi
.

3

Convolution Layer

activation maps

£

We stack these up to get a “new image” of size 28x28x6!

28

ReLU (Rectified Linear Units)Layer

* Thisis a layer of neurons that
applies the activation function
f(x)=max(0,x).

— Softplus
* ltincreases the nonlinear properties " — e
of the decision function and of the
overall network without affecting
the receptive fields of the
convolutionlayer.

o(x)

* Other functions are also used to
increase nonlinearity, for example ‘
the hyperbolic tangent
f(x)=tanh(x), and the sigmoid —_—
function. S '

* Thisis also known asaramp
function.

A Basic ConvNet

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

/
.

w |

32

CONV,
RelLU
e.g.6
2) &) &
filters

y

V.

> |

28

CONV,
RelLU
e.0. 10
5XOX6
filters

10

24

CONV,
RelLU

What is convolution of an
image with a filter

o S [161 s IR 0 A 5
O(1(1|1|0 4 (3|4
i O 1] 1./ 243
g 0| 1.| 1 8 213
0 14 i Il Oxl 0
Convolved
Image

Feature

Details about the
convolutionlayer

;

/X7 input (spatially)
assume 3x3 filter
applied with stride 37

doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.

Details about the
convolutionlayer

Output size:
(N - F) / stride + 1

eg.N=7 F=3

3

stride 1=>(7-3)/11+1
3
3

(7~
stride 2 => (7-3)2 +
stride 3=> (7-3)/3 +°

Details about the

convolutionlayer
n practice: Common to zero pad the border

0{0|0(0]0]0

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
0
7x7 output!
0 in general, common to see CONV layers with

stride 1, filters of size FxF, and zero-padding with

(F-1)/2. (will preserve size spatially)
e.g. F =3 =>zero pad with 1

F =5 =>zero pad with 2

F =7=>zero pad with 3

Convolution layer
examples

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

Pooling Layer
makes the representations smaller and more manageable X

operates over each activation map independently:

224x224x64
112x112x64

pool

—

> e 112
224 downsampling

112
224

* Invariance to image transformation and
increases compactness to representation.

+ Pooling types: Max, Average, L2 etc.

A

Single depth slice

111124
max pool with 2x2 filters
516 |7 |8 | andstride2
312110 '
112134
y,

Convolutional Neural Networks

wait
for

video
and
do
n't
rent
it

s St H % g
n'p Ieplesentatlc.’n of Convolution Layer Max Poolmg Fully Connected
merged user reviews

+
RelLu

u
Rj = f(Vlzn k Kj + bj) Where Relu is used as f.

Convolutional Neural Networks

Kernel=

Convolved
Feature

wait
for
the - [+
video |
and |

nt
rent
it

n*p representaﬁgn of Convolution Layer Max Pooling Fully Connected
merged user reviews

Applications

L

| ocalization and Detection

Results from Faster R-CNN, Ren et al 2015

Applications

Computer Vision Tasks

Classification Object Detection Instance

Classification

+ Localization

Segmentation

",}" TR a T
P ke R

CAT, DOG, DUCK CAT, DOG, DUCK

- AN 4
Y Y

Single object Multiple objects

Is deep learning all about CNNs?

Consider a language modelling task

Given a vocabulary, the task is to predict the
next word in a sentence

Sequence information of words are important

Typically in cases where sequential data is
involved, recurrent neural networks (RNNs)
are widely used

References

CS231n: Convolutional Neural Networks for Visual
Recognition. Andrej Karpathy

http://cs231n.github.io/convolutional-networks/

https://medium.com/@sidereal/cnns-architectures-lenet-

alexnet-vgg-googlenet-resnet-and-more-666091488df5

CSE 446 - Machine Learning - Spring 2015,
University of Washington. Pedro Domingos.
https://courses.cs.washington.edu/courses/cse446/15sp/

http://cs231n.stanford.edu/
http://cs.stanford.edu/people/karpathy/
http://cs231n.github.io/convolutional-networks/
https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
http://www.cs.washington.edu/homes/pedrod/
https://courses.cs.washington.edu/courses/cse446/15sp/

