CS60020: Foundations of Algorithm Design and Machine Learning

Sourangshu Bhattacharya

Neural Network Basics

 Given several inputs: and several weights: and a bias value:

■ A neuron produces a single output: $b \in \mathbb{R}$

$$o_1 = s(\sum_i w_i x_i + b)$$
$$\sum_i w_i x_i + b$$

- This sum is called the **activation** of the neuron
- The function *s* is called the **activation function** for the neuron
- The weights and bias values are typically initialized randomly and learned during training

McCulloch-Pitts "unit"

Output is a "squashed" linear function of the inputs:

$$a_i \leftarrow g(in_i) = g\left(\sum_j W_{j,i} a_j\right)$$

A gross oversimplification of real neurons, but its purpose is to develop understanding of what networks of simple units can do

Activation functions

(a)is a step function or threshold function

(b) is a sigmoid function $1/(1 + e^{-x})$

Changing the bias weight $W_{0,i}$ moves the threshold location

Feed forward example

Feed-forward network = a parameterized family of nonlinear functions:

$$a_5 = g(W_{3,5} \cdot a_3 + W_{4,5} \cdot a_4)$$

= $g(W_{3,5} \cdot g(W_{1,3} \cdot a_1 + W_{2,3} \cdot a_2) + W_{4,5} \cdot g(W_{1,4} \cdot a_1 + W_{2,4} \cdot a_2))$

Adjusting weights changes the function: do learning this way!

Expressiveness of perceptrons

Consider a perceptron with g= step function (Rosenblatt, 1957, 1960) Can represent AND, OR, NOT, majority, etc., but not XOR Represents a linear separator in input space:

Minsky & Papert (1969) pricked the neural network balloon

Feed Forward Neural Networks

Layers are usually fully connected; numbers of hidden units typically chosen by hand

Hidden-Layer

- The hidden layer (L_2, L_3) represent learned non-linear combination of input data
- For solving the XOR problem, we need a hidden layer
 - some neurons in the hidden layer will activate only for some combination of input features
 - the output layer can represent combination of the activations of the hidden neurons
- Neural network with one hidden layer is a universal approximator
 - Every function can be modeled as a shallow feed forward network
 - Not all functions can be represented *efficiently* with a single hidden layer
 ⇒ we still need deep neural networks

Going from Shallow to Deep Neural Networks

- Neural Networks can have several hidden layers
- Initializing the weights randomly and training all layers at once does hardly work
- Instead we train layerwise on unannotated data (a.k.a. pre-training):
 - Train the first hidden layer
 - Fix the parameters for the first layer and train the second layer.
 - Fix the parameters for the first & second layer, train the third layer

- After the pre-training, train all layers using your annotated data
- The pre-training on your unannotated data creates a high-level abstractions of the input data
- The final training with annotated data fine tunes all parameters in the network

How to learn the weights

- Initialise the weights i.e. $W_{k,i} W_{i,i}$ with random values
- With input entries we calculate the predicted output
- We compare the prediction with the true output
- The error is calculated
- The error needs to be sent as feedback for updating the weights

Layers are usually fully connected; numbers of hidden units typically chosen by hand

BACKPROPAGATION

How to Train a Neural Net?

- Put in Training inputs, get the output
- Compare output to correct answers: Look at loss function J
- Adjust and repeat!
- Backpropagation tells us how to make a single adjustment using calculus.

How have we trained before?

- Gradient Descent!
- 1. Make prediction
- 2. Calculate Loss
- 3. Calculate gradient of the loss function w.r.t. parameters
- 4. Update parameters by taking a step in the opposite direction
- 5. Iterate

Feedforward Neural Network

Forward Propagation

Forward Propagation

Forward Propagation

How have we trained before?

- Gradient Descent!
- 1. Make prediction
- 2. Calculate Loss
- 3. Calculate gradient of the loss function w.r.t. parameters
- 4. Update parameters by taking a step in the opposite direction
- 5. Iterate

How to Train a Neural Net?

- How could we change the weights to make our Loss Function lower?
- Think of neural net as a function F: X -> Y
- F is a complex computation involving many weights W_k
- Given the structure, the weights "define" the function F (and therefore define our model)
- Loss Function is J(y,F(x))

How to Train a Neural Net?

- Get $\frac{\partial J}{\partial W_k}$ for every weight in the network.
- This tells us what direction to adjust each W_k if we want to lower our loss function.
- Make an adjustment and repeat!

Feedforward Neural Network

- Use calculus, chain rule.
- Functions are chosen to have derivatives
- Numerical issues to be considered

$$\frac{\partial J}{\partial W^{(3)}} = (\hat{y} - y) \cdot a^{(3)}$$
$$\frac{\partial J}{\partial W^{(2)}} = (\hat{y} - y) \cdot W^{(3)} \cdot \sigma'(z^{(3)}) \cdot a^{(2)}$$

$$\frac{\partial J}{\partial W^{(1)}} = (\hat{y} - y) \cdot W^{(3)} \cdot \sigma'(z^{(3)}) \cdot W^{(2)} \cdot \sigma'(z^{(2)}) \cdot X$$

How have we trained before?

Gradient Descent!

- 1. Make prediction
- 2. Calculate Loss
- 3. Calculate gradient of the loss function w.r.t. parameters
- 4. Update parameters by taking a step in the opposite direction
- 5. Iterate

Training with backpropagation

Derivative of weight W_{ij} :

$$\frac{\partial}{\partial W_{ij}} U^T a \rightarrow \frac{\partial}{\partial W_{ij}} U_i a_i$$

$$U_i \frac{\partial}{\partial W_{ij}} a_i = U_i \frac{\partial a_i}{\partial z_i} \frac{\partial z_i}{\partial W_{ij}}$$

$$= U_i \frac{\partial f(z_i)}{\partial z_i} \frac{\partial z_i}{\partial W_{ij}}$$

$$= U_i f'(z_i) \frac{\partial z_i}{\partial W_{ij}}$$

$$= U_i f'(z_i) \frac{\partial W_{i,x} + b_i}{\partial W_{i,i}}$$

Derivative continued ...

$$U_{i} \frac{\partial}{\partial W_{ij}} a_{i} = U_{i} f'(z_{i}) \frac{\partial W_{i}.x + b_{i}}{\partial W_{ij}}$$

$$= U_{i} f'(z_{i}) \frac{\partial}{\partial W_{ij}} \sum_{k} W_{ik} x_{k}$$

$$= \underbrace{U_{i} f'(z_{i})}_{\text{Local error}} x_{j}$$

$$= \underbrace{\delta_{i}}_{\text{Local error}} \underbrace{x_{j}}_{\text{Signal}}$$

where
$$f'(z) = f(z)(1 - f(z))$$
 for logistic f

From single weight W_{ij} to full W:

$$\frac{\partial s}{\partial W_{ij}} = \delta_i x_j$$

- We want all combinations of i = 1, 2, ... and j = 1, 2, 3, ...
- Solution: Outer product

$$\frac{\partial J}{\partial W} = \delta x^T$$

Computational Graph

Definition: a data structure for storing gradients of variables used in computations.

- Node v represents variable
 - Stores value
 - Gradient
 - The function that created the node
- Directed edge (u,v) represents the partial derivative of u w.r.t. v
- To compute the gradient *dL/dv*, find the unique path from *L* to *v* and multiply the edge weights.

Backpropagation for neural nets

X		σ(x)	σ'(x)
	-5	0.01	0.01
	-4	0.02	0.02
	-3	0.05	0.05
	-2	0.12	0.10
	-1	0.27	0.20
	0	0.50	0.25
	1	0.73	0.20
	2	0.88	0.10
	3	0.95	0.05
	4	0.98	0.02
	5	0.99	0.01

Given softmax activation, L2 loss, a point (x1, x2, x3, y) = (0. 1, 0.15, 0.2, 1), compute the gradient $\frac{\partial L}{\partial w_1}$

Backpropagation for neural nets: forward pass

$$s_{1} = x_{1} \cdot w_{1} + x_{2} \cdot w_{2} + x_{3} \cdot w_{3}$$

$$= 0.1 \cdot 1 + 0.15 * 2 + 0.2 * 3$$

$$= 1$$

$$\hat{y} = \sigma(s_{1})$$

$$= \sigma(1)$$

$$= \boxed{0.73}$$

Backpropagation for neural nets: backward pass

Computation Graphs

CONVOLUTIONAL NEURAL NETWORKS

Motivation – Image Data

- So far, the structure of our neural network treats all inputs interchangeably.
- No relationships between the individual inputs
- Just an ordered set of variables
- We want to incorporate domain knowledge into the architecture of a Neural Network.

Motivation

- Image data has important structures, such as;
- "Topology" of pixels
- Translation invariance
- Issues of lighting and contrast
- Knowledge of human visual system
- Nearby pixels tend to have similar values
- Edges and shapes
- Scale Invariance objects may appear at different sizes in the image.

Motivation – Image Data

- Fully connected would require a vast number of parameters
- MNIST images are small (32 x 32 pixels) and in grayscale
- Color images are more typically at least (200 x 200) pixels x 3 color channels (RGB) = 120,000 values.
- A single fully connected layer would require $(200x200x3)^2 = 14,400,000,000$ weights!
- Variance (in terms of bias-variance) would be too high
- So we introduce "bias" by structuring the network to look for certain kinds of patterns

Motivation

- Features need to be "built up"
- Edges -> shapes -> relations between shapes
- Textures
- Cat = two eyes in certain relation to one another + cat fur texture.
- Eyes = dark circle (pupil) inside another circle.
- Circle = particular combination of edge detectors.
- Fur = edges in certain pattern.

Kernels

- A kernel is a grid of weights "overlaid" on image, centered on one pixel
- Each weight multiplied with pixel underneath it
- Output over the centered pixel is $\sum_{p=1}^{P} W_p \cdot pixel_p$
- Used for traditional image processing techniques:
 - o Blur
 - Sharpen
 - Edge detection
 - o Emboss

Kernel: 3x3 Example

n	р	ut
	_	

3	2	1
1	2	3
1	1	1

Kernel

-1	0	1
-2	0	2
-1	0	1

Output

Kernel: 3x3 Example

Kernel: 3x3 Example

Input

3	2	1
1	2	3
1	1	1

Kernel

-1	0	1
-2	0	2
-1	0	1

Output

$$= (3 \cdot -1) + (2 \cdot 0) + (1 \cdot 1) + (1 \cdot -2) + (2 \cdot 0) + (3 \cdot 2) + (1 \cdot -1) + (1 \cdot 0) + (1 \cdot 1)$$

$$= -3 + 1 - 2 + 6 - 1 + 1 = 2$$

Kernel: Example

1	1	1
1	1	1
1	1	1

Unweighted 3x3 smoothing kernel

0	1	0
1	4	1
0	1	0

Weighted 3x3 smoothing kernel with Gaussian blur

0	-1	0
-1	5	-1
0	-1	0

Kernel to make image sharper

Intensified sharper image

Gaussian Blur

Sharpened image

Kernels as Feature Detectors

Can think of kernels as a "local feature detectors"

-1	1	-1
-1	1	-1
-1	1	-1

Vertical Line Detector Horizontal Line Detector Corner Detector

-1	-1	-1
1	1	1
-1	-1	-1

-1	-1	-1
-1	1	1
-1	1	1

Convolutional Neural Nets

Primary Ideas behind Convolutional Neural Networks:

- Let the Neural Network learn which kernels are most useful
- Use same set of kernels across entire image (translation invariance)
- Reduces number of parameters and "variance" (from biasvariance point of view)

Convolutions

Convolution Settings – Grid Size

Grid Size (Height and Width):

- The number of pixels a kernel "sees" at once
- Typically use odd numbers so that there is a "center" pixel
- Kernel does not need to be square

Convolution Settings - Padding

Padding

- Using Kernels directly, there will be an "edge effect"
- Pixels near the edge will not be used as "center pixels" since there are not enough surrounding pixels
- · Padding adds extra pixels around the frame
- So every pixel of the original image will be a center pixel as the kernel moves across the image
- Added pixels are typically of value zero (zero-padding)

Without Padding

1	2	0	3	1
1	0	0	2	2
2	1	2	1	1
0	0	1	0	0
1	2	1	1	1

٠				
п	\mathbf{r}	\mathbf{r}	1 1	+
	n	u	u	
•		\sim	\sim	•

-1	1	2
1	1	0
-1	-2	0

kernel

-2		
	output	

With Padding

0	0	0	0	0	0	0
0	1	2	0	3	1	0
0	1	0	0	2	2	0
0	2	1	2	1	1	0
0	0	0	1	0	0	0
0	1	2	1	1	1	0
0	0	0	0	0	0	0

-1	1	2	
1	1	0	
-1	-2	0	
kernel			

-1		

output

input

Convolution Settings

Stride

- The "step size" as the kernel moves across the image
- Can be different for vertical and horizontal steps (but usually is the same value)
- When stride is greater than 1, it scales down the output dimension

Stride 2 Example – No Padding

		,	1		
	1	2	0	3	1
	1	0	0	2	2
•	2	1	2	1	1
	0	0	1	0	0
	1	2	1	1	1

-1	1	2		
1	1	0		
-1	-2	0		
kernel				

input

Stride 2 Example – With Padding

		•				
0	0	0	0	0	0	0
0	1	2	0	3	1	0
0	1	0	0	2	2	0
0	2	1	2	1	1	0
0	0	0	1	0	0	0
0	1	2	1	1	1	0
0	0	0	0	0	0	0

-1	1	2		
1	1	0		
-1	-2	0		
kernel				

-1	2			
3				
output				

input

Convolutional Settings - Depth

- In images, we often have multiple numbers associated with each pixel location.
- These numbers are referred to as "channels"
 - o RGB image 3 channels
 - o CMYK 4 channels
- The number of channels is referred to as the "depth"
- So the kernel itself will have a "depth" the same size as the number of input channels
- Example: a 5x5 kernel on an RGB image
 - \circ There will be 5x5x3 = 75 weights

Convolutional Settings - Depth

- The output from the layer will also have a depth
- The networks typically train many different kernels
- Each kernel outputs a single number at each pixel location
- So if there are 10 kernels in a layer, the output of that layer will have depth 10.

Pooling

- Idea: Reduce the image size by mapping a patch of pixels to a single value.
- Shrinks the dimensions of the image.
- Does not have parameters, though there are different types of pooling operations.

Pooling: Max-pool

- For each distinct patch, represent it by the maximum
- 2x2 maxpool shown below

2	1	0	-1			
-3	8	2	5		8	5
1	-1	3	4	maxpool	1	4
0	1	1	-2			

Pooling: Average-pool

- For each distinct patch, represent it by the average
- 2x2 avgpool shown below.

2	1	0	-1			
-3	8	2	5		2	1.5
1	-1	3	4	avgpool	0.25	1.5
0	1	1	-2			

ConvNet: CONV, RELU, POOL and FC Layers

Convolution Layer

32x32x3 image

Filters always extend the full depth of the input volume

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

Convolution Layer

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

ReLU (Rectified Linear Units) Layer

- This is a layer of neurons that applies the activation function f(x)=max(0,x).
- It increases the nonlinear properties of the decision function and of the overall network without affecting the receptive fields of the convolutionlayer.
- Other functions are also used to increase nonlinearity, for example the hyperbolic tangent f(x)=tanh(x), and the sigmoid function.
- This is also known as a ramp function.

A Basic ConvNet

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

What is convolution of an image with a filter

1	1	1	0	0
0	1	1	1	0
0	0 _{×1}	1,0	1,	1
0	0,0	1,	1,0	0
0	1,	1,0	0,1	0

Image

4	თ	4
2	4	3
2	3	

Convolved Feature

Details about the convolution layer

7

7x7 input (spatially) assume 3x3 filter applied with stride 3?

doesn't fit!

cannot apply 3x3 filter on 7x7 input with stride 3.

Details about the convolution layer

N

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3:

stride $1 \Rightarrow (7 - 3)/1 + 1 = 5$

stride $2 \Rightarrow (7 - 3)/2 + 1 = 3$

stride $3 \Rightarrow (7 - 3)/3 + 1 = 2.33$

Details about the convolution layer

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

```
e.g. F = 3 => zero pad with 1
F = 5 => zero pad with 2
F = 7 => zero pad with 3
```

Convolution layer examples

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size: ?

(32+2*2-5)/1+1 = 32 spatially, so 32x32x10

Pooling Layer

makes the representations smaller and more manageable X operates over each activation map independently:

- Invariance to image transformation and increases compactness to representation.
- Pooling types: Max, Average, L2 etc.

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

Convolutional Neural Networks

 $z_j = f(V_{1:n}^u * K_j + b_j)$ Where ReLu is used as f.

Convolutional Neural Networks

Applications

Localization and Detection

Results from Faster R-CNN, Ren et al 2015

Applications

Computer Vision Tasks

Is deep learning all about CNNs?

- Consider a language modelling task
- Given a vocabulary, the task is to predict the next word in a sentence
- Sequence information of words are important
- Typically in cases where sequential data is involved, recurrent neural networks (RNNs) are widely used

References

- <u>CS231n: Convolutional Neural Networks for Visual Recognition</u>. <u>Andrej Karpathy</u>
 <u>http://cs231n.github.io/convolutional-networks/</u>
- https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
- CSE 446 Machine Learning Spring 2015,
 University of Washington. <u>Pedro Domingos</u>.
 https://courses.cs.washington.edu/courses/cse446/15sp/