CS60020: Foundations of Algorithm Design and Machine Learning

Sourangshu Bhattacharya

MINIMUM SPANNING TREES

Minimum spanning trees

Input: A connected, undirected graph $G = (V, E)$ with weight function $w : E \to \mathbb{R}$.

Output: A *spanning tree* $T - a$ tree that connects all vertices — of minimum weight:

$$
w(T) = \sum_{(u,v)\in T} w(u,v).
$$

Example of MST

Example of MST

Optimal substructure

MST *T*: (Other edges of *G* are not shown.)

Remove any edge $(u, v) \in T$.

Remove any edge $(u, v) \in T$.

Optimal substructure

(Other edges of *G* are not shown.)

MST *T*:

Remove any edge $(u, v) \in T$. Then, *T* is partitioned into two subtrees T_1 and T_2 .

*T*1

u

v

*T*2

Optimal substructure

(Other edges of *G* are not shown.)

MST *T*:

Remove any edge $(u, v) \in T$. Then, *T* is partitioned into two subtrees T_1 and T_2 .

*T*1

u

*T*2

v

Theorem. The subtree T_1 is an MST of $G_1 = (V_1, E_1)$, the subgraph of *G induced* by the vertices of T_1 :

$$
V_1
$$
 = vertices of T_1 ,

 $E_1 = \{(x, y) \in E : x, y \in V_1\}.$

Similarly for T_2 .

Proof of optimal substructure

Proof. Cut and paste: $w(T) = w(u, v) + w(T_1) + w(T_2).$ If T_1' were a lower-weight spanning tree than T_1 for *G*₁, then $T' = \{(u, v)\} \cup T_1' \cup T_2$ would be a lower-weight spanning tree than *T* for *G*.

Hallmark for "greedy" algorithms

Greedy-choice property A locally optimal choice is globally optimal.

Theorem. Let *T* be the MST of $G = (V, E)$, and let $A \subseteq V$. Suppose that $(u, v) \in E$ is the least-weight edge connecting *A* to *V* – *A*. Then, $(u, v) \in T$.

Consider the unique simple path from u to v in T .

Consider the unique simple path from *u* to *v* in *T*. Swap (*u*, *v*) with the first edge on this path that connects a vertex in *A* to a vertex in $V - A$.

Consider the unique simple path from *u* to *v* in *T*. Swap (*u*, *v*) with the first edge on this path that connects a vertex in *A* to a vertex in $V - A$. A lighter-weight spanning tree than *T* results.

Prim's algorithm

IDEA: Maintain $V - A$ as a priority queue Q. Key each vertex in *Q* with the weight of the leastweight edge connecting it to a vertex in *A*. $Q \leftarrow V$ $key[v] \leftarrow \infty$ for all $v \in V$ $key[s] \leftarrow 0$ for some arbitrary $s \in V$ **while** $Q \neq \emptyset$ $\mathbf{do} \ u \leftarrow \text{EXTRACT-MIN}(\mathcal{Q})$ **for** each $v \in Adj[u]$ **do if** $v \in Q$ and $w(u, v) \leq \frac{key[v]}{v}$ **then** $key[v]$ ← $w(u, v)$ ► $DECREASE-KEY$ $\pi[\nu] \leftarrow u$ At the end, $\{(v, \pi[v])\}$ forms the MST.

Analysis of Prim

 $Q \leftarrow V$ $key[v] \leftarrow \infty$ for all $v \in V$ $key[s] \leftarrow 0$ for some arbitrary $s \in V$ **while** $Q \neq \emptyset$ $\mathbf{do} \ u \leftarrow \text{EXTRACT-MIN}(Q)$ **for** each $v \in Adj[u]$ **do if** $v \in Q$ and $w(u, v) \leq \frac{key[v]}{v}$ **then** $key[v] \leftarrow w(u, v)$ $\pi[\nu] \leftarrow u$

 $\Theta(V)$

total

Analysis of Prim

 $key[v] \leftarrow \infty$ for all $v \in V$ $key[s] \leftarrow 0$ for some arbitrary $s \in V$ **while** $Q \neq \emptyset$ $\mathbf{do} \ u \leftarrow \text{EXTRACT-MIN}(O)$ **for** each $v \in Adj[u]$ **do if** $v \in Q$ and $w(u, v) \leq key[v]$ **then** $key[v] \leftarrow w(u, v)$ $\pi[v] \leftarrow u$ $Q \leftarrow V$

|*V***|**

times

 $\Theta(V)$

total

Analysis of Prim

 $key[v] \leftarrow \infty$ for all $v \in V$ $key[s] \leftarrow 0$ for some arbitrary $s \in V$ **while** $Q \neq \emptyset$ $\mathbf{do} \ u \leftarrow \text{EXTRACT-MIN}(Q)$ **for** each $v \in Adj[u]$ **do if** $v \in Q$ and $w(u, v) \leq key[v]$ **then** $key[v] \leftarrow w(u, v)$ $\pi[\nu] \leftarrow u$ $Q \leftarrow V$

Analysis of Prim

 $key[v] \leftarrow \infty$ for all $v \in V$ $key[s] \leftarrow 0$ for some arbitrary $s \in V$ **while** $Q \neq \emptyset$ $\mathbf{do} \ u \leftarrow \text{EXTRACT-MIN}(Q)$ • for each $v \in Adj[u]$ • **do if** $v \in Q$ and $w(u, v) < key[v]$ • **then** $key[v] \leftarrow w(u, v)$ • $\pi[\nu] \leftarrow u$ *degree*(*u*) times **|***V***|** times $Q \leftarrow V$ $\Theta(V)$ total

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit DECREASE-KEY's.

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit DECREASE-KEY's.

 $Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$

$Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$

$Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$

*Q T*EXTRACT-MIN *T*DECREASE-KEY Total

$Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$

*Q T*EXTRACT-MIN *T*DECREASE-KEY Total array $O(V)$ $O(1)$ $O(V^2)$

$Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$

 $Time = \Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$

November 9, 2005 *Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson* L16.50

MST algorithms

Kruskal's algorithm (see CLRS):

- Uses the *disjoint-set data structure* (Lecture 10).
- Running time $= O(E \lg V)$.

Best to date:

- Karger, Klein, and Tarjan [1993].
- Randomized algorithm.
- $O(V + E)$ expected time.