
CS60020: Foundations of
Algorithm Design and Machine

Learning
Sourangshu Bhattacharya

MINIMUM SPANNING TREES

Minimum spanning trees

w(T)= åw(u,v) .
(u,v)ÎT

Input: A connected, undirected graph G = (V, E)
with weight function w : E ® R.

Output: A spanning tree T — a tree that connects
all vertices — of minimum weight:

Example of MST

6 12
5

14

3

8

10

9

157

Example of MST

6 12
5

14

3

8

10

15

9

7

Optimal substructure

MST T:
(Other edges of G
are not shown.)

Optimal substructure

u

v

MST T:
(Other edges of G

are not shown.)

Remove any edge (u, v) Î T.

L16.14

Optimal substructure

u

v

MST T:
(Other edges of G

are not shown.)

Remove any edge (u, v) Î T.

Remove any edge (u, v) Î T. Then, T is partitioned
into two subtrees T1 and T2.

T1

T2
u

v

Optimal substructure

MST T:
(Other edges of G
are not shown.)

T1

T2
u

v

Optimal substructure

MST T:
(Other edges of G
are not shown.)

Remove any edge (u, v) Î T. Then, T is partitioned
into two subtrees T1 and T2.
Theorem. The subtree T1 is an MST of G1 = (V1, E1),
the subgraph of G induced by the vertices of T1:

V1 = vertices of T1,
E1 = {(x, y) Î E : x, y Î V1 }.

Similarly for T2.

Proof of optimal substructure
Proof. Cut and paste:

w(T) = w(u, v) + w(T1) + w(T2).
If T1’ were a lower-weight spanning tree than T1 for
G1, then T ¢= {(u, v)} È T1’È T2 would bea
lower-weight spanning tree than T for G.

Hallmark for “greedy”
algorithms

Greedy-choice property
A locally optimal choice

is globally optimal.

Theorem. Let T be the MST of G = (V, E),
and let A Í V. Suppose that (u, v) Î E is the
least-weight edge connecting A to V – A.
Then, (u, v) Î T.

L16.22

Proof of theorem

Î A
Î V – A

u
(u, v) = least-weight edge
connecting A to V – A

Proof. Suppose (u, v) Ï T. Cut and paste.

T: v

Proof of theorem

Î A
Î V – A

u
(u, v) = least-weight edge
connecting A to V – A

Proof. Suppose (u, v) Ï T. Cut and paste.

T: v

Consider the unique simple path from u to v in T.

Proof of theorem

Î A
Î V – A

u
(u, v) = least-weight edge
connecting A to V – A

Proof. Suppose (u, v) Ï T. Cut and paste.

T: v

Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that
connects a vertex in A to a vertex in V – A.

Proof of theorem
Proof. Suppose (u, v) Ï T. Cut and paste.

u
(u, v) = least-weight edge
connecting A to V – A

vT ¢:

Î A
Î V – A

Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that
connects a vertex in A to a vertex in V – A.
A lighter-weight spanning tree than T results.

Prim’s algorithm
IDEA: Maintain V – A as a priority queue Q. Key
each vertex in Q with the weight of the least-
weight edge connecting it to a vertex in A.
Q ¬ V
key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
for each v Î Adj[u]

do if v Î Q and w(u, v) < key[v]
⊳DECREASE-KEYthen key[v] ¬ w(u, v)

p[v] ¬ u

At the end, {(v, p[v])} forms the MST.

Example of Prim’s algorithm

Î A
Î V – A

¥

¥ ¥

¥

¥

¥

¥

6 12
5

14

3

8

10

9

00
157

Example of Prim’s algorithm

Î A
Î V – A

¥

¥ ¥

¥

¥

¥

¥

6 12
5

14

3

8

10

9

00
157

Example of Prim’s algorithm

Î A
Î V – A

¥

¥ 7

¥ 00

10

¥

15

6 12
5

14

3

8

10

15

9

7

Example of Prim’s algorithm

Î A
Î V – A

¥

¥ 7

¥ 00

10

¥

15

6 12
5

14

3

8

10

15

9

7

Example of Prim’s algorithm

Î A
Î V – A

5 7

¥ 00

10

9

15

6 1212

5

14

3

8

10

15

9

7

Example of Prim’s algorithm

Î A
Î V – A

5 7

¥ 00

10

9

15

6 1212

5

14

3

8

10

15

9

7

Example of Prim’s algorithm

Î A
Î V – A

5 7

00

8

9

15

6 126

5

14
14

3

8

10

15

9

7

Example of Prim’s algorithm

Î A
Î V – A

5 7

00

8

9

15

6 126

5

14
14

3

8

10

15

9

7

Example of Prim’s algorithm

Î A
Î V – A

5 7

00

8

9

15

6 126

5

14
14

3

8

10

15

9

7

Example of Prim’s algorithm

Î A
Î V – A

5 7

3 00

8

9

15

6 126

5

14

3

8

10

15

9

7

Example of Prim’s algorithm

Î A
Î V – A

5 7

3 00

8

9

15

6 126

5

14

3

8

10

15

9

7

Example of Prim’s algorithm

Î A
Î V – A

5 7

3 00

8

9

15

6 126

5

14

3

8

10

15

9

7

Example of Prim’s algorithm

Î A
Î V – A

5 7

3 00

8

9

6 126

5

14

3

8

10

15 15

9

7

Analysis of Prim
Q ¬ V
key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
for each v Î Adj[u]

do if v Î Q and w(u, v) < key[v]
then key[v] ¬ w(u, v)

p[v] ¬ u

Analysis of Prim

key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
for each v Î Adj[u]

do if v Î Q and w(u, v) < key[v]
then key[v] ¬ w(u, v)

p[v] ¬ u

Q ¬ V
Q(V)
total

Analysis of Prim

key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
for each v Î Adj[u]

do if v Î Q and w(u, v) < key[v]
then key[v] ¬ w(u, v)

p[v] ¬ u

Q ¬ V
Q(V)
total

|V |
times

Analysis of Prim

key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
• for each v Î Adj[u]
• do if v Î Q and w(u, v) < key[v]

• then key[v] ¬ w(u, v)
• p[v] ¬ u

degree(u)
times

|V |
times

Q ¬ V
Q(V)
total

Analysis of Prim

Handshaking Lemma ÞQ(E) implicit DECREASE-KEY’s.

key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
• for each v Î Adj[u]
• do if v Î Q and w(u, v) < key[v]

• then key[v] ¬ w(u, v)
• p[v] ¬ u

degree(u)
times

|V |
times

Q ¬ V
Q(V)
total

Analysis of Prim

key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
• for each v Î Adj[u]
• do if v Î Q and w(u, v) < key[v]

• then key[v] ¬ w(u, v)
• p[v] ¬ u

degree(u)
times

|V |
times

Q ¬ V
Q(V)
total

Handshaking Lemma ÞQ(E) implicit DECREASE-KEY’s.

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY

Analysis of Prim (continued)

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY

Analysis of Prim (continued)

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

Analysis of Prim (continued)

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(V) O(1) O(V2)

Analysis of Prim (continued)

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array
binary
heap

O(V) O(1) O(V2)

O(lg V) O(lg V) O(E lg V)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.50

Analysis of Prim (continued)

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

O(V) O(1) O(V2)array
binary
heap

Fibonacci
heap

O(lg V)

O(lg V)
amortized

O(lg V)

O(1)
amortized

O(E lgV)

O(E + V lg V)
worst case

MST algorithms

Kruskal’s algorithm (see CLRS):
• Uses the disjoint-set data structure (Lecture 10).
• Running time = O(E lgV).

Best to date:
• Karger, Klein, and Tarjan [1993].
• Randomized algorithm.
• O(V + E) expected time.

