CS60020: Foundations of Algorithm Design and Machine Learning

Sourangshu Bhattacharya

Graphs

- **graph**: A data structure containing:
 - a set of vertices V, (sometimes called nodes)
 - a set of edges *E*, where an edge
 represents a connection between 2 vertices.
 - Graph *G* = (*V*, *E*)
 - an edge is a pair (v, w) where v, w are in V


```
- V = \{a, b, c, d\}
```

- $E = \{(a, c), (b, c), (b, d), (c, d)\}$
- degree: number of edges touching a given vertex.
 - at right: a=1, b=2, c=3, d=2

Graph examples

- For each, what are the vertices and what are the edges?
 - Web pages with links
 - Methods in a program that call each other
 - Road maps (e.g., Google maps)
 - Airline routes
 - Facebook friends
 - Course pre-requisites
 - Family trees
 - Paths through a maze

Paths

- **path**: A path from vertex *a* to *b* is a sequence of edges that can be followed starting from *a* to reach *b*.
 - can be represented as vertices visited, or edges taken
 - example, one path from V to Z: {b, h} or {V, X, Z}
 - What are two paths from U to Y?
- **path length**: Number of vertices or edges contained in the path.
- neighbor or adjacent: Two vertices connected directly by an edge.
 - example: V and X

Reachability, connectedness

- reachable: Vertex U is reachable from V if a path exists from U to V.
- **connected**: A graph is *connected* if every vertex is reachable from any other.
 - Is the graph at top right connected?
- **strongly connected**: When every vertex has an edge to every other vertex.

Loops and cycles

- cycle: A path that begins and ends at the same node.
 - example: {b, g, f, c, a} or {V, X, Y, W, U, V}.
 - example: $\{c, d, a\}$ or $\{U, W, V, U\}$.
 - acyclic graph: One that does not contain any cycles.
- **loop**: An edge directly from a node to itself.
 - Many graphs don't allow loops.

Weighted graphs

- weight: Cost associated with a given edge.
 - Some graphs have weighted edges, and some are unweighted.
 - Edges in an unweighted graph can be thought of as having equal weight (e.g. all 0, or all 1, etc.)
 - Most graphs do not allow negative weights.
- *example*: graph of airline flights, weighted by miles between cities:

Directed graphs

- directed graph ("digraph"): One where edges are one-way connections between vertices.
 - If graph is directed, a vertex has a separate in/out degree.
 - A digraph can be weighted or unweighted.
 - Is the graph below connected? Why or why not?

Graphs (review)

Definition. A *directed graph (digraph)* G = (V, E) is an ordered pair consisting of

- a set *V* of *vertices* (singular: *vertex*),
- a set $E \subseteq V \times V$ of *edges*.

In an *undirected graph* G = (V, E), the edge set *E* consists of *unordered* pairs of vertices.

In either case, we have $|E| = O(V^2)$. Moreover, if *G* is connected, then $|E| \ge |V| - 1$, which implies that $\lg |E| = \Theta(\lg V)$.

Adjacency-matrix representation

The *adjacency matrix* of a graph G = (V, E), where $V = \{1, 2, ..., n\}$, is the matrix A[1 ... n, 1 ... n] given by $A[i, j] = \begin{cases} 1 & \text{if } (i, j) \in E, \\ 0 & \text{if } (i, i) \notin E. \end{cases}$

Adjacency-matrix representation

The *adjacency matrix* of a graph G = (V, E), where $V = \{1, 2, ..., n\}$, is the matrix A[1 ... n, 1 ... n] given by

$$A[i,j] = \begin{cases} 1 & \text{if } (i,j) \in \mathcal{E}, \\ 0 & \text{if } (i,j) \notin \mathcal{E}. \end{cases}$$

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

 $\Theta(V^2)$ storage \Rightarrow *dense*

representation.

Adjacency-list representation

An *adjacency list* of a vertex $v \in V$ is the list Adj[v] of vertices adjacent to v.

$$Adj[1] = \{2, 3\}$$

 $Adj[2] = \{3\}$
 $Adj[3] = \{\}$
 $Adj[4] = \{3\}$

Adjacency-list representation

An *adjacency list* of a vertex $v \in V$ is the list Adj[v] of vertices adjacent to v.

$$Adj[1] = \{2, 3\}$$

 $Adj[2] = \{3\}$
 $Adj[3] = \{\}$
 $Adj[4] = \{3\}$

For undirected graphs, |Adj[v]| = degree(v). For digraphs, |Adj[v]| = out-degree(v).

Adjacency-list representation

An *adjacency list* of a vertex $v \in V$ is the list Adj[v] of vertices adjacent to v.

 $Adj[1] = \{2, 3\}$ $Adj[2] = \{3\}$ $Adj[3] = \{\}$ $Adj[4] = \{3\}$

For undirected graphs, |Adj[v]| = degree(v). For digraphs, |Adj[v]| = out-degree(v).

Handshaking Lemma: $\sum_{v \in V} \operatorname{Adj}[v] = 2 |E|$ for undirected graphs \Rightarrow adjacency lists use $\Theta(V + E)$ storage — a *sparse* representation (for either type of graph).

GRAPH SEARCH

Searching for paths

- Searching for a path from one vertex to another:
 - Sometimes, we just want *any* path (or want to know there *is* a path).
 - Sometimes, we want to minimize path *length* (# of edges).
 - Sometimes, we want to minimize path *cost* (sum of edge weights).
- What is the shortest path from MIA to SFO? Which path has the minimum cost?

Depth-first search

- depth-first search (DFS): Finds a path between two vertices by exploring each possible path as far as possible before backtracking.
 - Often implemented recursively.
 - Many graph algorithms involve visiting or marking vertices.
- Depth-first paths from *a* to all vertices (assuming ABC edge order):
 - to b: {a, b}
 - to c: {a, b, e, f, c}
 - to d: {a, d}
 - to e: {a, b, e}
 - to f: {a, b, e, f}
 - to g: {a, d, g}
 - to h: {a, d, g, h}

DFS pseudocode

```
function dfs(v_1, v_2):
dfs(v_1, v_2, \{ \}).
```

```
function dfs(v_1, v_2, path):

path += v_1.

mark v_1 as visited.

if v_1 is v_2:

a path is found!
```


for each unvisited neighbor *n* of v_1 : if dfs(*n*, v_2 , *path*) finds a path: a path is found! *path* -= v_1 . // path is not found.

- The *path* param above is used if you want to have the path available as a list once you are done.
 - Trace dfs(*a*, *f*) in the above graph.

DFS observations

- discovery: DFS is guaranteed to find <u>a</u> path if one exists.
- retrieval: It is easy to retrieve exactly what the path is (the sequence of edges taken) if we find it

- optimality: not optimal. DFS is guaranteed to find <u>a</u> path, not necessarily the best/shortest path
 - Example: dfs(a, f) returns {a, d, c, f} rather than {a, d, f}.