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Graphs
• graph: A data structure containing:

– a set of vertices V,  (sometimes called nodes)

– a set of edges E, where an edge
represents a connection between 2 vertices.
• Graph G = (V, E)
• an edge is a pair (v, w) where v, w are in V

• the graph at right:
– V = {a, b, c, d}
– E = {(a, c), (b, c), (b, d), (c, d)}

• degree: number of edges touching a given vertex.
– at right: a=1, b=2, c=3, d=2
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Graph examples
• For each, what are the vertices and what are the edges?
– Web pages with links
– Methods in a program that call each other
– Road maps (e.g., Google maps)
– Airline routes
– Facebook friends
– Course pre-requisites
– Family trees
– Paths through a maze



Paths
• path: A path from vertex a to b is a sequence of edges that can be 

followed starting from a to reach b.
– can be represented as vertices visited, or edges taken
– example, one path from V to Z: {b, h} or {V, X, Z}
– What are two paths from U to Y?

• path length: Number of vertices
or edges contained in the path.

• neighbor or adjacent: Two vertices
connected directly by an edge.
– example: V and X
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Reachability, connectedness
• reachable: Vertex U is reachable from V

if a path exists from U to V.

• connected: A graph is connected if every
vertex is reachable from any other.
– Is the graph at top right connected?

• strongly connected: When every vertex
has an edge to every other vertex.
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Loops and cycles
• cycle: A path that begins and ends at the same node.
– example: {b, g, f, c, a} or {V, X, Y, W, U, V}.
– example: {c, d, a} or {U, W, V, U}.

– acyclic graph: One that does
not contain any cycles.

• loop: An edge directly from
a node to itself.
– Many graphs don't allow loops.
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Weighted graphs
• weight: Cost associated with a given edge.

– Some graphs have weighted edges, and some are unweighted.
– Edges in an unweighted graph can be thought of as having equal weight (e.g. all 

0, or all 1, etc.)
– Most graphs do not allow negative weights.

• example: graph of airline flights, weighted by miles between cities:
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Directed graphs
• directed graph ("digraph"): One where edges are one-way

connections between vertices.
– If graph is directed, a vertex has a separate in/out degree.
– A digraph can be weighted or unweighted.
– Is the graph below connected?  Why or why not?

a

d

b

e

gf

c



Graphs (review)
Definition. A directed graph (digraph)
G = (V, E) is an ordered pair consisting of
• a set V of vertices (singular: vertex),
• a set E Í V ´ V of edges.

In an undirected graph G = (V, E), the edge  set E 
consists of unordered pairs of vertices.

In either case, we have |E | = O(V 2). Moreover,  if G is
connected, then | E | ³ | V | – 1, which  implies that
lg |E | = Q(lgV).



Adjacency-matrix  representation

A[i, j] =

The adjacency matrix of a graph G = (V, E), where  
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]  
given by

1 if (i, j) Î E,
0 if (i, j) Ï E.



Adjacency-matrix  representation

A[i, j] =

The adjacency matrix of a graph G = (V, E), where  
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]  
given by

1 if (i, j) Î E,
0 if (i, j) Ï E.

22 11

33 44

A 1 2 3 4
1 0 1 1 0
2 0 0 1 0
3 0 0 0 0
4 0 0 1 0

Q(V 2) storage
Þ dense
representation.



Adjacency-list representation
An adjacency list of a vertex v Î V is the list Adj[v]  
of vertices adjacent to v.

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}
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For undirected graphs, |Adj[v] | = degree(v).  
For digraphs, |Adj[v] | = out-degree(v).



Adjacency-list representation
An adjacency list of a vertex v Î V is the list Adj[v]  
of vertices adjacent to v.

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}
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For undirected graphs, |Adj[v] | = degree(v).  
For digraphs, |Adj[v] | = out-degree(v).
Handshaking Lemma: åvÎV Adj[v] = 2 |E| for 
undirected  graphs Þ adjacency lists use Q(V + E) 
storage — a sparse representation (for either type 
of graph).



GRAPH SEARCH



Searching for paths
• Searching for a path from one vertex to another:

– Sometimes, we just want any path (or want to know there is a path).
– Sometimes, we want to minimize path length (# of edges).
– Sometimes, we want to minimize path cost (sum of edge weights).

• What is the shortest path from MIA to SFO?
Which path has the minimum cost?
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Depth-first search
• depth-first search (DFS): Finds a path between two vertices by 

exploring each possible path as far as possible before backtracking.
– Often implemented recursively.
– Many graph algorithms involve visiting or marking vertices.

• Depth-first paths from a to all vertices (assuming ABC edge order):
– to b: {a, b}
– to c: {a, b, e, f, c}
– to d: {a, d}
– to e: {a, b, e}
– to f: {a, b, e, f}
– to g: {a, d, g}
– to h: {a, d, g, h}
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DFS pseudocode
function dfs(v1, v2):

dfs(v1, v2, { }).

function dfs(v1, v2, path):
path += v1.
mark v1 as visited.
if v1 is v2:

a path is found!

for each unvisited neighbor n of v1:
if dfs(n, v2, path) finds a path: a path is found!

path -= v1.   // path is not found.

• The path param above is used if you want to have the
path available as a list once you are done.
– Trace dfs(a, f) in the above graph.
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DFS observations
• discovery: DFS is guaranteed to

find a path if one exists.

• retrieval: It is easy to retrieve exactly
what the path is (the sequence of 
edges taken) if we find it

• optimality: not optimal.  DFS is guaranteed to find a path, 
not necessarily the best/shortest path
– Example: dfs(a, f) returns {a, d, c, f} rather than {a, d, f}.
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