CS60020: Foundations of
Algorithm Design and Machine
Learning

Graphs

e graph: A data structure containing:

— a set of vertices V, (sometimes called nodes) e

— a set of edges E, where an edge
represents a connection between 2 vertices.

e GraphG=(V, E) G

* an edge is a pair (v, w) where v, ware in V

* the graph at right:
— V={a, b, c, d}
— E= {(al C)I (bl C)r (bl d)r (CI d)}

* degree: number of edges touching a given vertex.
— atright: a=1, b=2, c=3, d=2

Graph examples

* For each, what are the vertices and what are the edges?
— Web pages with links
— Methods in a program that call each other
— Road maps (e.g., Google maps)
— Airline routes

Y
@®
$ae

— Facebook friends

— Course pre-requisites
— Family trees
— Paths through a maze

Paths

path: A path from vertex a to b is a sequence of edges that can be
followed starting from a to reach b.

— can be represented as vertices visited, or edges taken

— example, one path from Vto Z: {b, h} or {V, X, Z}

— What are two paths from U to Y?

path length: Number of vertices
or edges contained in the path.

neighbor or adjacent: Two vertices
connected directly by an edge.

— example: Vand X

Reachability, connectedness

reachable: Vertex U is reachable from V
if a path exists from U to V.

connected: A graph is connected if every
vertex is reachable from any other.

— Is the graph at top right connected?

strongly connected: When every vertex
has an edge to every other vertex.

Loops and cycles

e cycle: A path that begins and ends at the same node.
— example: {b, g, f, c,a}lor{V,X,Y, W, U, V}.
— example: {c, d, a}or {U, W, V, U}.

— acyclic graph: One that does
not contain any cycles.

* loop: An edge directly from
a node to itself.

— Many graphs don't allow loops.

Weighted graphs

* weight: Cost associated with a given edge.
— Some graphs have weighted edges, and some are unweighted.

— Edges in an unweighted graph can be thought of as having equal weight (e.g. all
0, orall 1, etc.)

— Most graphs do not allow negative weights.

 example: graph of airline flights, weighted by miles between cities:

Directed graphs

* directed graph ("digraph"): One where edges are one-way
connections between vertices.
— If graph is directed, a vertex has a separate in/out degree.
— A digraph can be weighted or unweighted.
— |Is the graph below connected? Why or why not?

6'@
OO

SN Graphs (review)

Definition. A directed graph (digraph)
G = (V, E) 1s an ordered pair consisting of
* a set J of vertices (singular: vertex),
caset £ Vx Vof edges.

In an undirected graph G = (V, E), the edge set £
consists of unordered pairs of vertices.

In either case, we have |E| = O()2). Moreover, if G 1s
connected, then | £ | > |)| — 1, which implies that

Ig|E]=06(d1gP).

S0 Adjacency-matrix representation

e
\\\‘ \‘ s

The adjacency matrix of a graph G = (V, E), where
V=1{1,2,...,n},1s the matrix A[1 .. n, 1..n]

given by
-4 J 1 af(i,)) € E,
Ali, /] { 0 if(i,)) ¢ E.

ALGORITHMS

e ‘
\\“ \‘ i

Adjacency-matrix representation

The adjacency matrix of a graph G = (V, E), where
V=1{1,2,...,n},1s the matrix A[1 .. n, 1..n]

given by
-4 J 1 af(i,)) € E,
Al { 0 if (i,)) ¢ E.

A1 2 3 4
@ @ 110 1 1 0 O(V?)storage
' 210 0 1 0 = dense
@ @ 310 0 0 O representation.
410 0 1 O

ALGORITHMS

y i ‘
\\\‘ \‘ e

Adjacency-list representation

An adjacency list of a vertex v € V' 1s the list Adj|V]
of vertices adjacent to v.

Adi[1]= {2, 3}
@'ﬁ. 412 -)
Adj3] = {}

3)—4) aga- 13

y i ‘
\\\‘ \‘ e

S0 Adjacency-list representation

Anédjacency list of a vertex v € V'1s the list Adj|[v]

of vertices adjacent to v.
Adj

N
@’ﬂ Adj2
AdJ[3

OO Adj[4

=12, 3}
=13}
=
=13}

For undirected graphs, | Adj[v]| = degree(v).
For digraphs, |Adj[v]| = out-degree(v).

S0 Adjacency-list representation

e
\\\‘ \‘ e

Anadjacency list of a vertex v € J'1s the list Adj|V]
of vertices adjacent to v.

Adj[1]= {2, 3}
@’ﬂ Adil2] = 13}

Adj[3]= 4}
G—® -0

For undirected graphs, | Adj[v]| = degree(v).
For digraphs, |Adj[v]| = out-degree(v).

Handshaking Lemma: >, _, Adj[v] =2 |E| for
undirected graphs = adjacency lists use O(}) + E)
storage — a sparse representation (for either type
of graph).

GRAPH SEARCH

Searching for paths

e Searching for a path from one vertex to another:
— Sometimes, we just want any path (or want to know there is a path).
— Sometimes, we want to minimize path length (# of edges).
— Sometimes, we want to minimize path cost (sum of edge weights).

 What is the shortest path from MIA to SFO?
Which path has the minimum cost?

Depth-first search

* depth-first search (DFS): Finds a path between two vertices by
exploring each possible path as far as possible before backtracking.
— Often implemented recursively.
— Many graph algorithms involve visiting or marking vertices.

e Depth-first paths from a to all vertices (assuming ABC edge order):
— tob: {a, b}
— toc: {a,b,ef c}
— tod: {a, d} 6‘6 G
— toe: {a,b, e}
— tof: {a, b, e, f} @
- tog: {a,d,8) 9‘ A

— toh:{a, d, g, h}

DFS pseudocode
function dfs(v,, v,):
dfs(v,, v,, { }1). 2 e‘@
function dfs(v,, v,, path): @ e
path +=v,. ‘
mark v, as visited.
if vy is \izz @ G
a path is found!

for each unvisited neighbor n of v;:
if dfs(n, v,, path) finds a path: a path is found!

path -=v,. // path is not found.

 The path param above is used if you want to have the
path available as a list once you are done.

— Trace dfs(a, f) in the above graph.

DFS observations
* discovery: DFS is guaranteed to 6‘@ ©

find a path if one exists.

* retrieval: It is easy to retrieve exactly
what the path is (the sequence of
edges taken) if we find it

e optimality: not optimal. DFS is guaranteed to find a path,
not necessarily the best/shortest path

— Example: dfs(a, f) returns {a, d, c, f} rather than {a, d, f}.

