CS60020: Foundations of Algorithm Design and Machine Learning

Sourangshu Bhattacharya

Graphs

- **graph**: A data structure containing:
	- a set of **vertices** *V*, *(sometimes called nodes)*
	- a set of **edges** *E*, where an edge represents a connection between 2 vertices.
		- Graph $G = (V, E)$
		- an edge is a pair (*v*, *w*) where *v*, *w* are in *V*

- $-V = \{a, b, c, d\}$
- $E = \{(a, c), (b, c), (b, d), (c, d)\}\$
- **degree**: number of edges touching a given vertex.
	- $-$ at right: a=1, b=2, c=3, d=2

Graph examples

- For each, what are the vertices and what are the edges?
	- Web pages with links
	- Methods in a program that call each other
	- Road maps (e.g., Google maps)
	- Airline routes
	- Facebook friends
	- Course pre-requisites
	- Family trees
	- Paths through a maze

Paths

- **path**: A path from vertex *a* to *b* is a sequence of edges that can be followed starting from *a* to reach *b*.
	- can be represented as vertices visited, or edges taken
	- example, one path from V to $Z: \{b, h\}$ or $\{V, X, Z\}$
	- What are two paths from U to Y?
- **path length**: Number of vertices or edges contained in the path.
- **neighbor** or **adjacent***:* Two vertices connected directly by an edge.
	- example: V and X

Reachability, connectedness

- **reachable**: Vertex *U* is *reachable* from *V* if a path exists from *U* to *V*.
- **connected**: A graph is *connected* if every vertex is reachable from any other.
	- Is the graph at top right connected?
- **strongly connected:** When every vertex has an edge to every other vertex.

Loops and cycles

- **cycle**: A path that begins and ends at the same node.
	- $-$ example: {b, g, f, c, a} or {V, X, Y, W, U, V}.
	- $-$ example: {c, d, a} or {U, W, V, U}.
	- **acyclic graph**: One that does not contain any cycles.
- **loop**: An edge directly from a node to itself.
	- Many graphs don't allow loops.

Weighted graphs

- **weight**: Cost associated with a given edge.
	- Some graphs have weighted edges, and some are unweighted.
	- Edges in an unweighted graph can be thought of as having equal weight (e.g. all 0, or all 1, etc.)
	- Most graphs do not allow negative weights.
- *example*: graph of airline flights, weighted by miles between cities:

Directed graphs

- **directed graph** ("digraph"): One where edges are *one-way* connections between vertices.
	- If graph is directed, a vertex has a separate in/out degree.
	- A digraph can be weighted or unweighted.
	- Is the graph below connected? Why or why not?

Graphs (review)

Definition. A *directed graph* **(***digraph***)** $G = (V, E)$ is an ordered pair consisting of

- a set *V* of *vertices* (singular: *vertex*),
- a set $E \subset V \times V$ of *edges*.

In an *undirected graph* $G = (V, E)$, the edge set *E* consists of *unordered* pairs of vertices.

In either case, we have $|E| = O(V^2)$. Moreover, if G is connected, then $|E| \geq |V| - 1$, which implies that $\lg|E| = \Theta(\lg V)$.

Adjacency-matrix representation

 $A[i, j] =$ The *adjacency matrix* of a graph $G = (V, E)$, where $V = \{1, 2, ..., n\}$, is the matrix $A[1, n, 1, n]$ given by 1 if $(i, j) \in E$, 0 if $(i, j) \notin E$.

Adjacency-matrix representation

The *adjacency matrix* of a graph $G = (V, E)$, where $V = \{1, 2, ..., n\}$, is the matrix $A[1, n, 1, n]$ given by 1 if (*i*, *j*) Î E,

$$
A[i,j] = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}
$$

A 1 2 3 4 1 0 1 1 0 2 0 0 1 0 3 0 0 0 0 4 0 0 1 0

 $\Theta(V^2)$ storage \Rightarrow *dense*

representation.

Adjacency-list representation

An *adjacency list* of a vertex $v \in V$ is the list $Adj[v]$ of vertices adjacent to *v*.

$$
Adj[1] = \{2, 3\} \nAdj[2] = \{3\} \nAdj[3] = \{\}
$$
\n
$$
Adj[4] = \{3\}
$$

Adjacency-list representation

An *adjacency list* of a vertex $v \in V$ is the list $Adj[v]$ of vertices adjacent to *v*.

 $Adj[1] = \{2, 3\}$ $Adj[2] = \{3\}$ *Adj*[3] = {} $Adj[4] = \{3\}$

For undirected graphs, $|Adj[v]| = degree(v)$. For digraphs, $|Adj[v]| = out-degree(v)$.

Adjacency-list representation

An *adjacency list* of a vertex $v \in V$ is the list $Adj[v]$ of vertices adjacent to *v*.

 $Adj[1] = \{2, 3\}$ $Adj[2] = \{3\}$ $Adj[3] = \{\}$ $Adj[4] = \{3\}$

For undirected graphs, $|Adj[v]| = degree(v)$. For digraphs, $|Adj[v]| = out-degree(v)$.

Handshaking Lemma: $\sum_{v \in V}$ Adj $[v] = 2$ |**E**| for undirected graphs \Rightarrow adjacency lists use $\Theta(V + E)$ storage — a *sparse* representation (for either type of graph).

GRAPH SEARCH

Searching for paths

- Searching for a path from one vertex to another:
	- Sometimes, we just want *any* path (or want to know there *is* a path).
	- Sometimes, we want to minimize path *length* (# of edges).
	- Sometimes, we want to minimize path *cost* (sum of edge weights).
- What is the shortest path from MIA to SFO? Which path has the minimum cost?

Depth-first search

- **depth-first search** (DFS): Finds a path between two vertices by exploring each possible path as far as possible before backtracking.
	- Often implemented recursively.
	- Many graph algorithms involve *visiting* or *marking* vertices.
- Depth-first paths from *a* to all vertices (assuming ABC edge order):
	- $-$ to b: $\{a, b\}$
	- $-$ to c: {a, b, e, f, c}
	- $-$ to d: $\{a, d\}$
	- $-$ to e: $\{a, b, e\}$
	- $-$ to f: {a, b, e, f}
	- $-$ to g: {a, d, g}
	- $-$ to h: {a, d, g, h}

DFS pseudocode

function **dfs**(v_1 , v_2): dfs(v_1 , v_2 , { }).

```
function dfs(v_1, v_2, path):
  path += v_1.
  mark v_1 as visited.
  if v_1 is v_2:
     a path is found!
```


```
for each unvisited neighbor n of v_1:
   if dfs(n, v<sub>2</sub>, path) finds a path: a path is found!
path - v<sub>1</sub>. // path is not found.
```

```
• The path param above is used if you want to have the
path available as a list once you are done.
```
– Trace dfs(*a*, *f*) in the above graph.

DFS observations

- *discovery*: DFS is guaranteed to find *a* path if one exists.
- *retrieval*: It is easy to retrieve exactly what the path is (the sequence of edges taken) if we find it

- *optimality*: not optimal. DFS is guaranteed to find a path, not necessarily the best/shortest path
	- $-$ Example: dfs(a, f) returns {a, d, c, f} rather than {a, d, f}.