CS60020: Foundations of
Algorithm Design and Machine
Learning

BOOSTING

Boosting

Train classifiers (e.g. decision trees) in a sequence.

A new classifier should focus on those cases which were
incorrectly classified in the last round.

Combine the classifiers by letting them vote on the final
prediction (like bagging).

Each classifier is “weak’ but the ensemble is “strong.”
AdaBoost is a specific boosting method.

Boosting Intuition

We adaptively weigh each data point.

Data points which are wrongly classified get high weight (the algorithm will
focus on them)

Each boosting round learns a new (simple) classifier on the weighed dataset.

These classifiers are weighed to combine them into a single powerful classifier.

Classifiers that that obtain low training error rate have high weight.

We stop by using monitoring a hold out set (cross-validation).

Boosting in a PlcTure

boosting rounds

training cases [‘/ . X - ‘/ Correctly

J I l J R J classified
—

This example
\/ has a large weigr

in this round
l J - < l v - J
‘{isDThas

h1 Kx hzx\ hy /0 h4 a strong vote.
| | | |

|
h 5

Boosting: Adaboost

Binary classification problem.

Combining multiple “base” classifiers to come up
with a “good” classifier.

Base classifiers have to be “weak learners”, accuracy
> 50%

Base classifiers are trained on a weighted training
dataset.

Boosting involves sequentially learning «,,, and
Ym (X).

Adaboost

1. Initialize the data weighting coefficients {w,, } by setting wy) =1 /N for
n=1,....N.

2. Form=1,... ,M:

(a) Fit a classifier y,,,(x) to the training data by minimizing the weighted
error function

N
Zu (Y (%) # t) (14.15)

n=1

where I(y,,(x,,) # t,.) is the indicator function and equals 1 when
Ym (X,) # t,, and 0 otherwise.

(b) Evaluate the quantities

N
Z wr(zm)l(ym(xn) # tn)
_ n=l1
€, = = (14.16)
>
n=1

_ 1
a,, =In {1 . (14.17)

Adaboost (contd..)

(c) Update the data weighting coefficients

Jdm+41)
n

(1)

u = w, ’'exp {Oml(ym (:xn) ;{ tn)}

3. Make predictions using the final model, which is given by

M
Yar(x) = sign (Z amym(x)) .

m=1

And in animation

Original training set: equal weights to all training samples

Taken from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire

AdaBoost example

£ = error rate of classifier
a = weight of classifier

— +

10

AdaBoost example

ROUND 2

£)=021
2

D

017=0.65 .

AdaBoost example

ROUND 3

12

AdaBoost example

13

Adaboost illustration

_
o™
all _
= O
. so -
o °
R (o)
. _
_
_
. . L,
(o | o «/_.
: =
™
fl
= QO
o (-}

5%
Q__ -
000 o

° o
~ = m__
o
l
S o©
0 &® S0
O @ (@)
|Or|Q.O|@ID
o) O
fo) O
°® o
.oo
~ = ~

1

1

1 ™

m = 150]

[(aw] o

m = 10 |

(| o (e |

m==6 |

_

_

_

_

. A
o = ol

1

1 e

1

Adaboost

1. Initialize the data weighting coefficients {w,, } by setting wy) =1 /N for
n=1,....N.

2. Form=1,... ,M:

(a) Fit a classifier y,,,(x) to the training data by minimizing the weighted
error function

N
Zu (Y (%) # t) (14.15)

n=1

where I(y,,(x,,) # t,.) is the indicator function and equals 1 when
Ym (X,) # t,, and 0 otherwise.

(b) Evaluate the quantities

N
Z wr(zm)l(ym(xn) # tn)
_ n=l1
€, = = (14.16)
>
n=1

_ 1
a,, =In {1 . (14.17)

Adaboost (contd..)

(c) Update the data weighting coefficients

Jdm+41)
n

(1)

u = w, ’'exp {Oml(ym (:xn) ;{ tn)}

3. Make predictions using the final model, which is given by

M
Yar(x) = sign (Z amym(x)) .

m=1

Adaboost - Observations

* €, weighted error € [0,0.5)
* a4y, =0

« w/™*1is higher than w™ by a factor (1 —
€mn)/€Em, When i is misclassified.

Adaboost - derivation

e Consider the error function:

_”\"
E — Z exp {—tn fm (:Xn)}
n=1

e Where
Z oy (x)

[=1

b |

fm (X) -

* Goal: Minimize E w.r.t. a; and
y;(x), sequentially.

Adaboost - derivation

Minimize w.r.t. a,,

N

o 1
E = Z exp {_tn.fm—l(xn) - stn Xy ym(xn)}
n=1 -
N 1
= Z lem exp {_stnanzym(xn)}
n=1 N

Let 7,,, be the set of datapoints correctly
classified by y,,.

. ','.) "'.) \
E — e Qm /2 § ll (m) 4+ eam,_ § w ;;n

n€Elm nEMm

N
= (e™m 2 _ e "‘"“)Z w, m) I((Y (X) Ftn) + € Z

n=1

Adaboost - derivation

* Minimizing w.r.t. y,,, and «a,,,, we get the
updates 2(a) and 2(b).

e We can see that:

‘ - 1
Sm+1) _ _ (m)) , _
u‘-n - lL-n 93\1) { _ stn 8 m ym (}\n) .

—

. nym(\n) - J» — [(Um(\n) F/ tn)
* Using:
* We get:
(m+1) (m)

w, =Wy, C\P(o '2) exp {0771[(!/771 (X-n)

n

Adaboost

1. Initialize the data weighting coefficients {w,, } by setting w,, " = 1/N for
n=1,....N.

2. Form=1,... M:
(a) Fit a classifier y,,,(x) to the training data by minimizing the weighted
error function
N
Jm = Z u"Lm]I(ym(xn) # tn)
n=1
where I(y,,(x,,) # t,) is the indicator function and equals 1 when
Ym (X,) # t,, and O otherwise.
(b) Evaluate the quantities

N
> wl™ Iym(xa) # ta)
n=1
€Em — N
> wi
n=1

Adaboost (contd..)

(c) Update the data weighting coefficients

Jdm+41)
n

(1)

u = w, ’'exp {Oml(ym (:xn) ;{ tn)}

3. Make predictions using the final model, which is given by

M
Yar(x) = sign (Z amym(x)) .

m=1

XGBOOST

Regression Tree Ensemble

tree1 tree2

Use Computer
Daily

Prediction of is sum of scores predicted by each of the tree

Tree Ensemble methods

* Very widely used, look for GBM, randomforest...

= Almost half of data mining competition are won by using some
variants of tree ensemble methods

* |Invariant to scaling of inputs, so you do not need to do careful
features normalization.

 Leam higher order interaction between features.

 Canbe scalable, and are used in Industry

Put into context: Model and Parameters

* Model: assuming we have Ktrees

Ji = > opey (@), T e@

Space of functions contalnlng all Regression trees

Think: regression tree is a function that maps the attributes to the score

» Parameters
= Including structure of each tree, and the score in the leaf

= Or simply use function as parameters
© = {f17f27"°7fK}

= Instead learning weightsin R4, we are learning functions(trees)

Learning a tree on singlevariable

« How can we learn functions?
* Define objective (loss, regularization), and optimize it!!

« Example:
= Consider regression tree on single input t (time)
= | want to predict whether | like romantic music at time t

The model is regression tree that splits on time Piecewise step function over time

.&' my rate over love songs

N Equivalently
I Ct b

1.0 . 1;/._._
Y/'\N e 'rx'
0.2 1.2 \ timeline 7

When | met my girlfriend

Learning a step function

 Things we need to learn

A
my rate over love songs e .y
~ y /
g « 0 Splitting Positions

hmm...

t .~ . — The Heightin each segment

- ——

_—

Ny

>
\ timeline
When | met my girlfriend

 Objective for single variable regression tree(step functions)
= Training Loss: How will the function fit on the points?

= Regularization: How do we define complexity of the function?
+ Number of splitting points, 12 norm of the height in each segment?

Learning step function (visually)

A User’s interest A User’s interest
X X x X X X‘+‘—)@,_)(_)(_
X <
X X
X X X - va %
> t > 1
Observed user’s interest on topic k bt bttt
against time t [X] Too many splits, Q(f) is high
A User’s interest A User’s interest
X X
X : x|
X X X 1 X X X
' :
1 1
1 > t 1 > t
t4 t,

[%] Wrong split point, L() is high [v/] Good balance of Q(f) and L(f)

Coming back: Objective for Tree Ensemble

* Model: assuming we have Ktrees

i = S opey frlxi), fn€F

 Objective
. A K
Obj =1 Wy, 9s) + > 1—q QU fx)
7 N
Training loss Complexity of the Trees

* Possible ways to define () ?
= Number of nodes in the tree, depth
= L2norm of the leaf weights
= ...detailed later

Objective vs Heuristic

* When you talk about (decision) trees, itis usually heuristics
= Split by information gain
= Prune the tree
« Maximum depth
= Smooth the leaf values

« Most heuristics maps well to objectives, taking the formal
(objective) view let us know whatwe are learning

= Information gain -> training loss

= Pruning -> regularization defined by #nodes

« Max depth -> constraint on the functionspace

= Smoothing leaf values -> L2 regularization on leaf weights

Regression Tree s not just forregression!

 Regression tree ensemble defines how you make the
prediction score, it can be usedfor

= Classification, Regression, Ranking. ...

* |t all depends on how you define the objective function!

« So far we have learned:
« Using Square loss 1(y;, 9;) = (y; — 9:)?
+ Will result in common gradient boosted machine
» Using Logistic loss 1(y;, 7;) = y; In(1 + e7 %) + (1 — y;) In(1 + %)
+ Will results in LogitBoost

Outline

» Review of key concepts of supervisedlearning
» Regression Tree and Ensemble (What are we Learning)
» Gradient Boosting (How do weLearn)

e Summary

Take Home Message for thissection

« Bias-variance tradeoff is everywhere

 The loss + regularization objective pattern applies for
regression tree learning (function learning)

» We want predictive and simple functions

« This defines what we want tolearn (objective, model).

 But how do we learnit?
= Next section

So How do welearn?

* Objective: > 1(yi, i) + >, QU f), fx € F

* We can not use methods such as SGD,to find f (since theyare
trees, instead of just numerical vectors)

» Solution: Additive Training (Boosting)
= Start from constant prediction, add a new functioneach time

Y; =

i) = i) =0 + Az

0.2 = (@) + falas) = 02V + falz)

Qz@ — Zzzl fk(xz) — th_l) + ft(xz)\ New function
/

Model at training round t Keep functions added in previous round

Additive Training

* How do we decide which fto add?
= Optimize the objective!!
- The prediction at round tis ¢\ = 3\ + fe(ws)
This is what we need to decide in round t

Obj® =" Uy g + 3

+ N+ constant

Goal: find ft to minimize this

» Consider square loss
2
Obj® =37, (yz — (g + ft(xi))) + Q(ft) + const

= 2?21 () + ft(afi)ﬂ + Q(f;) + const

This is usually called residual from previous round

Taylor Expansion Approximation of Loss

« Goal Ob;j) =" 1 <yz,yj§t Ny ft(%)) + Q(ft) + constant
= Seems still complicated except for the case of squareloss

+ Take Taylor expansion of the objective
« Recall f(z+ Az)~ f(z) + f'(2)Az + 5 f"(z)Ax?
- Define gi = dge—nl(yi, g), hi =95, l(yi, 9" Y)

Obj®) ~ S {l(y% yft_)) + gi fi(xz;) + %hsz(xz)} + Q(ft) + constant

* If you are not comfortable with this, think of square loss
gi = Oge-v (D —)2 =20 —yy) hi =00 (yi — g V)? =

« Compare what we get to previous slide

Our New Goal

 Objective, with constants removed
Yoy Lgife(@s) + shiff(xa)] + Qf:)

= Where 9= g(t—l)l(yq;yﬁ(t_l))a hz':a;u_l)l(ymﬁ(t_l))

« Why spending smuch efforts to derive the objective, why not
just grow trees...

= Theoretical benefit: know whatwe are learning, convergence

= Engineering benefit, recall the elements of supervised learning
« 9nd h;comes from definition of lossfunction
«+ Thelearning of function only depend on the objective via 9: and h;

+ Think of how you can separate modules of your code when you

are asked to implement boosted tree for both square loss and
logistic loss

Refine the definition of tree

« We define tree by avector of scores in leafs, and aleafindex
mapping function that maps an instance to a leaf

fi(T) = we(z), weRY, q:R*— {1,2,---,T}

\ The structure of the tree

N leaf weight of the tree

Define Complexity of a Tree

 Define complexity as (this is not the only possibledefinition)
_ 1 T 2
Q(ft) =T + 5A Zj:l W

Number of leaves L2 norm of leaf scores

Q=73+ 2iA4+0.01+1)

Revisit the Objectives

 Define the instance setin leaf jas I; = {i|q(z;) = j}
« Regroup the objective by eachleaf
Obj ") ~ 370 [gife(ws) + 3hifF ()] + Qfr)
=D ic1 |9iWq(a;) + %hiwg(m) T A5 E;'le w;
= S0 |(Cier, 960w5 + 3(Tiey, hi + N2 | +4T

 Thisis sum of T independent quadratic functions

The Structure Score

 Two facts about single variable quadraticfunction

G2

* Letusdefine Gj =2 ic;, 9 Hj=>,c; hi

obj® =¥ [(ZE 1 g)wi + 3 (Ciey, hi+ A)wﬂ 4+ AT
J &
=Y iy |Giw; + 5(Hj + Nw?| +4T

 Assume the structure of tree (q(x)) is fixed, the optimal
weight in each leaf, and theresulting objective value are

This measures how good a tree structure is!

The Structure Score Calculation

Instance index gradient statistics

N
g1,h’| /\

I3 — {27375}
2 g2, h2 -1 G3 = g2+ 93+ g5
I = {1} Iy =14} Hy = hy+ hs+ hs
3 g3, h3 Gi=aq G2 = g4
Hy =hy Hy = hy
4 g4, h4
G

The smaller the score is, the better the structure is

g5, h5

Searching Algorithm for Single Tree

« Enumerate the possible tree structuresq

« Calculate the structure score for the q, using the scoring eq.

. 1 T 3
Obj = —35 2.1 ;A +T

 But...there can be infinite possible tree structures..

Greedy Learning of the Tree

* In practice, we grow the treegreedily
= Start from tree withdepth O

= For each leaf node of the tree, try to add a split. The change of

objective after adding the splitis The complexity cost by

introducing additional leaf
1 G2 G2 (GL+GR)2 /
Gain = 3l g 5 + mix — HorHEaix)

the score of left child

the score of if we do not split

the score of right child

= Remaining question: how do we find the best split?

Efficient Finding of the Best Split

» What is the gain of asplitrule +; <« ?Sayz; isage

% N
(T

g1,h1 g4, ha 92, h2 g5,h5 g3,h3

GrL =01+ 94 Gr=¢92+93+ g5

* All we need is sum of gand h in each side, andcalculate

G% _|_ G?% _ (GL+GR)2 .
Hro+x © Hr+x HotHg+x |

Gain =

* Left to rightlinear scan over sorted instance is enough to
decide the best split along thefeature

An Algorithm for Split Finding

 For each node, enumerate over all features
« For each feature, sorted the instances by feature value
« Usealinear scanto decide the best split along thatfeature
= Takethe best split solution along all thefeatures

« Time Complexity growing atree of depthK

= |tis O(n d Klog n): or each level, need O(n log n) time to sort
There are d features, and we need to do it forKlevel

= This can be further optimized (e.g. use approximation or caching
the sorted features)

= Canscale to very large dataset

What about Categorical Variables?

« Sometree learning algorithm handles categorical variable and
continuous variable separately

= We can easily use the scoring formula we derived to score split
based on categorical variables.

 Actually it is not necessary to handle categorical separately.

= \WWe can encode the categorical variables into numericalvector
using one-hot encoding. Allocate a #categorical length vector

L 1 if z is in category j
71 0 otherwise

= The vector will be sparse if there are lots of categories, the
learning algorithm is preferred to handle sparse data

Pruning and Regularization

* Recall the gain of split, it can be negative!
L+A Hr+A Hp,+Hgr+ \

= When the training loss reduction is smaller thanregularization

Gain =

= Trade-off between simplicity and predictivhess

* Pre-stopping
= Stop split if the best split have negative gain
= But maybe a split can benefit future splits..

* Post-Prunning

= Grow atree to maximum depth, recursively prune all the leaf
splits with negative gain

Recap: Boosted Tree Algorithm

 Add anew tree in eachiteration

 Beginning of each iteration, calculate
gi = 8@(t—1)l(yi7g(t_l))a h; = a;(t—l)l(y?hg(t_l))

 Usethe statistics to greedily growatree fi(z)

. T G2
Ob] = —% ijl H —|—’yT

+ Add /i(z) to themodel %" =" " + fi(:)
- Usually, instead wedo ¥ =y~ + efi(z;)
= € is called step-size or shrinkage, usually set around0.1

= This means we do not do full optimization in each step and
reserve chance for future rounds, it helps prevent overfitting

