CS60020: Foundations of
Algorithm Design and Machine
Learning

The Heap Data Structure

* Def: A heap is a nearly complete binary tree with the
following two properties:

— Structural property: all levels are full, except possibly the
last one, which is filled from left to right

— Order (heap) property: for any node X
Parent(x) > x

(8) From the heap property, it
follows that:
(7) (4) “The root is the maximum
Y (2 element of the heap!”
Heap

A heap is a binary tree that is filled in order

Array Representation of Heaps

* A heap can be stored as an array

A.

— Root of tree is A[1]

— Left child of A[i] = A[2i]

— Right child of A[i] = A[2i + 1]
— Parentof A[i]= A[Li/2]]

— Heapsize[A] < length[A]

* The elements in the subarray

A[(Ln/2]+1) .. n] are leaves

Operations on Heaps
Maintain/Restore the max-heap property
— MAX-HEAPIFY - O(log n)
Create a max-heap from an unordered array
— BUILD-MAX-HEAP — O(n)
Sort an array in place
— HEAPSORT

Priority queues

Heapsort

e Goal:
— Sort an array using heap representations (D
(4) (3)
¢ Idea: n e

— Build a max-heap from the array

— Swap the root (the maximum element) with the

last element in the array
— “Discard” this last node by decreasing the heap
Size

— Call MAX-HEAPIFY on the new root

Example: A=[7,4,6 3,1, 2]

£5° o ® o

MAX-HEAPIFY(A, 1, 4) MAX-HEAPIFY(A, 1, 3) MAX-HEAPIFY(A, 1, 2)

@/@@ 0 © [
® O O,

MAX-HEAPIFY(A, 1, 1)

S N

Alg: HEAPSORT(A)

BUILD-MAX-HEAP(A)
for i — length[A] downto 2
do exchange A[1] < A[i]
MAX-HEAPIFY(A, 1,i-1)

Running time: O(nlgn) --- Can
be shown to be O(nlgn)

O(n)

>Nn-1times

O(lgn)

Priority Queues

Properties
- Each element 1s associated with a value (priority)

- The key with the highest (or lowest) priority 1s extracted first

Operations
on Priority Queues
* Max-priority queues support the following

operations:

— INSERT(S, x): inserts element X into set S

— EXTRACT-MAX(S): removes and returns element

of S with largest key

— MAXIMUM(S): returns element of S with largest

key

— INCREASE-KEY(S, x, k)* increases value of

HEAP-MAXIMUM

Goal:

— Return the largest element of the

heap
Running time: O(1)

ﬂl;q HEAP- MI_,IA\XHXIUIVI(A\
1. return A[le]a

Heap-Maximum(A) returns 7

HEAP-EXTRACT-MAX

Goal:

— Extract the largest element of the heap (i.e., return the max value
and also remove that element from the heap

ldea:
— Exchange the root element with the last
— Decrease the size of the heap by 1 element

— Call MAX-HEAPIFY on the new root, on a heap of size n-1

Heap A: /@\ Root is the largest element

Example: Heap-exTRACT-MAX

max = 16 (14) (10

Heap size decreased with 1

(19

(8) 10)

12

Call MAX-HEAPIFY(A, 1, n-1)

HEAP-EXTRACT-MAX

Alg: HEAP-EXTRACT-MAX(A, n)

1. ifn<1

2. then error “heap underflow”

3. max «— A[l]
4. A[l] < A[n]
5. MAX-HEAPIFY(A, 1, n-1) rem%kes heap

6. return max
Running time: O(Ign)

HEAP-INCREASE-KEY

* Goal:
— Increases the key of an element i in the heap

e |dea:

— Increment the key of A[i] to its new value

— |If the max-heap property does not hold anymore:
traverse a path toward the root to find the proper
place for the newly incr ed key

Example: HeaP-INCREASE-KEY

15

HEAP-INCREASE-KEY

Alg: HEAP-INCREASE-KEY(A, i, key)

if key < A[i]
then error “new key is smaller than current key”
Ali] — key
while i > 1 and A[PARENT(i)] < A[i]
do exchange A[i] ¢ A[PARENT(i)]
| — PARENT(i)

A S

Running time: O(Ign)

Key [i] ¢ 15

MAX-HEAP-INSERT

* Goal:
(16
— Inserts a new element into a
max-heap 1 19
8) @M@ &
* |dea: 2) WO
— Expand the max-heap with a 16
new element whose key is -0 13 10
— Calls HEAP-INCREASE-KEY toset (8 (D) (&
2 WO W

the key of the new node to its
correct value and maintain the
max-heap property

Example: max-HEAP-INSERT

Insert value 15: Increase the key to 15
- Start by inserting -0 Call HEAP-INCREASE-KEY on A[11] = 15
The restored heap containing

(16
(14) 10
(8) M) &
2 WO
the newly added element
19 (16
12) 10 (15) 10
G O®GC 6 (8) W@ &
@D WO @ 2 WO @

(16)
(19 10)
OO0 O
@D WL @

MAX-HEAP-INSERT

Alg: MAX-HEAP-INSERT(A, key, n)
14 10
1. heap-size[A] < n+1 OBROIOSRO
ONOIONS

2. Aln+1]« -
3. HEAP-INCREASE-KEY(A, n + 1, key)

Running time: O(lgn)

Summary

 We can perform the following operations on heaps:

— MAX-HEAPIFY O(lgn)

— BUILD-MAX-HEAP O(n)

— HEAP-SORT O(nlgn)

— MAX-HEAP-INSERT O(Ign) .

— HEAP-EXTRACT-MAX O(lgn)

— HEAP-INCREASE-KEY O(lgn) ~ Average
— HEAP-MAXIMUM o(1) Ollgn)

Priority Queue Using Linked List

Remove a key: O(1))

Insert a kev: O(n)
' > Average: O(n)

Increase key: O(n)

Extract max key: O(1) /

