
CS60020: Foundations of
Algorithm Design and Machine

Learning
Sourangshu Bhattacharya

2

The Heap Data Structure

• Def: A heap is a nearly complete binary tree with the
following two properties:
– Structural property: all levels are full, except possibly the

last one, which is filled from left to right
– Order (heap) property: for any node x

Parent(x) ≥ x

Heap

5

7

8

4

2

From the heap property, it
follows that:
“The root is the maximum
element of the heap!”

A heap is a binary tree that is filled in order

3

Array Representation of Heaps
• A heap can be stored as an array

A.
– Root of tree is A[1]
– Left child of A[i] = A[2i]
– Right child of A[i] = A[2i + 1]
– Parent of A[i] = A[ëi/2û]
– Heapsize[A] ≤ length[A]

• The elements in the subarray
A[(ën/2û+1) .. n] are leaves

4

Operations on Heaps
• Maintain/Restore the max-heap property
– MAX-HEAPIFY - O(log n)

• Create a max-heap from an unordered array
– BUILD-MAX-HEAP – O(n)

• Sort an array in place
– HEAPSORT

• Priority queues

5

Heapsort
• Goal:

– Sort an array using heap representations

• Idea:

– Build a max-heap from the array

– Swap the root (the maximum element) with the
last element in the array

– “Discard” this last node by decreasing the heap
size

– Call MAX-HEAPIFY on the new root

– Repeat this process until only one node remains

6

Example: A=[7, 4, 3, 1, 2]

MAX-HEAPIFY(A, 1, 4) MAX-HEAPIFY(A, 1, 3) MAX-HEAPIFY(A, 1, 2)

MAX-HEAPIFY(A, 1, 1)

7

Alg: HEAPSORT(A)

1. BUILD-MAX-HEAP(A)

2. for i ← length[A] downto 2

3. do exchange A[1] ↔ A[i]

4. MAX-HEAPIFY(A, 1, i - 1)

• Running time: O(nlgn) --- Can
be shown to be Θ(nlgn)

O(n)

O(lgn)

n-1 times

8

Priority Queues

12 4

9

Operations
on Priority Queues

• Max-priority queues support the following

operations:

– INSERT(S, x): inserts element x into set S

– EXTRACT-MAX(S): removes and returns element

of S with largest key

– MAXIMUM(S): returns element of S with largest

key

– INCREASE-KEY(S, x, k): increases value of

10

HEAP-MAXIMUM

Goal:
– Return the largest element of the

heap

Alg: HEAP-MAXIMUM(A)
1. return A[1]

Running time: O(1)

Heap A:

Heap-Maximum(A) returns 7

11

HEAP-EXTRACT-MAX
Goal:

– Extract the largest element of the heap (i.e., return the max value
and also remove that element from the heap

Idea:
– Exchange the root element with the last

– Decrease the size of the heap by 1 element

– Call MAX-HEAPIFY on the new root, on a heap of size n-1

Heap A: Root is the largest element

12

Example: HEAP-EXTRACT-MAX

8

2 4

14

7

1

16

10

9 3
max = 16

8

2 4

14

7

1

10

9 3

Heap size decreased with 1

4

2 1

8

7

14

10

9 3

Call MAX-HEAPIFY(A, 1, n-1)

13

HEAP-EXTRACT-MAX

Alg: HEAP-EXTRACT-MAX(A, n)

1. if n < 1

2. then error “heap underflow”

3. max ← A[1]

4. A[1] ← A[n]

5. MAX-HEAPIFY(A, 1, n-1) remakes heap

6. return max
Running time: O(lgn)

14

HEAP-INCREASE-KEY
• Goal:
– Increases the key of an element i in the heap

• Idea:
– Increment the key of A[i] to its new value
– If the max-heap property does not hold anymore:

traverse a path toward the root to find the proper
place for the newly increased key

8

2 4

14

7

1

16

10

9 3i
Key [i] ← 15

15

Example: HEAP-INCREASE-KEY

14

2 8

15

7

1

16

10

9 3

i

8

2 4

14

7

1

16

10

9 3i

Key [i] ← 15

8

2 15

14

7

1

16

10

9 3i

15

2 8

14

7

1

16

10

9 3
i

16

HEAP-INCREASE-KEY
Alg: HEAP-INCREASE-KEY(A, i, key)

1. if key < A[i]
2. then error “new key is smaller than current key”
3. A[i] ← key
4. while i > 1 and A[PARENT(i)] < A[i]
5. do exchange A[i] ↔ A[PARENT(i)]
6. i ← PARENT(i)

• Running time: O(lgn)

8

2 4

14

7

1

16

10

9 3i

Key [i] ← 15

17

-¥

MAX-HEAP-INSERT
• Goal:
– Inserts a new element into a

max-heap

• Idea:
– Expand the max-heap with a

new element whose key is -¥

– Calls HEAP-INCREASE-KEY to set
the key of the new node to its
correct value and maintain the
max-heap property

8

2 4

14

7

1

16

10

9 3

15

8

2 4

14

7

1

16

10

9 3

18

Example: MAX-HEAP-INSERT

-¥

8

2 4

14

7

1

16

10

9 3

Insert value 15:
- Start by inserting -¥

15

8

2 4

14

7

1

16

10

9 3

Increase the key to 15
Call HEAP-INCREASE-KEY on A[11] = 15

7

8

2 4

14

15

1

16

10

9 3
7

8

2 4

15

14

1

16

10

9 3

The restored heap containing
the newly added element

19

MAX-HEAP-INSERT

Alg: MAX-HEAP-INSERT(A, key, n)

1. heap-size[A] ← n + 1

2. A[n + 1] ← -¥

3. HEAP-INCREASE-KEY(A, n + 1, key)

Running time: O(lgn)

-¥

8

2 4

14

7

1

16

10

9 3

20

Summary

• We can perform the following operations on heaps:

– MAX-HEAPIFY O(lgn)

– BUILD-MAX-HEAP O(n)

– HEAP-SORT O(nlgn)

– MAX-HEAP-INSERT O(lgn)

– HEAP-EXTRACT-MAX O(lgn)

– HEAP-INCREASE-KEY O(lgn)

– HEAP-MAXIMUM O(1)

Average
O(lgn)

21

Priority Queue Using Linked List

Average: O(n)

Increase key: O(n)

Extract max key: O(1)

12 4

