# CS60020: Foundations of Algorithm Design and Machine Learning

Sourangshu Bhattacharya

## **Special Types of Trees**

• Def: Full binary tree = a binary tree in which each node is either a leaf or has degree exactly 2.



• Def: Complete binary tree = a binary tree in which all leaves are on the same level and all internal nodes have degree 2.



Complete binary tree

#### **Definitions**

- Height of a node = the number of edges on the longest simple path from the node down to a leaf
- Level of a node = the length of a path from the root to the node
- Height of tree = height of root node



## **Useful Properties**

- There are at most  $2^l$  nodes at level (or depth) l of a binary tree
- A binary tree with height d has at most  $2^{d+1} 1$  nodes
- A binary tree with n nodes has height at least  $\lfloor lgn \rfloor$  (see Ex 6.1-2, page 129)

$$n \le \sum_{l=0}^{d} 2^{l} = \frac{2^{d+1} - 1}{2 - 1} = 2^{d+1} - 1$$
 Height of root = 3

Height of (2)= 1

10 Level of (10)= 2

## The Heap Data Structure

- *Def*: A **heap** is a <u>nearly complete</u> binary tree with the following two properties:
  - Structural property: all levels are full, except possibly the last one, which is filled from left to right
  - Order (heap) property: for any node xParent(x)  $\geq x$



From the heap property, it follows that:

"The root is the maximum element of the heap!"

Heap

A heap is a binary tree that is filled in order

#### Array Representation of Heaps

- A heap can be stored as an array
   A.
  - Root of tree is A[1]
  - Left child of A[i] = A[2i]
  - Right child of A[i] = A[2i + 1]
  - Parent of  $A[i] = A[\lfloor i/2 \rfloor]$
  - Heapsize[A] ≤ length[A]
- The elements in the subarray  $A[(\lfloor n/2 \rfloor + 1) ... n]$  are leaves





### **Heap Types**

- Max-heaps (largest element at root), have the max-heap property:
  - for all nodes i, excluding the root:

$$A[PARENT(i)] \ge A[i]$$

- Min-heaps (smallest element at root), have the min-heap property:
  - for all nodes i, excluding the root:

$$A[PARENT(i)] \leq A[i]$$

## Adding/Deleting Nodes

- New nodes are always inserted at the bottom level (left to right)
- Nodes are removed from the bottom level
   (right



#### Operations on Heaps

- Maintain/Restore the max-heap property
  - MAX-HEAPIFY
- Create a max-heap from an unordered array
  - BUILD-MAX-HEAP
- Sort an array in place
  - HEAPSORT
- Priority queues

### Maintaining the Heap Property

- Suppose a node is smaller than a child
  - Left and Right subtrees of i are max-heaps
- To eliminate the violation:
  - Exchange with larger child
  - Move down the tree
  - Continue until node is not smaller than children



## Example

#### MAX-HEAPIFY(A, 2, 10)



 $A[2] \leftrightarrow A[4]$ 



A[2] violates the heap property

A[4] violates the heap property



Heap property restored

#### Maintaining the Heap Property

#### Assumptions:

- Left and Right subtrees of i are max-heaps
- A[i] may be smaller than



```
Alg: MAX-HEAPIFY(A, i, n)
```

- 1.  $I \leftarrow LEFT(i)$
- 2.  $r \leftarrow RIGHT(i)$
- 3. if  $l \le n$  and A[l] > A[i]
- 4. then largest ←l
- 5. else largest ←i
- 6. if  $r \le n$  and A[r] > A[largest]
- 7. then largest ←r
- 8. if largest ≠ i
- 9. then exchange  $A[i] \leftrightarrow A[largest]$
- 10. MAX-HEAPIFY(A, largest, n)

#### MAX-HEAPIFY Running Time

- Intuitively:
  - It traces a path from the root to a leaf (longest path length: h)
    At each level, it makes exactly 2 comparisons

  - Total number of comparisons is 2h
  - Running time is O(h) or O(lgn)

- Running time of MAX-HEAPIFY is O(Iqn)
- Can be written in terms of the height of the heap, as being O(h)
  - Since the height of the heap is \[ \ll gn \]

## Building a Heap

- Convert an array A[1 ... n] into a max-heap (n = length[A])
- The elements in the subarray  $A[(\lfloor n/2 \rfloor + 1) ... n]$  are leaves
- Apply MAX-HEAPIFY on elements between 1 and \[ n/2 \]

#### Alg: BUILD-MAX-HEAP(A)

- 1. n = length[A]
- 2. for  $i \leftarrow \lfloor n/2 \rfloor$  downto 1
- 3. do MAX-HEAPIFY(A, i, n)



A: 4 1 3 2 16 9 10 14 8 7

## Example:









#### Running Time of BUILD MAX HEAP

#### Alg: BUILD-MAX-HEAP(A)

- 1. n = length[A]
- 2. for  $i \leftarrow |n/2|$  downto 1

$$i \leftarrow \lfloor n/2 \rfloor downto 1$$
  
 $do MAX-HEAPIFY(A, i, n)$   $O(lgn)$   $O(n)$ 

- $\Rightarrow$  Running time: O(nlqn)
- This is not an asymptotically tight upper bound

#### Running Time of BUILD MAX HEAP

• HEAPIFY takes  $O(h) \Rightarrow$  the cost of HEAPIFY on a node i is proportional to the height of the node i in the tree



 $h_i = h - i$  height of the heap rooted at level i  $n_i = 2^i$  number of nodes at level i

#### Running Time of BUILD MAX HEAP

$$T(n) = \sum_{i=0}^h n_i h_i \qquad \text{Cost of HEAPIFY at level i * number of nodes at that level}$$
 
$$= \sum_{i=0}^h 2^i (h-i) \qquad \text{Replace the values of } n_i \text{ and } h_i \text{ computed before}$$
 
$$= \sum_{i=0}^h \frac{h-i}{2^{h-i}} 2^h \qquad \text{Multiply by } 2^h \text{ both at the nominator and denominator and write } 2^i \text{ as } \frac{1}{2^{-i}}$$
 
$$= 2^h \sum_{k=0}^h \frac{k}{2^k} \qquad \text{Change variables: k = h - i}$$
 
$$\leq n \sum_{k=0}^\infty \frac{k}{2^k} \qquad \text{The sum above is smaller than the sum of all elements to } \infty$$
 and h = lgn

= O(n)The sum above is smaller than 2

and h = Ign

Running time of BUILD-MAX-HEAP: T(n) = O(n)