CS60020: Foundations of
Algorithm Design and Machine
Learning

Special Types of Trees

* Def: Full binary tree = a (4,
binary tree in which each © 3
node is either a leaf or has OEROIONE®
degree exactly 2. DEOION®

Full binary tree
(4)

* Def: Complete binary tree (D (3

= a binary tree in which all @ e W

leaves are on the same level
and all internal nodes have
degree 2.

Complete binary tree

Definitions

* Height of a node = the number of edges on the longest simple
path from the node down to a leaf

* Level of a node = the length of a path from the root to the
node

* Height of tree = height of root node

e «— Height of root = 3

(1) (3)
Heightof (2)=1 —— (3} (16) (9) (10) «—— Level of (10)=2
W @

Useful Properties

- There are at most 2’ nodes at level (or depth) / of a binary tree
- A binary tree with height ¢ has at most 27™' — 1 nodes

- A binary tree with » nodes has height at least| /gn |
(see Ex 6.1-2, page 129)

2

The Heap Data Structure

* Def: A heap is a nearly complete binary tree with the
following two properties:

— Structural property: all levels are full, except possibly the
last one, which is filled from left to right

— Order (heap) property: for any node X
Parent(x) > x

(8) From the heap property, it
follows that:
(7) (4) “The root is the maximum
Y (2 element of the heap!”
Heap

A heap is a binary tree thatis filled in order

Array Representation of Heaps

* A heap can be stored as an array

A.

— Root of tree is A[1]

— Left child of A[i] = A[2i]

— Right child of A[i] = A[2i + 1]
— Parentof A[i]= A[Li/2]]

— Heapsize[A] < length[A]

* The elements in the subarray

A[(Ln/2]+1) .. n] are leaves

Heap Types

 Max-heaps (largest element at root), have the max-heap
property:
— for all nodes i, excluding the root:

A[PARENT(i)] 2 A[i]

* Min-heaps (smallest element at root), have the min-heap

property:
— for all nodes i, excluding the root:

A[PARENT(i)] < A[i]

Adding/Deleting Nodes

* New nodes are always inserted at the bottom
level (left to right)

* Nodes are removed from the bottom level

(right =
\ 50)
N
/'_'“'\:'I___ _/_,:; l
24 | |
x; ___1,; "\3_?/
NS ~
L 20 2 '- ! 3
\D J x._T_! k_l_S_f' J
/ / \\\
AN D) D
(12 | '. |
R_l_-?/ll N~ N

Operations on Heaps
Maintain/Restore the max-heap property
— MAX-HEAPIFY

Create a max-heap from an unordered array

— BUILD-MAX-HEAP

Sort an array in place
— HEAPSORT

Priority queues

Maintaining the Heap Property

 Suppose a nhode is smaller than a child
— Left and Right subtrees of i are max-heaps

e To eliminate the violation:
— Exchange with larger child
— Move down the tree

— Continue until node is not smaller than
children

MAX-HEAPIFY(A, 2, 10)
1

Example

Heap property restored

11

Maintaining the Heap Property

e Assumptions: Alg: MAX-HEAPIFY(A, i, n)

— Left and Right L1 LEFT() |
subtrees of i 2. e RIGHT() |
are max-heaps 3. ifl<nand A[l]> /Ié\[u]
: . h —
_ A[i]may be 4. then largest |
5. else largest «i
smaller than _
6. ifr<nand A[r]> A[largest]
7. then largest <r
8. if largest # i
9. then exchange A[i] ¢ A[largest]
10. MAX-HEAPIFY(A, largest, n)

12

MAX-HEAPIFY Running Time

* Intuitively:

- It traces a path from the root to a leaf (longest path length: h)
- At each level, 1t makes exactly 2 comparisons

- Total number of comnarisons is 2h

- Running time 1s o(h) or O(/gn)

* Running time of MAX-HEAPIFY is O(Ign)

* Can be written in terms of the height of the
heap, as being O(h)

— Since the height of the heap is |_|gnJ

Building a Heap

 Convertanarray A[1 ... n]into a max-heap (n = length[A])

* The elements in the subarray A[(Ln/2]+1) .. n] are leaves
* Apply MAX-HEAPIFY on elements between 1 and | n/2

Al: BUILD-MAX-HEAP(A)

1. n=length[A]

2. fori < | n/2]downto 1

3. do MAX-HEAPIFY(A, i, n)

10

14

Example:

A

16

10

14

15

Running Time of BUILD MAX HEAP
Alz: BUILD-MAX-HEAP(A)

1. n=length[A]
2. fori«— | n/2/downto 1

O(n)
3. do MAX-HEAPIFY(A,i,n) O(lgn)

= Running time: O(nlgn)

e This is not an asymptotically tight upper

bound

16

Running Time of BUILD MAX HEAP

« HEAPIFY takes O(h) = the cost of HEAPIFY on a node i is
proportional to the height of the node | in the tree

= T(n)= anhl Zz =O0(n)

Height LeveI No. of nodes
ho=3 (|_IgnJ) i=0 20
) . g

hy=2 i=1 21
Vo —

W o8
dbdbdbdb =3 (gn)) 2

h,=h—i height of the heap rooted at level i
n,=2 number of nodes at level i

17

Running Time of BUILD MAX HEAP

T'(n)= Zh:nihi

i=0

I
x4
=
|
=

Cost of HEAPIFY at level i * number of nodes at that level

Replace the values of n; and h; computed before

Multiply by 2" both at the nominator and denominator and
1

2—i

write 2/ as

Change variables: k=h - i

The sum above is smaller than the sum of all elements to o
and h =Ign

The sum above is smaller than 2

Running time of BUILD-MAX-HEAP: T(n) = O(n)

