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Special Types of Trees
• Def: Full binary tree = a 

binary tree in which each 
node is either a leaf or has 
degree exactly 2.

• Def: Complete binary tree 
= a binary tree in which all 
leaves are on the same level 
and all internal nodes have 
degree 2.

Full binary tree
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Definitions

• Height of a node = the number of edges on the longest simple 
path from the node down to a leaf

• Level of a node = the length of a path from the root to the 
node

• Height of tree = height of root node 
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Useful Properties

2

14 8

1

16

4

3

9 10

Height of root = 3

Height of (2)= 1 Level of (10)= 2

height

height

1
1

0

2 12 2 1
2 1

dd
l d

l
n

+
+

=

-
£ = = -

-å

(see Ex 6.1-2, page 129)
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The Heap Data Structure

• Def: A heap is a nearly complete binary tree with the 
following two properties:
– Structural property: all levels are full, except possibly the 

last one, which is filled from left to right
– Order (heap) property: for any node x

Parent(x) ≥ x

Heap
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From the heap property, it 
follows that:
“The root is the maximum 
element of the heap!”

A heap is a binary tree that is filled in order
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Array Representation of Heaps
• A heap can be stored as an array 

A.
– Root of tree is A[1]
– Left child of A[i] = A[2i]
– Right child of A[i] = A[2i + 1]
– Parent of A[i] = A[ ëi/2û ]
– Heapsize[A] ≤ length[A]

• The elements in the subarray 
A[(ën/2û+1) .. n] are leaves
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Heap Types

• Max-heaps (largest element at root), have the max-heap 
property:
– for all nodes i, excluding the root: 

A[PARENT(i)] ≥ A[i]

• Min-heaps (smallest element at root), have the min-heap 
property:
– for all nodes i, excluding the root: 

A[PARENT(i)] ≤ A[i]
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Adding/Deleting Nodes
• New nodes are always inserted at the bottom 

level (left to right)

• Nodes are removed from the bottom level 
(right to left)
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Operations on Heaps
• Maintain/Restore the max-heap property

– MAX-HEAPIFY

• Create a max-heap from an unordered array
– BUILD-MAX-HEAP

• Sort an array in place
– HEAPSORT

• Priority queues
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Maintaining the Heap Property
• Suppose a node is smaller than a child

– Left and Right subtrees of i are max-heaps

• To eliminate the violation:
– Exchange with larger child
– Move down the tree
– Continue until node is not smaller than 

children
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Example
MAX-HEAPIFY(A, 2, 10)

A[2] violates the heap property

A[2] « A[4]

A[4] violates the heap property

A[4] « A[9]

Heap property restored



12

Maintaining the Heap Property

• Assumptions:
– Left and Right 

subtrees of i
are max-heaps

– A[i] may be 
smaller than 
its children

Alg: MAX-HEAPIFY(A, i, n)
1. l ← LEFT(i)
2. r ← RIGHT(i)
3. if l ≤ n and A[l] > A[i]
4. then largest ←l
5. else largest ←i
6. if r ≤ n and A[r] > A[largest]
7. then largest ←r
8. if largest ¹ i
9. then exchange A[i] ↔ A[largest]
10. MAX-HEAPIFY(A, largest, n)
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MAX-HEAPIFY Running Time
• Intuitively:

• Running time of MAX-HEAPIFY is O(lgn)

• Can be written in terms of the height of the 

heap, as being O(h)

– Since the height of the heap is ëlgnû
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Building a Heap

Alg: BUILD-MAX-HEAP(A)
1. n = length[A]

2. for i ← ën/2û downto 1
3. do MAX-HEAPIFY(A, i, n)

• Convert an array A[1 … n] into a max-heap (n = length[A])

• The elements in the subarray A[(ën/2û+1) .. n] are leaves

• Apply MAX-HEAPIFY on elements between 1 and ën/2û
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Example:         A 4 1 3 2 16 9 10 14 8 7
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Running Time of BUILD MAX HEAP

Þ Running time: O(nlgn)

• This is not an asymptotically tight upper 
bound

Alg: BUILD-MAX-HEAP(A)
1. n = length[A]
2. for i ← ën/2û downto 1
3. do MAX-HEAPIFY(A, i, n) O(lgn)

O(n)
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Running Time of BUILD MAX HEAP

• HEAPIFY takes O(h)Þ the cost of HEAPIFY on a node i is 
proportional to the height of the node i in the tree
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Running Time of BUILD MAX HEAP
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Running time of BUILD-MAX-HEAP: T(n) = O(n)


