
CS60020: Foundations of
Algorithm Design and Machine

Learning
Sourangshu Bhattacharya

2

Special Types of Trees
• Def: Full binary tree = a

binary tree in which each
node is either a leaf or has
degree exactly 2.

• Def: Complete binary tree
= a binary tree in which all
leaves are on the same level
and all internal nodes have
degree 2.

Full binary tree

2

14 8

1

16

7

4

3

9 10

12

Complete binary tree

2

1

16

4

3

9 10

3

Definitions

• Height of a node = the number of edges on the longest simple
path from the node down to a leaf

• Level of a node = the length of a path from the root to the
node

• Height of tree = height of root node

2

14 8

1

16

4

3

9 10

Height of root = 3

Height of (2)= 1 Level of (10)= 2

4

Useful Properties

2

14 8

1

16

4

3

9 10

Height of root = 3

Height of (2)= 1 Level of (10)= 2

height

height

1
1

0

2 12 2 1
2 1

dd
l d

l
n

+
+

=

-
£ = = -

-å

(see Ex 6.1-2, page 129)

5

The Heap Data Structure

• Def: A heap is a nearly complete binary tree with the
following two properties:
– Structural property: all levels are full, except possibly the

last one, which is filled from left to right
– Order (heap) property: for any node x

Parent(x) ≥ x

Heap

5

7

8

4

2

From the heap property, it
follows that:
“The root is the maximum
element of the heap!”

A heap is a binary tree that is filled in order

6

Array Representation of Heaps
• A heap can be stored as an array

A.
– Root of tree is A[1]
– Left child of A[i] = A[2i]
– Right child of A[i] = A[2i + 1]
– Parent of A[i] = A[ëi/2û]
– Heapsize[A] ≤ length[A]

• The elements in the subarray
A[(ën/2û+1) .. n] are leaves

7

Heap Types

• Max-heaps (largest element at root), have the max-heap
property:
– for all nodes i, excluding the root:

A[PARENT(i)] ≥ A[i]

• Min-heaps (smallest element at root), have the min-heap
property:
– for all nodes i, excluding the root:

A[PARENT(i)] ≤ A[i]

8

Adding/Deleting Nodes
• New nodes are always inserted at the bottom

level (left to right)

• Nodes are removed from the bottom level
(right to left)

9

Operations on Heaps
• Maintain/Restore the max-heap property

– MAX-HEAPIFY

• Create a max-heap from an unordered array
– BUILD-MAX-HEAP

• Sort an array in place
– HEAPSORT

• Priority queues

10

Maintaining the Heap Property
• Suppose a node is smaller than a child

– Left and Right subtrees of i are max-heaps

• To eliminate the violation:
– Exchange with larger child
– Move down the tree
– Continue until node is not smaller than

children

11

Example
MAX-HEAPIFY(A, 2, 10)

A[2] violates the heap property

A[2] « A[4]

A[4] violates the heap property

A[4] « A[9]

Heap property restored

12

Maintaining the Heap Property

• Assumptions:
– Left and Right

subtrees of i
are max-heaps

– A[i] may be
smaller than
its children

Alg: MAX-HEAPIFY(A, i, n)
1. l ← LEFT(i)
2. r ← RIGHT(i)
3. if l ≤ n and A[l] > A[i]
4. then largest ←l
5. else largest ←i
6. if r ≤ n and A[r] > A[largest]
7. then largest ←r
8. if largest ¹ i
9. then exchange A[i] ↔ A[largest]
10. MAX-HEAPIFY(A, largest, n)

13

MAX-HEAPIFY Running Time
• Intuitively:

• Running time of MAX-HEAPIFY is O(lgn)

• Can be written in terms of the height of the

heap, as being O(h)

– Since the height of the heap is ëlgnû

h

2h
O(h)

-
-
-
-

14

Building a Heap

Alg: BUILD-MAX-HEAP(A)
1. n = length[A]

2. for i ← ën/2û downto 1
3. do MAX-HEAPIFY(A, i, n)

• Convert an array A[1 … n] into a max-heap (n = length[A])

• The elements in the subarray A[(ën/2û+1) .. n] are leaves

• Apply MAX-HEAPIFY on elements between 1 and ën/2û

2

14 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10

4 1 3 2 16 9 10 14 8 7A:

15

Example: A 4 1 3 2 16 9 10 14 8 7

2

14 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10

14

2 8

1

16

7

4

10

9 3

1

2 3

4 5 6 7

8 9 10

2

14 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10
14

2 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10

14

2 8

16

7

1

4

10

9 3

1

2 3

4 5 6 7

8 9 10
8

2 4

14

7

1

16

10

9 3

1

2 3

4 5 6 7

8 9 10

i = 5 i = 4 i = 3

i = 2 i = 1

16

Running Time of BUILD MAX HEAP

Þ Running time: O(nlgn)

• This is not an asymptotically tight upper
bound

Alg: BUILD-MAX-HEAP(A)
1. n = length[A]
2. for i ← ën/2û downto 1
3. do MAX-HEAPIFY(A, i, n) O(lgn)

O(n)

17

Running Time of BUILD MAX HEAP

• HEAPIFY takes O(h)Þ the cost of HEAPIFY on a node i is
proportional to the height of the node i in the tree

Height Level

h0 = 3 (ëlgnû)

h1 = 2

h2 = 1

h3 = 0

i = 0

i = 1

i = 2

i = 3 (ëlgnû)

No. of nodes

20

21

22

23

hi = h – i height of the heap rooted at level i
ni = 2i number of nodes at level i

i

h

i
ihnnT å

=

=Þ
0

)(()ih
h

i

i -=å
=0
2)(nO=

18

Running Time of BUILD MAX HEAP

i

h

i
ihnnT å

=

=
0

)(Cost of HEAPIFY at level i * number of nodes at that level

()ih
h

i

i -=å
=0
2 Replace the values of ni and hi computed before

h
h

i
ih
ih 2

20
å
=

-

-
= Multiply by 2h both at the nominator and denominator and

write 2i as
i-2
1

å
=

=
h

k
k

h k
0 2

2 Change variables: k = h - i

å
¥

=

£
0 2k

k
kn The sum above is smaller than the sum of all elements to ¥

and h = lgn

)(nO= The sum above is smaller than 2

Running time of BUILD-MAX-HEAP: T(n) = O(n)

