CS60020: Foundations of
Algorithm Design and Machine
Learning



GAUSSIAN MIXTURE MODELS



Mixture of Gaussians

e z € {0,1}": be a discrete latent variable, such
that ), z;, = 1.

* 7, selects the cluster (mixture component)
from which the data point is generated.

e There are K Gaussian distributions:
N(xlculi z:1)

N(xlau'KJ ZK)



Mixture of Gaussians

* Given a data point x:
K

PCO = ) m W (el 3)
k=1
e Where:
Ty = P(z, = 1)



Generative Procedure

Select z from probability distr. 1.
Hence: P(z) = [[x- 1nk .

Given z, generate x according to the
conditional distr.:

P(x|zx = 1) = N (x|, Zie)

Hence:
K

P(x|z) = H(N(ka»zk)yk

k=1



Generative Procedure

e Joint distr.:
P(x,z) = p(z)p(x|z)

K
= | [mew el 20) ™
k=1

 Marginal:
K
=1

p(x) — Ep(x: Z) — Z nkN(xllik'Zk)
Z k



Posterior distribution

* 7, = 1 given x:

Y(zk) = plar = 1x) =




057

Example




Max-likelihood

Let D = {xq, ..., Xy}
Likelihood function:

N K
POIm D) = | [ ) med Gali 0
=1 k=1

S p—l

Log likelihood:

In(PDIm, 1, 5) = D I TV (el Ei))
n=1 k=1

Maximize log-likelihood w.r.t. T, 4 and X.



KKT conditions

* Differentiating w.r.t. uy:

N >k
Z Tr’». n‘l-lk lx) A Ek(xn o

=N Gl 2

n=1

e Where:



KKT conditions

* Similarly, differentiating w.r.t. X:

N

1 | | -

Ek — ."\"’A E A."('Z'nk)(xn — #‘L-,)(Xn — ”k)l
R n=1

* Lagrangian w.r.t. Ty,:

K
Inp(X|m, pn,2)+ A (Z M — 1)

k=1



KKT conditions

* Minimizing:

Xn‘/-lk Zk)
A
Z:l Z (Xn|pej, 25) i

* Multiplying with 1;, and adding over k: A =

— N.
* Hence: k=N
N

° Where: "'\"k — Z A."(;:nk)'



(EM) Algorithm

Initialize uy, 25, and my,.
E-step: )= TNl )

K '
E ﬂj\ (_Xn s ZJ)
j=1
1 N
M-step: ™ = > )
k
n=1
1 N
220\\-‘ _ Z nk Xn L li(“ ) (Xn /.llkl(\\ )I
Ny,
n=1
- \
'k *\*

Repeat above two steps till In(P(D|m, u, X))
converges.






BAYESIAN NETWORKS



Bayesian Networks

e Directed Acyclic Graph (DAG)

a

C

p(a,b,c) = p(cla, b)p(a,b) = p(cl|a, b)p(bla)p(a)



Bayesian Networks

= p(x1)p(x2)p(3)p(T4|T1, T2, T3)
p(xs|z1, z3)p(ze|a)p(27|T4, T5)

General Factorization

p(x) = ]| p(=rlpay)
k=1




Bayesian Curve Fitting (1)

Polynomial

M
y(z,w) =Y wsa?
=0




Bayesian Curve Fitting (2)

p(t, W) — p(W) H p(tn|y(w, xn))




Bayesian Curve Fitting (3)

* |nput variables and explicit hyperparameters

p(t,wl|x, a, 0?) = p(w|a) Hp n|W, Tn, o




Bayesian Curve Fitting—Learning

e Condition on data

p(wlt) o p(w) | [ p(talw)

(87




Bayesian Curve Fitting—Prediction

Predictive distribution: p(t|Z,x, t, o, 0?) /p(?, t, w|Z,x, o, 0%) dw




Generative Models

e Causal process for generating images

Object Position Orientation

Image



Discrete Variables (1)

* General joint distribution: K? -1 parameters

X1 X9 K
O—0 s f1{1-

k‘: :

* Independent joint distribution: 2(K - 1) parameters

X1 X2
O O o= Tlwr [T



Discrete Variables (2)

General joint distribution over M variables:
KM -1 parameters

M -node Markov chain: K-1+ (M-1) K(K-1)
parameters




Discrete Variables: Bayesian
Parameters (1)

P ({Xms 1) =0 (%1 [1y) 2 (1) ] P el %mm—1, ) P (12,)

m=2



Discrete Variables: Bayesian
Parameters (2)

M1 K Shared prior

p({xm} s, p) =p(x1[pey) p (1) [ p K[ Xm—1, 1) p (1)

m=2



Parameterized Conditional
Distributions

L T M

If x1,...,x s are discrete,
K-state variables,

p(y =1|x1,...,x57) in
general has O(KM)
parameters.

The parameterized form

M
p(y — 1|$1, - ,I‘M) =0 (”LU() + Zw?’x"’> — O(WTX>
1=1

requires only M + 1 parameters



Linear-Gaussian Models

* Directed Graph
p(xilpa;) =N (%

Each node is Ga
is a linear functi

Z wi;T5 + b, U@)

JEpa;

ussian, the mean
on of the parents.

— Vector-valued Gaussian Nodes

p(xipa;) = N (Xz'

Z W;;x; + by, 2@)

JEpa;



Conditional Independence

* aisindependent of b given c

p(alb, c) = p(alc)

 Equivalently p(a,blc) = p(alb,c)p(blc)
= p(ale)p(blc)

* Notation all b]|ec



Conditional Independence:
Example 1

c p(a, b, c) = p(alc)p(b|c)p(c)
pla,b) = > p(ale)p(ble)p(c)

all bl



Conditional Independence:
Example 1

p(a, b, c)
p(c)
= plale)p(blc)

p(a,b|c) —

allblc



Conditional Independence:
Example 2

O—O0—0O

p(a, b, c) = p(a)p(cla)p(blc)

p(a,b) = p(a) Y p(cla)p(ble) = p(a)p(bla)

all bl



Conditional Independence:
Example 2

p(a,b|c) — (C;




Conditional Independence:
Example 3

p(a, b, c) = p(a)p(b)p(cla, b)

* Note: this is the opposite of Example 1, with c unobserved.



Conditional Independence:
Example 3

Note: this is the opposite of Example 1, with c observed.



“Am | out of fuel?”

1IB=1,F=1) = 0.8 B F

11 B=1,F=0) = 0.2

11 B=0,F=1) = 0.2

1l1B=0,F=0) = 0.1

G
p(F=1) = 09 B = Battery (0O=flat, 1=fully charged)
F = Fuel Tank (O=empty, 1=full)
and hence G = Fuel Gauge Reading

p(F=0) = 0.1 (0=empty, 1=full)



“Am | out of fuel?”

p(G = 0|F =0)p(F' =0)
p(G =0)
0.257

p(F =0|G =0)

2

Probability of an empty tank increased by observing G = 0.



“Am | out of fuel?”

G

p(G =0|B=0,F =0)p(+ =0)
ZFe{O,l}p<G =0|B=0,F)p(¥)
0.111

p(F =0|G =0,B =0)

2

Probability of an empty tank reduced by observing B =0.
This referred to as “explaining away”.



D-separation

* A, B, and C are non-intersecting subsets of nodes in a
directed graph.
* A path from A to B is blocked if it contains a node such that
either
a) the arrows on the path meet either head-to-tail or tail-
to-tail at the node, and the node is in the set C, or
b) the arrows meet head-to-head at the node, and
neither the node, nor any of its descendants, are in the
set C.
* If all paths from A to B are blocked, A is said to be d-
separated from B by C.
* If Ais d-separated from B by C, the joint distribution over all
variables in the graph satisfies A 1L B |.C



D-separation: Example

all b|c allb|f



D-separation: I.I.D. Data




