
CS60020: Foundations of
Algorithm Design and Machine

Learning
Sourangshu Bhattacharya

12/26/03 AVL Trees - Lecture 8 2

Binary Search Tree - Best Time

• All BST operations are O(d), where d is tree
depth

• minimum d is for a binary tree with
N nodes
› What is the best case tree?
› What is the worst case tree?

• So, best case running time of BST operations
is O(log N)

ë ûNlogd 2=

12/26/03 AVL Trees - Lecture 8 3

Binary Search Tree - Worst Time

• Worst case running time is O(N)
› What happens when you Insert elements in

ascending order?
• Insert: 2, 4, 6, 8, 10, 12 into an empty BST

› Problem: Lack of “balance”:
• compare depths of left and right subtree

› Unbalanced degenerate tree

12/26/03 AVL Trees - Lecture 8 4

Balanced and unbalanced BST

4

2 5

1 3

1

5

2

4

3

7

6

4

2 6

5 71 3

Is this “balanced”?

12/26/03 AVL Trees - Lecture 8 5

Approaches to balancing trees
• Don't balance

› May end up with some nodes very deep

• Strict balance
› The tree must always be balanced perfectly

• Pretty good balance
› Only allow a little out of balance

• Adjust on access
› Self-adjusting

12/26/03 AVL Trees - Lecture 8 6

Balancing Binary Search Trees

• Many algorithms exist for keeping binary
search trees balanced
› Adelson-Velskii and Landis (AVL) trees (height-

balanced trees)
› Splay trees and other self-adjusting trees
› B-trees and other multiway search trees

12/26/03 AVL Trees - Lecture 8 7

Perfect Balance
• Want a complete tree after every operation

› tree is full except possibly in the lower right

• This is expensive
› For example, insert 2 in the tree on the left and

then rebuild as a complete tree

Insert 2 &
complete tree

6

4 9

81 5

5

2 8

6 91 4

12/26/03 AVL Trees - Lecture 8 8

AVL - Good but not Perfect
Balance

• AVL trees are height-balanced binary search
trees

• Balance factor of a node
› height(left subtree) - height(right subtree)

• An AVL tree has balance factor calculated at
every node
› For every node, heights of left and right subtree

can differ by no more than 1
› Store current heights in each node

12/26/03 AVL Trees - Lecture 8 9

Height of an AVL Tree

• N(h) = minimum number of nodes in an AVL
tree of height h.

• Basis
› N(0) = 1, N(1) = 2

• Induction
› N(h) = N(h-1) + N(h-2) + 1

• Solution (recall Fibonacci analysis)

› N(h) > fh (f » 1.62) h-1 h-2

h

12/26/03 AVL Trees - Lecture 8 10

Height of an AVL Tree

• N(h) > fh (f » 1.62)
• Suppose we have n nodes in an AVL tree of

height h.
› n > N(h) (because N(h) was the minimum)

› n > fh hence logf n > h (relatively well
balanced tree!!)

› h < 1.44 log2n (i.e., Find takes O(log n))

12/26/03 AVL Trees - Lecture 8 11

Node Heights

1

00

2

0

6

4 9

81 5

1

height of node = h
balance factor = hleft-hright
empty height = -1

0

0

height=2 BF=1-0=1

0

6

4 9

1 5

1

Tree A (AVL) Tree B (AVL)

12/26/03 AVL Trees - Lecture 8 12

Node Heights after Insert 7

2

10

3

0

6

4 9

81 5

1

height of node = h
balance factor = hleft-hright
empty height = -1

1

0

2

0

6

4 9

1 5

1

0
7

0
7

balance factor
1-(-1) = 2

-1

Tree A (AVL) Tree B (not AVL)

12/26/03 AVL Trees - Lecture 8 13

Insert and Rotation in AVL Trees

• Insert operation may cause balance factor to
become 2 or –2 for some node
› only nodes on the path from insertion point to

root node have possibly changed in height
› So after the Insert, go back up to the root node by

node, updating heights
› If a new balance factor (the difference hleft-hright) is

2 or –2, adjust tree by rotation around the node

12/26/03 AVL Trees - Lecture 8 14

Single Rotation in an AVL Tree

2

10

2

0

6

4 9

81 5

1

0
7

0

1

0

2

0

6

4

9

8

1 5

1

0
7

12/26/03 AVL Trees - Lecture 8 15

Let the node that needs rebalancing be a.

There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of a.
2. Insertion into right subtree of right child of a.

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of a.
4. Insertion into left subtree of right child of a.

The rebalancing is performed through four
separate rotation algorithms.

Insertions in AVL Trees

12/26/03 AVL Trees - Lecture 8 16

j

k

X Y
Z

Consider a valid
AVL subtree

AVL Insertion: Outside Case

h

h h

12/26/03 AVL Trees - Lecture 8 17

j

k

X
Y

Z

Inserting into X
destroys the AVL
property at node j

AVL Insertion: Outside Case

h

h+1 h

12/26/03 AVL Trees - Lecture 8 18

j

k

X
Y

Z

Do a “right rotation”

AVL Insertion: Outside Case

h

h+1 h

12/26/03 AVL Trees - Lecture 8 19

j

k

X
Y

Z

Do a “right rotation”

Single right rotation

h

h+1 h

12/26/03 AVL Trees - Lecture 8 20

j
k

X Y Z

“Right rotation” done!
(“Left rotation” is mirror

symmetric)

Outside Case Completed

AVL property has been restored!

h

h+1

h

12/26/03 AVL Trees - Lecture 8 21

j

k

X Y
Z

AVL Insertion: Inside Case
Consider a valid
AVL subtree

h

hh

12/26/03 AVL Trees - Lecture 8 22

Inserting into Y
destroys the
AVL property
at node j

j

k

X
Y

Z

AVL Insertion: Inside Case
Does “right rotation”
restore balance?

h

h+1h

12/26/03 AVL Trees - Lecture 8 23

j
k

X

Y
Z

“Right rotation”
does not restore
balance… now k is
out of balance

AVL Insertion: Inside Case

hh+1

h

12/26/03 AVL Trees - Lecture 8 24

Consider the structure
of subtree Y… j

k

X
Y

Z

AVL Insertion: Inside Case

h

h+1h

12/26/03 AVL Trees - Lecture 8 25

j

k

X
V

Z

W

i

Y = node i and
subtrees V and W

AVL Insertion: Inside Case

h

h+1h

h or h-1

12/26/03 AVL Trees - Lecture 8 26

j

k

X
V

Z

W

i

AVL Insertion: Inside Case
We will do a left-right
“double rotation” . . .

12/26/03 AVL Trees - Lecture 8 27

j

k

X V

Z
W

i

Double rotation : first rotation
left rotation complete

12/26/03 AVL Trees - Lecture 8 28

j

k

X V

Z
W

i

Double rotation : second
rotation

Now do a right rotation

12/26/03 AVL Trees - Lecture 8 29

jk

X V ZW

i

Double rotation : second
rotation

right rotation complete

Balance has been
restored

hh h or h-1

12/26/03 AVL Trees - Lecture 8 30

Implementation

balance (1,0,-1)
key

rightleft

No need to keep the height; just the difference in height,
i.e. the balance factor; this has to be modified on the path of
insertion even if you don’t perform rotations

Once you have performed a rotation (single or double) you won’t
need to go back up the tree

12/26/03 AVL Trees - Lecture 8 31

Single Rotation

RotateFromRight(n : reference node pointer) {
p : node pointer;
p := n.right;
n.right := p.left;
p.left := n;
n := p
}

X

Y Z

n

You also need to
modify the heights
or balance factors
of n and p

Insert

12/26/03 AVL Trees - Lecture 8 32

Double Rotation

• Implement Double Rotation in two lines.

DoubleRotateFromRight(n : reference node pointer) {
????
}

X

n

V W

Z

12/26/03 AVL Trees - Lecture 8 33

Insertion in AVL Trees

• Insert at the leaf (as for all BST)
› only nodes on the path from insertion point to

root node have possibly changed in height
› So after the Insert, go back up to the root node by

node, updating heights
› If a new balance factor (the difference hleft-hright) is

2 or –2, adjust tree by rotation around the node

12/26/03 AVL Trees - Lecture 8 34

Insert in BST

Insert(T : reference tree pointer, x : element) : integer {
if T = null then

T := new tree; T.data := x; return 1;//the links to
//children are null

case
T.data = x : return 0; //Duplicate do nothing
T.data > x : return Insert(T.left, x);
T.data < x : return Insert(T.right, x);

endcase
}

12/26/03 AVL Trees - Lecture 8 35

Insert in AVL trees

Insert(T : reference tree pointer, x : element) : {
if T = null then

{T := new tree; T.data := x; height := 0; return;}
case

T.data = x : return ; //Duplicate do nothing
T.data > x : Insert(T.left, x);

if ((height(T.left)- height(T.right)) = 2){
if (T.left.data > x) then //outside case

T = RotatefromLeft (T);
else //inside case

T = DoubleRotatefromLeft (T);}
T.data < x : Insert(T.right, x);

code similar to the left case
Endcase

T.height := max(height(T.left),height(T.right)) +1;
return;

}

12/26/03 AVL Trees - Lecture 8 36

Example of Insertions in an AVL
Tree

1

0

2
20

10 30

25

0

35
0

Insert 5, 40

12/26/03 AVL Trees - Lecture 8 37

Example of Insertions in an AVL
Tree

1

0

2
20

10 30

25

1

35
0

5
0

20

10 30

25

1

355

40

0

0

0 1

2

3

Now Insert 45

12/26/03 AVL Trees - Lecture 8 38

Single rotation (outside case)

2

0

3
20

10 30

25

1

35
2

5
0

20

10 30

25

1

405

40

0

0

0

1

2

3

45

Imbalance
35 45

0 0

1

Now Insert 34

12/26/03 AVL Trees - Lecture 8 39

Double rotation (inside case)

3

0

3
20

10 30

25

1

40
2

5
0

20

10 35

30

1

405

45

0 1

2

3

Imbalance

45
0

1

Insertion of 34

35

34

0

0

1 25 340

12/26/03 AVL Trees - Lecture 8 40

AVL Tree Deletion

• Similar but more complex than insertion
› Rotations and double rotations needed to

rebalance
› Imbalance may propagate upward so that

many rotations may be needed.

AVL Trees CSE 326 Autumn 2001
41

Deletion: Really Easy Case

2092

155

10

30173

12
1

0

100

2 2

3

00

Delete(17)

AVL Trees CSE 326 Autumn 2001
42

Deletion: Pretty Easy Case

2092

155

10

30173

12
1

0

100

2 2

3

00

Delete(15)

AVL Trees CSE 326 Autumn 2001
43

Deletion: Pretty Easy Case (cont.)

2092

175

10

303

12
1 100

2 2

3

00

Delete(15)

AVL Trees CSE 326 Autumn 2001
44

Deletion (Hard Case #1)

2092

175

10

303

12
1 100

2 2

3

00

Delete(12)

AVL Trees CSE 326 Autumn 2001
45

Single Rotation on Deletion

2092

175

10

303

1 10

2 2

3

00

3092

205

10

17

3

1 00

2 1

3

0

0

Deletion can differ from insertion – How?

AVL Trees CSE 326 Autumn 2001
46

Deletion (Hard Case)

Delete(9)

2092

175

10

303

12
1 220

2 3

4

0

33

15

13
0 0

1

0

20

30

12

33

15

13

1

0 0

11
0

18
0

AVL Trees CSE 326 Autumn 2001
47

Double Rotation on Deletion

2

3

0

202

175

10

30

12
1 22

2 3

4

33

15

13

1

0 0

1
11

0
18
0

2052

173

10

30

12
0 220

1 3

4

33

15

13

1

0 0

1
11

0
18
00

Not
finished!

AVL Trees CSE 326 Autumn 2001
48

Deletion with Propagation

We get to choose whether
to single or double rotate!

2052

173

10

30

12
0 220

1 3

4

33

15

13

1

0 0

1
11

0
18
0

What different about this case?

AVL Trees CSE 326 Autumn 2001
49

Propagated Single Rotation

0

30

20

17

33

12

15

13

1

0

52

3

10

4

3 2

1 2 1

0 0 0
11

0

2052

173

10

30

12
0 220

1 3

4

33

15

13

1

0

1
11

0
18
0

18
0

AVL Trees CSE 326 Autumn 2001
50

Propagated Double Rotation

0

17

12

11

52

3

10

4

2 3

1 0

0 0

2052

173

10

30

12
0 220

1 3

4

33

15

13

1

0

1
11

0
18
0

15
1

0

20

30

33

1
18
0

13
0

2

12/26/03 AVL Trees - Lecture 8 51

Arguments for AVL trees:
1. Search is O(log N) since AVL trees are always balanced.
2. Insertion and deletions are also O(logn)
3. The height balancing adds no more than a constant factor to the

speed of insertion.

Arguments against using AVL trees:
1. Difficult to program & debug; more space for balance factor.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use

other structures (e.g. B-trees).
4. May be OK to have O(N) for a single operation if total run time for

many consecutive operations is fast (e.g. Splay trees).

Pros and Cons of AVL Trees

12/26/03 AVL Trees - Lecture 8 52

Double Rotation Solution

DoubleRotateFromRight(n : reference node pointer) {
RotateFromLeft(n.right);
RotateFromRight(n);
}

X

n

V W

Z

