CS60020: Foundations of
Algorithm Design and Machine
Learning

SHORTEST PATH FOR NEGATIVE
EDGES

=+ Dijkstra’s algorithm

\ L
\\\‘ S

d[s] <« 0
for ecachv € V- {s}
do d[v] <— ©
S«
O« V =>() 1s a priority queue maintaining /' — S
while O O
do 1 < EXTRACT-MIN(QO)
S SU {u}
for each v € Adj|u]
do if d[v] > d[u] + w(u, v) relaxation
then d[v] < d[u] + w(u, v) step

Implicit DECREASE-KEY

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.15

.1 Negative-weight cycles

Recall: If a graph G = (V/, E)) contains a negative-
weight cycle, then some shortest paths may not exist.

Example:

W

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.2

m - Negative-weight cycles

N
“\‘

Recall If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist.

Example:

W

Bellman-Ford algorithm: Finds all shortest-path
lengths from a source s € 'toall v € J or
determines that a negative-weight cycle exists.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.3

.1 Bellman-Ford algorithm

< N
\\\‘ S

dls] < 0
for eachv € ' — {s}
do d|v] <«

fori< 1to|V] —1

\

J

> 1nitialization

do for each edge (v, v) € £
do if d[v] > d[u] + w(u, v) relaxation

then d[v]
for each edge (u, v) €

— dlul + w(u,v) [step
E

do if d[v]| > d|u] + w(u, v)
then report that a negative-weight cycle exists

At the end, d[v] = o(s,
Time = O(VE).

V), 1f no negative-weight cycles.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.4

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.5

Initialization.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.6

Order of edge relaxation.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.7

ALGORITHMS

Example of Bellman-Ford

: ‘~\‘

"\

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.8

ALGORITHMS

Example of Bellman-Ford

: ‘~\‘

"\

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.9

ALGORITHMS

«" Example of Bellman-Ford

"\

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.10

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.11

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.12

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.13

w

~~" Example of Bellman-Ford

-1

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.14

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.15

ALGORITHMS

iz
-
W

Example of Bellman-Ford

End of pass 1.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.16

w

~~" Example of Bellman-Ford

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.17

w

~~" Example of Bellman-Ford

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.18

w

~~" Example of Bellman-Ford

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.19

w

~~" Example of Bellman-Ford

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.20

w

~~" Example of Bellman-Ford

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.21

w

~~" Example of Bellman-Ford

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.22

w

~~" Example of Bellman-Ford

-1

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.23

w

~~" Example of Bellman-Ford

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.24

.4-\‘1.(.;01{i’rHA\15
wa " Example of Bellman-Ford

End of pass 2 (and 3 and 4).

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.25

‘“"‘ Correctness

|
‘\

Theorem. If G =(V, E) contains no negative-
weight cycles, then after the Bellman-Ford
algorithm executes, d[v] = o(s, v) forallv € V.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.26

ALGORITH

\
\
“\‘

Theorem. If G =(V, E) contains no negative-
weight cycles, then after the Bellman-Ford

algorithm executes, d[v] = o(s, v) forall v € V.
Proof. Letv € J'be any vertex, and consider a shortest
path p from s to v with the minimum number of edges.

pr@/@\@/@\ /@

Since p 1s a shortest path, we have
o(s, v;) = 0(s, viir) T w(viig, v) .

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.27

Correctness

”'!'! Correctness (continued)

\
"

@/@\@/@@

Initially, d[vy] = 0 = o(s, vy), and d[v,] 1s unchanged by

subsequent relaxatlons (because of the lemma from
Lecture 14 that d[v] = o(s, v)).

 After 1 pass through £, we have d[v,]| = o(s, v1).

 After 2 passes through £, we have d[v,]| = o(s, v,).
M

 After & passes through £, we have d[v,]| = o(s, v}).

Since G contains no negative-weight cycles, p 1s simple.
Longest simple path has < |V| — 1 edges.

L18.28

ALL-PAIR SHORTEST PATH

Shortest paths

Single-source shortest paths

* Nonnegative edge weights

® Dijkstra’s algorithm: O(E + V'1g V)
* General

@ Bellman-Ford algorithm: O(VE)
* DAG

@ One pass of Bellman-Ford: O(V + E)

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.32

Shortest paths

Single-source shortest paths

* Nonnegative edge weights

® Dijkstra’s algorithm: O(E + V'1g V)
* General

¢ Bellman-Ford: O(VE)

* DAG
@ One pass of Bellman-Ford: O(V + E)

All-pairs shortest paths

* Nonnegative edge weights

® Dijkstra’s algorithm | V| times: O(VE + V' 21g V)
* General

@ Three algorithms today.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.33

All-pairs shortest paths

Input: Digraph G = (V, E), where I/ = {1, 2,
..., n}, with edge-weight function w : £ — R.

Output: n x n matrix of shortest-path lengths
o(i,j) foralli,j € V.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.34

All-pairs shortest paths

Input: Digraph G = (V, E), where I/ = {1, 2,
..., n}, with edge-weight function w : £ — R.
Output: n x n matrix of shortest-path lengths
o(i,j) foralli,j € V.

IDEA:

* Run Bellman-Ford once from each vertex.

* Time = O(V2E).

* Dense graph (72 edges) = O(n 4) time 1n the
worst case.

Good first try!

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.35

Dynamic programming

Consider the 7 x n adjacency matrix 4 = (a;;)
of the digraph, and define

d, (" = weight of a shortest path from
[to j that uses at most m edges.

Claim: We have

d.(0)= {0 if i =),
J o 1f 1 #J;
and form=1,2,n—1,
dl,j(m) = min, {d, " + ay :.

Proof of claim

dl](m) — mink {dik (m=1) + ak]}

<m — 1 edges

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.37

Proof of claim

a’l-j(m) = miny {dj D

Relaxation!
for k< 1ton
do if dl] > dik_l— akj
then d;; < d; + ay; <m — 1 edges

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.38

Proof of claim

dl](m) — mink {dik (m=1) + ak]}

Relaxation!

for k< 1 ton
dO if dl]> dik—I— Clkj
then d;; < d; + ay; <m — 1 edges

Note: No negative-weight cycles implies
8(i, j) = dy " D=g, (MW= g ntD) =]

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.39

Matrix multiplication

Compute C = A4 - B, where C, A, and B are n x n
matrices: ,
Cl'j - Z aikbkj .
k=1

Time = ®(#?) using the standard algorithm.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.40

Matrix multiplication

Compute C = A4 - B, where C, A, and B are n x n
matrices: ,
Cl'j - Z aikbkj .
k=1

Time = ®(#?) using the standard algorithm.
What if we map “+” — “min” and “-” — “+7?

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1941

Matrix multiplication

Compute C = A4 - B, where C, A, and B are n x n
matrices: ,
Cij . Zaikb]q' .
k=1

Time = ®(#?) using the standard algorithm.
What if we map “+” — “min” and “-” — “+77?
Cij — mink {aik+ bk]} .
Thus, D) = Dln=1) x> 4
() 00 00 oc
Identity matrix =1 = {j oo f} =D"=(d;").

0 00 00 ()

Matrix multiplication (continued)

The (min, +) multiplication 1s associative, and
with the real numbers, 1t forms an algebraic
structure called a closed semiring.
Consequently, we can compute

D= po)y. 4 = 41

D= pl). g4 = 42

D 2y gl
yielding DD = (5(i, /).
Time = O(n-n?) = O(n*). No better than n x B-F.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1943

Improved matrix multiplication
algorithm

Repeated squaring: 4% = 1,4/\7 X]
Ak, Compute A2, 4%, ..., 42 D1
—

/

O(lg n)\s/quarings
Note: A" 1= gn= gntl =
Time = O(n? lgn).

To detect negative-weight cycles, check the
diagonal for negative values in O(») additional
time.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.44

Floyd-Warshall algorithm

Also dynamic programming, but faster!

Define ¢, () = weight of a shortest path from i
to / with intermediate vertices
belonging to the set {1, 2, ..., k}.

DD DD

Thus, (i, j) =c . Also,c D=qa .
ij ij ij

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L1945

Floyd-Warshall recurrence

() = min {c 1) ¢ D+ ¢ (k—l)}
Cjj ki ik kj

intermediate vertices 1n {1, 2, ..., &}

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.46

Pseudocode for Floyd- Warshall

for k< 1ton
dofori«< 1 ton
do for; < | ton
doif c;;> ¢+ ¢y

then c;; < ¢; + ¢

} relaxation

Notes:

* Okay to omit superscripts, since extra relaxations
can’t hurt.

* Runs 1in O(7°) time.

 Simple to code.

» Efficient 1n practice.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.47

Transitive closure of a directed
graph

1 1f there exists a path from i to J,

Compute ;= 0 otherwise.

IDEA: Use Floyd-Warshall, but with (v, A) instead
of (min, +):

W=¢ kD (f KDAL (D),

i ij ik kj

Time = O(n?).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.48

