
CS60020: Foundations of
Algorithm Design and Machine

Learning
Sourangshu Bhattacharya

SHORTEST PATH FOR NEGATIVE
EDGES

November 14, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.15

Dijkstra’s algorithm
d[s] ¬ 0
for each v Î V – {s}

do d[v] ¬¥
S ¬Æ
Q ¬ V ⊳Q is a priority queue maintaining V – S
while Q ¹Æ

do u ¬ EXTRACT-MIN(Q)
S ¬ S È {u}
for each v Î Adj[u]

do if d[v] > d[u] + w(u, v)
then d[v] ¬ d[u] + w(u, v)

Implicit DECREASE-KEY

relaxation
step

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.2

Negative-weight cycles
Recall: If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist.
Example:

uu vv

…

< 0

Negative-weight cycles
Recall: If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist.
Example: …

< 0

uu vv

Bellman-Ford algorithm: Finds all shortest-path
lengths from a source s Î V to all v Î V or
determines that a negative-weight cycle exists.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.3

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.4

Bellman-Ford algorithm
d[s] ¬ 0
for each v Î V – {s}

do d[v] ¬¥
initialization

for i ¬ 1 to |V| –1
do for each edge (u, v) Î E

do if d[v] > d[u] + w(u, v)
then d[v] ¬ d[u] + w(u, v)

for each edge (u, v) Î E
do if d[v] > d[u] + w(u, v)

relaxation
step

then report that a negative-weight cycle exists

At the end, d[v] = d(s, v), if no negative-weight cycles.
Time = O(VE).

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.5

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4
1

2

–3

2

5

3

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.6

Example of Bellman-Ford

AA

–1

4
1

2

–3

2

5

3

¥
BB

0 ¥
EE

CC
¥

DD
¥

Initialization.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.7

Example of Bellman-Ford

AA

–1

1
2

2

5

3

¥
BB

0 ¥
EE

CC
¥

DD
¥

1

2

34

5

4

7

8

–3
6

Order of edge relaxation.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.8

Example of Bellman-Ford

AA

–1

1
2

2

5

3

¥
BB

0 ¥
EE

CC
¥

DD
¥

1

2

34

5

4

7

8

–3
6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.9

Example of Bellman-Ford

AA

–1

1
2

2

5

3

¥
BB

0 ¥
EE

CC
¥

DD
¥

1

2

34

5

4

7

8

–3
6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.10

Example of Bellman-Ford

AA

–1

1
2

2

5

3

¥
BB

0 ¥
EE

CC
¥

DD
¥

1

2

34

5

4

7

8

–3
6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.11

Example of Bellman-Ford
∞

AA

-1
BB–1

1
2

2

5

3
0 ¥

EE

CC
¥

DD
¥

1

2

34

5

4

7

8

–3
6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.12

Example of Bellman-Ford

∞

AA

-1
BB

CC
4

–1

1
2

2

5

3
0 ¥

EE

DD
¥

1

2

34

5

4

7

8

–3
6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.13

Example of Bellman-Ford

AA

-1
BB

CC
4

–1

1
2

2

5

3
0 ¥

EE

DD
¥

1

2

34

5

4

7

8

–3
6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.14

Example of Bellman-Ford

4

AA

-1
BB

CC
2

–1

1
2

2

5

3
0 ¥

EE

DD
¥

1

2

34

5

4

7

8

–3
6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.15

Example of Bellman-Ford

AA

-1
BB

CC
2

–1

1
2

2

5

3
0 ¥

EE

DD
¥

1

2

34

5

4

7

8

–3
6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.16

Example of Bellman-Ford

AA

-1
BB

CC
2

–1

1
2

2

5

3
0 ¥

EE

DD
¥

1

2

34

5

4

7

8

–3
6

End of pass 1.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.17

Example of Bellman-Ford

∞1
AA

-1
BB

EE

CC
2

–1

1
2

2

5

3
0

DD
¥

1

2

34

5

4

7

8

–3
6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.18

Example of Bellman-Ford

1
AA

-1
BB

EE

CC
2

–1

1
2

2

5

3
0

DD
¥

1

2

34

5

4

7

8

–3
6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.19

Example of Bellman-Ford

∞

1
AA

-1
BB

EE

CC
2

DD
1

–1

1
2

2

5

3
0

1

2

34

5

4

7

8

–3
6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.20

Example of Bellman-Ford

1
AA

-1
BB

EE

CC
2

DD
1

–1

1
2

2

5

3
0

1

2

34

5

4

7

8

–3
6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.21

Example of Bellman-Ford

1
AA

-1
BB

EE

CC
2

DD
1

–1

1
2

2

5

3
0

1

2

34

5

4

7

8

–3
6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.22

Example of Bellman-Ford

1
AA

-1
BB

EE

CC
2

DD
1

–1

1
2

2

5

3
0

1

2

34

5

4

7

8

–3
6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.23

Example of Bellman-Ford

1
AA

-1
BB

EE

CC
2

DD
1

–1

1
2

2

5

3
0

1

2

34

5

4

7

8

–3
6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.24

Example of Bellman-Ford

1

1
AA

-1
BB

EE

CC
2

DD
-2

–1

1
2

2

5

3
0

1

2

34

5

4

7

8

–3
6

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.25

Example of Bellman-Ford

1
AA

-1
BB

EE

CC
2

DD
-2

–1

1
2

2

5

3
0

1

2

34

5

4

7

8

–3
6

End of pass 2 (and 3 and 4).

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.26

Correctness
Theorem. If G = (V, E) contains no negative-
weight cycles, then after the Bellman-Ford
algorithm executes, d[v] = d(s, v) for all v Î V.

L18.27

Correctness

11vv vv33 vvkkvv vv00 22
…

Theorem. If G = (V, E) contains no negative-
weight cycles, then after the Bellman-Ford
algorithm executes, d[v] = d(s, v) for all v Î V.
Proof. Let v Î V be any vertex, and consider a shortest
path p from s to v with the minimum number of edges.

v
s

p:

Since p is a shortest path, we have
d(s, vi) = d(s, vi–1) + w(vi–1, vi) .

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L18.28

Correctness (continued)

vv
vv vv11 33

vvkkvv00 22

…

s
v

p:

M

Initially, d[v0] = 0 = d(s, v0), and d[v0] is unchanged by

subsequent relaxations (because of the lemma from

Lecture 14 that d[v] ³ d(s, v)).

• After 1 pass through E, we have d[v1] = d(s, v1).

• After 2 passes through E, we have d[v2] = d(s, v2).

• After k passes through E, we have d[vk] = d(s, vk).

Since G contains no negative-weight cycles, p is simple.

Longest simple path has £ |V| – 1 edges.

ALL-PAIR SHORTEST PATH

Shortest paths

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.32

Single-source shortest paths
• Nonnegative edge weights
◆Dijkstra’s algorithm: O(E + V lg V)

• General
◆Bellman-Ford algorithm: O(VE)

• DAG
◆One pass of Bellman-Ford: O(V + E)

Shortest paths

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.33

Single-source shortest paths
• Nonnegative edge weights
◆Dijkstra’s algorithm: O(E + V lg V)

• General
◆Bellman-Ford: O(VE)

• DAG
◆One pass of Bellman-Ford: O(V + E)

All-pairs shortest paths
• Nonnegative edge weights
◆Dijkstra’s algorithm |V| times: O(VE + V 2 lg V)

• General
◆Three algorithms today.

All-pairs shortest paths

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.34

Input: Digraph G = (V, E), where V = {1, 2,
…, n}, with edge-weight function w : E ® R.
Output: n ´ n matrix of shortest-path lengths
d(i, j) for all i, j Î V.

All-pairs shortest paths

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.35

Input: Digraph G = (V, E), where V = {1, 2,
…, n}, with edge-weight function w : E ® R.
Output: n ´ n matrix of shortest-path lengths
d(i, j) for all i, j Î V.

IDEA:
• Run Bellman-Ford once from each vertex.
• Time = O(V 2E).
• Dense graph (n2 edges) ÞQ(n 4) time in the

worst case.
Good first try!

Dynamic programming
Consider the n ´ n adjacency matrix A = (aij)
of the digraph, and define

ijd (m) = weight of a shortest path from
i to j that uses at most m edges.

Claim: We have

ijd (0) = 0 if i = j,
¥ if i ¹ j;

and for m = 1, 2, …, n – 1,

dij
(m) = mink {dik

(m–1) + akj}.

Proof of claim
dij

(m) = mink {dik
(m–1) + akj}

jj

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.37

ii
M

k’s

£ m – 1 edges

£ m – 1 edges

£ m – 1 edges

£ m – 1 edges

Proof of claim

jjii
M

k’s

£ m – 1 edges

£ m – 1 edges

£ m – 1 edges

£ m – 1 edges

Relaxation!
for k ¬ 1 to n

do if dij > dik + akj
then dij ¬ dik + akj

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.38

dij
(m) = mink {dik

(m–1) + akj}

Proof of claim

jjii
M

k’s

£ m – 1 edges

£ m – 1 edges

£ m – 1 edges

£ m – 1 edges

Relaxation!
for k ¬ 1 to n

do if dij > dik + akj
then dij ¬ dik + akj

Note: No negative-weight cycles implies
d(i, j) = dij

(n–1) = dij
(n) = dij

(n+1) = L
November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.39

dij
(m) = mink {dik

(m–1) + akj}

Matrix multiplication
Compute C = A · B, where C, A, and B are n ´ n

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.40

matrices: n
cij =åaikbkj .

k=1
Time = Q(n3) using the standard algorithm.

Matrix multiplication
Compute C = A · B, where C, A, and B are n ´ n

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.41

matrices: n
cij =åaikbkj .

k=1
Time = Q(n3) using the standard algorithm.
What if we map “+” ® “min” and “·” ® “+”?

Matrix multiplication
Compute C = A · B, where C, A, and B are n ´ n
matrices: n

cij =åaikbkj .
k=1

Time = Q(n3) using the standard algorithm.
What if we map “+” ® “min” and “·” ® “+”?

cij = mink {aik + bkj}.

Thus, D(m) = D(m–1) “´” A.

Identity matrix

…
D = D · A = A ,

Matrix multiplication (continued)

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.43

The (min, +) multiplication is associative, and
with the real numbers, it forms an algebraic
structure called a closed semiring.
Consequently, we can compute

D(1) =
D(2) =

D(0) · A = A1

D(1) · A = A2

(n–1) (n–2) n–1

yielding D(n–1) = (d(i, j)).
Time = Q(n·n3) = Q(n4). No better than n ´ B-F.

Improved matrix multiplication
algorithm

Repeated squaring: A2k = Ak �

Ak. Compute A2, A4, …, A2⎡lg(n–1)⎤ .

O(lg n) squarings
Note: An–1 = An = An+1 = L .
Time = Q(n3 lg n).

To detect negative-weight cycles, check the
diagonal for negative values in O(n) additional
time.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.44

Floyd-Warshall algorithm

Also dynamic programming, but faster!

ijDefine c (k) = weight of a shortest path from i
to j with intermediate vertices
belonging to the set {1, 2, …, k}.

jj

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.45

ii £ kk £ kk £ kk £ kk

Thus, d(i, j) = c (n). Also, c (0) = a .
ij ij ij

Floyd-Warshall recurrence
(k) = min {c (k–1), c (k–1) + c (k–1)}cij k ij ik kj

k

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.46

ii
c (k–1)

cik(k–1) (k–1)ckj

jj
ij

intermediate vertices in {1, 2, …, k}

Pseudocode for Floyd- Warshall
for k ¬ 1 to n

do for i ¬ 1 to n
do for j ¬ 1 to n

do if cij > cik + ckj
then cij ¬ cik + ckj

relaxation

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.47

Notes:
• Okay to omit superscripts, since extra relaxations

can’t hurt.
• Runs in Q(n3) time.
• Simple to code.
• Efficient in practice.

Transitive closure of a directed
graph

Compute tij = 1 if there exists a path from i to j,
0 otherwise.

IDEA: Use Floyd-Warshall, but with (Ú, Ù) instead
of (min, +):

(k) = t (k–1)Ú (t (k–1)Ù t (k–1)).tij ij ik kj

Time = Q(n3).

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.48

