CS60020: Foundations of Algorithm Design and Machine Learning

Sourangshu Bhattacharya

SHORTEST PATH FOR NEGATIVE EDGES

Dijkstra's algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
    do d[v] \leftarrow \infty
S \leftarrow \emptyset
Q \leftarrow V \triangleright Q is a priority queue maintaining V - S
while Q \neq \emptyset
    do u \leftarrow \text{Extract-Min}(Q)
        S \leftarrow S \cup \{u\}
        for each v \in Adj[u]
                                                            relaxation
             do if d[v] > d[u] + w(u, v)
                      then d[v] \leftarrow d[u] + w(u, v)
                                                                 step
                    Implicit DECREASE-KEY
```

November 14, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L17.15

Negative-weight cycles

Recall: If a graph G = (V, E) contains a negativeweight cycle, then some shortest paths may not exist. **Example:**

Negative-weight cycles

Recall: If a graph G = (V, E) contains a negativeweight cycle, then some shortest paths may not exist. **Example:**

Bellman-Ford algorithm: Finds all shortest-path lengths from a *source* $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

Bellman-Ford algorithm

 $d[s] \leftarrow 0$ $d[s] \leftarrow 0$ for each $v \in V - \{s\}$ initialization do $d[v] \leftarrow \infty$ for $i \leftarrow 1$ to |V| - 1do for each edge $(u, v) \in E$ do if d[v] > d[u] + w(u, v)then $d[v] \leftarrow d[u] + w(u, v)$ relaxation step for each edge $(u, v) \in E$ **do if** d[v] > d[u] + w(u, v)then report that a negative-weight cycle exists At the end, $d[v] = \delta(s, v)$, if no negative-weight cycles. Time = O(VE). Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.4 November 16, 2005

November 16, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.6

Order of edge relaxation.

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.7

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.10

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.14

November 16, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.16

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.17

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.18

End of pass 2 (and 3 and 4).

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.25

Correctness

Theorem. If G = (V, E) contains no negativeweight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$.

Correctness

Theorem. If G = (V, E) contains no negativeweight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$. *Proof.* Let $v \in V$ be any vertex, and consider a shortest path *p* from *s* to *v* with the minimum number of edges.

Since *p* is a shortest path, we have $\delta(s, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i).$

November 16, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L18.27

Initially, $d[v_0] = 0 = \delta(s, v_0)$, and $d[v_0]$ is unchanged by subsequent relaxations (because of the lemma from Lecture 14 that $d[v] \ge \delta(s, v)$).

- After 1 pass through *E*, we have $d[v_1] = \delta(s, v_1)$.
- After 2 passes through *E*, we have $d[v_2] = \delta(s, v_2)$. M
- After *k* passes through *E*, we have $d[v_k] = \delta(s, v_k)$. Since *G* contains no negative-weight cycles, *p* is simple. Longest simple path has $\leq |V| - 1$ edges.

ALL-PAIR SHORTEST PATH

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm: $O(E + V \lg V)$
- General
 - Bellman-Ford algorithm: O(VE)
- DAG

• One pass of Bellman-Ford: O(V + E)

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm: $O(E + V \lg V)$
- General
 - •Bellman-Ford: O(VE)
- DAG
 - One pass of Bellman-Ford: O(V + E)

All-pairs shortest paths

Nonnegative edge weights
Dijkstra's algorithm |V| times: O(VE + V² lg V)

• General

Three algorithms today.

November 21, 2005Copyright © 2001-5 by Erik D. Demaine and Charles E. LeisersonL19.33

All-pairs shortest paths

Input: Digraph G = (V, E), where $V = \{1, 2, ..., n\}$, with edge-weight function $w : E \rightarrow \mathbb{R}$. **Output:** $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

All-pairs shortest paths

Input: Digraph G = (V, E), where $V = \{1, 2, ..., n\}$, with edge-weight function $w : E \rightarrow \mathbb{R}$. **Output:** $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

IDEA:

- Run Bellman-Ford once from each vertex.
- Time = $O(V^2 E)$.
- Dense graph $(n^2 \text{ edges}) \Rightarrow \Theta(n^4)$ time in the worst case.

Good first try!

Dynamic programming

Consider the $n \times n$ adjacency matrix $A = (a_{ij})$ of the digraph, and define

 $d_{ij}^{(m)}$ = weight of a shortest path from *i* to *j* that uses at most *m* edges.

Claim: We have

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j, \\ \infty & \text{if } i \neq j; \end{cases}$$

and for $m = 1, 2, ..., n - 1, \\ d_{ij}^{(m)} = \min_{k} \{ d_{ik}^{(m-1)} + a_{kj} \}.$

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.39

Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \, .$$

Time = $\Theta(n^3)$ using the standard algorithm.

Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \,.$$

Time = $\Theta(n^3)$ using the standard algorithm. What if we map "+" \rightarrow "min" and "." \rightarrow "+"?

Matrix multiplication

Compute $C = A \cdot B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \,.$$

Time = $\Theta(n^3)$ using the standard algorithm. What if we map "+" \rightarrow "min" and "." \rightarrow "+"? $c_{ij} = \min_k \{a_{ik} + b_{kj}\}.$

Thus, $D^{(m)} = D^{(m-1)}$ ** A.

Identity matrix = I =
$$\begin{pmatrix} 0 & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty \\ \infty & \infty & 0 & \infty \\ \infty & \infty & \infty & 0 \end{pmatrix} = D^0 = (d_{ij}^{(0)}).$$

Matrix multiplication (continued)

The (min, +) multiplication is *associative*, and with the real numbers, it forms an algebraic structure called a *closed semiring*.

Consequently, we can compute

 $D^{(1)} = D^{(0)} \cdot A = A^1$ $D^{(2)} = D^{(1)} \cdot A = A^2$

$$D^{(n-1)} = D^{(n-2)} \cdot A = A^{n-1},$$

yielding $D^{(n-1)} = (\delta(i,j)).$

Time = $\Theta(n \cdot n^3) = \Theta(n^4)$. No better than $n \times B$ -F.

Improved matrix multiplication algorithm

Repeated squaring: $A^{2k} = A^k \times A^k$. Compute $A^2, A^4, \dots, A^{2^{\lfloor \lg(n-1) \rfloor}}$. $O(\lg n)$ squarings **Note:** $A^{n-1} = A^n = A^{n+1} = L$. Time = $\Theta(n^3 \lg n)$.

To detect negative-weight cycles, check the diagonal for negative values in O(n) additional time.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.44

Floyd-Warshall algorithm

Also dynamic programming, but faster!

Define $c_{ij}^{(k)}$ = weight of a shortest path from *i* to *j* with intermediate vertices belonging to the set {1, 2, ..., k}.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.45

Floyd-Warshall recurrence

$$c_{ij}^{(k)} = \min_{k} \{ c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)} \}$$

Pseudocode for Floyd- Warshall

for
$$k \leftarrow 1$$
 to n
do for $i \leftarrow 1$ to n
do for $j \leftarrow 1$ to n
do if $c_{ij} > c_{ik} + c_{kj}$
then $c_{ij} \leftarrow c_{ik} + c_{kj}$ relaxation

Notes:

- Okay to omit superscripts, since extra relaxations can't hurt.
- Runs in $\Theta(n^3)$ time.
- Simple to code.
- Efficient in practice.

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.47

Transitive closure of a directed graph

Compute $t_{ij} = \begin{cases} 1 & \text{if there exists a path from } i \text{ to } j, \\ 0 & \text{otherwise.} \end{cases}$

IDEA: Use Floyd-Warshall, but with (\lor, \land) instead of (min, +):

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)}).$$

Time = $\Theta(n^3)$.