CS60020: Foundations of
 Algorithm Design and Machine Learning

 Sourangshu Bhattacharya

 Sourangshu Bhattacharya}

Graphs (review)

Definition. A directed graph (digraph)
$G=(V, E)$ is an ordered pair consisting of

- a set V of vertices (singular: vertex),
- a set $E \subseteq V \times V$ of edges.

In an undirected graph $G=(V, E)$, the edge set E consists of unordered pairs of vertices.
In either case, we have $|E|=O\left(V^{2}\right)$. Moreover, if G is connected, then $|E| \geq|V|-1$, which implies that $\lg |E|=\Theta(\lg V)$.
(Review CLRS, Appendix B.)

Adjacency-matrix representation

The adjacency matrix of a graph $G=(V, E)$, where $V=\{1,2, \ldots, n\}$, is the matrix $A[1 \ldots n, 1 \ldots n]$ given by

$$
A[i, j]= \begin{cases}1 & \text { if }(i, j) \in \mathrm{E}, \\ 0 & \text { if }(i, j) \notin \mathrm{E} .\end{cases}
$$

Adjacency-matrix representation

The adjacency matrix of a graph $G=(V, E)$, where $V=\{1,2, \ldots, n\}$, is the matrix $A[1 \ldots n, 1 \ldots n]$ given by

$$
A[i, j]= \begin{cases}1 & \text { if }(i, j) \in \mathrm{E}, \\ 0 & \text { if }(i, j) \notin \mathrm{E} .\end{cases}
$$

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

$\Theta\left(V^{2}\right)$ storage \Rightarrow dense representation.

Adjacency-list representation

An adjacency list of a vertex $v \in V$ is the list $\operatorname{Adj}[v]$ of vertices adjacent to v.

$$
\begin{aligned}
& \operatorname{Adj}[1]=\{2,3\} \\
& \operatorname{Adj}[2]=\{3\} \\
& \operatorname{Adj}[3]=\{ \} \\
& \operatorname{Adj}[4]=\{3\}
\end{aligned}
$$

Adjacency-list representation

An adjacency list of a vertex $v \in V$ is the list $A d j[v]$ of vertices adjacent to v.

$$
\begin{aligned}
& \operatorname{Adj}[1]=\{2,3\} \\
& \operatorname{Adj}[2]=\{3\} \\
& \operatorname{Adj}[3]=\{ \} \\
& \operatorname{Adj}[4]=\{3\}
\end{aligned}
$$

For undirected graphs, $|\operatorname{Adj}[v]|=$ degree (v). For digraphs, \mid Adj $[v] \mid=$ out-degree(v).

Adjacency-list representation

An adjacency list of a vertex $v \in V$ is the list $\operatorname{Adj}[v]$ of vertices adjacent to v.

$$
\begin{aligned}
& \operatorname{Adj}[1]=\{2,3\} \\
& \operatorname{Adj}[2]=\{3\} \\
& \operatorname{Adj}[3]=\{ \} \\
& \operatorname{Adj}[4]=\{3\}
\end{aligned}
$$

For undirected graphs, $|\operatorname{Adj}[v]|=$ degree (v). For digraphs, \mid Adj $[v] \mid=$ out-degree(v).
Handshaking Lemma: $\sum_{v \in V} \operatorname{Adj}[v]=2|\mathrm{E}|$ for undirected graphs \Rightarrow adjacency lists use $\Theta(V+E)$ storage - a sparse representation (for either type of graph).

Minimum spanning trees

Input: A connected, undirected graph $G=(V, E)$ with weight function $w: E \rightarrow \mathrm{R}$.

- For simplicity, assume that all edge weights are distinct. (CLRS covers the general case.)

Minimum spanning trees

Input: A connected, undirected graph $G=(V, E)$ with weight function $w: E \rightarrow \mathrm{R}$.

- For simplicity, assume that all edge weights are distinct. (CLRS covers the general case.)

Output: A spanning tree T - a tree that connects all vertices - of minimum weight:

$$
w(T)=\sum_{(u, v) \in T} w(u, v)
$$

Example of MST

Example of MST

Optimal substructure

MST T:
(Other edges of G are not shown.)

Optimal substructure

MST T :
(Other edges of G are not shown.)

Remove any edge $(u, v) \in T$.

Optimal substructure

MST T :

(Other edges of G are not shown.)

Remove any edge $(u, v) \in T$.

Optimal substructure

MST T:
(Other edges of G are not shown.)

Remove any edge $(u, v) \in T$. Then, T is partitioned into two subtrees T_{1} and T_{2}.

Optimal substructure

 MST T:(Other edges of G are not shown.)

Remove any edge $(u, v) \in T$. Then, T is partitioned into two subtrees T_{1} and T_{2}. Theorem. The subtree T_{1} is an MST of $G_{1}=\left(V_{1}, E_{1}\right)$, the subgraph of G induced by the vertices of T_{1} :

$$
\begin{aligned}
& V_{1}=\text { vertices of } T_{1}, \\
& E_{1}=\left\{(x, y) \in E: x, y \in V_{1}\right\} .
\end{aligned}
$$

Similarly for T_{2}.

Proof of optimal substructure

 Proof. Cut and paste:$$
w(T)=w(u, v)+w\left(T_{1}\right)+w\left(T_{2}\right) .
$$

If T_{1} were a lower-weight spanning tree than T_{1} for G_{1}, then $T^{\prime}=\{(u, v)\} \cup T_{1} \cup T_{2}$ would bea lower-weight spanning tree than T for G. \square

Proof of optimal substructure

Proof. Cut and paste:

$$
w(T)=w(u, v)+w\left(T_{1}\right)+w\left(T_{2}\right) .
$$

If T_{1} were a lower-weight spanning tree than T_{1} for G_{1}, then $T^{\prime}=\{(u, v)\} \cup T_{1} \cup T_{2}$ would bea lower-weight spanning tree than T for G. \square
Do we also have overlapping subproblems?

- Yes.

Proof of optimal substructure

Proof. Cut and paste:

$$
w(T)=w(u, v)+w\left(T_{1}\right)+w\left(T_{2}\right) .
$$

If T_{1} were a lower-weight spanning tree than T_{1} for G_{1}, then $T^{\prime}=\{(u, v)\} \cup T_{1} \cup T_{2}$ would bea lower-weight spanning tree than T for G. \square
Do we also have overlapping subproblems?

- Yes.

Great, then dynamic programming may work!

- Yes, but MST exhibits another powerful property which leads to an even more efficient algorithm.

Hallmark for "greedy" algorithms

Hallmark for "greedy" algorithms

Theorem. Let T be the MST of $G=(V, E)$, and let $A \subseteq V$. Suppose that $(u, v) \in E$ is the least-weight edge connecting A to $V-A$. Then, $(u, v) \in T$.

Proof of theorem

Proof. Suppose $(u, v) \notin T$. Cut and paste.

$$
T:
$$

- $\in A$

- $\in V-A$
$(u, v)=$ least-weight edge connecting A to $V-A$

Proof of theorem

Proof. Suppose $(u, v) \notin T$. Cut and paste.
T :
$0 \in A$

- $\in V-A$
$(u, v)=$ least-weight edge connecting A to $V-A$
Consider the unique simple path from u to v in T.

Proof of theorem

Proof. Suppose $(u, v) \notin T$. Cut and paste.
T :
$0 \in A$

- $\in V-A$
$(u, v)=$ least-weight edge connecting A to $V-A$

Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in $V-A$.

Proof of theorem

Proof. Suppose $(u, v) \notin T$. Cut and paste.
$T^{\text {! }}$
$0 \in A$

- $\in V-A$
$(u, v)=$ least-weight edge connecting A to $V-A$

Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in $V-A$.
A lighter-weight spanning tree than T results.

Kruskal's Algorithm

$\operatorname{MST}-\operatorname{Kruskal}(G, w)$
$1 A=\emptyset$
2 for each vertex $v \in G . V$
3 MaKe-Set (ν)
4 sort the edges of G.E into nondecreasing order by weight w
5 for each edge $(u, v) \in G . E$, taken in nondecreasing order by weight
6
7
$8 \quad \operatorname{UNion}(u, v)$
9 return A

Prim's algorithm

Idea: Maintain $V-A$ as a priority queue Q. Key each vertex in Q with the weight of the leastweight edge connecting it to a vertex in A.
$Q \leftarrow V$
$k e y[v] \leftarrow \infty$ for all $v \in V$
$k e y[s] \leftarrow 0$ for some arbitrary $s \in V$
while $Q \neq \varnothing$
do $u \leftarrow$ EXTRACT-MIN (Q)
for each $v \in \operatorname{Adj}[u]$
do if $v \in Q$ and $w(u, v)<k e y[v]$ then $k e y[v] \leftarrow w(u, v) \quad$ DECREASE-KEY

$$
\pi[v] \leftarrow u
$$

At the end, $\{(\nu, \pi[v])\}$ forms the MST.

Example of Prim's algorithm

Example of Prim's algorithm

$$
\begin{aligned}
& 0 \in A \\
& 0 \in V-A
\end{aligned}
$$

Example of Prim's algorithm

$$
\begin{aligned}
& 0 \in A \\
& 0 \in V-A
\end{aligned}
$$

Example of Prim's algorithm

$$
\begin{aligned}
& 0 \in A \\
& 0 \in V-A
\end{aligned}
$$

Example of Prim's algorithm

Analysis of Prim

$$
\begin{aligned}
& Q \leftarrow V \\
& k e y[v] \leftarrow \infty \text { for all } v \in V \\
& k e y[s] \leftarrow 0 \text { for some arbitrary } s \in V \\
& \text { while } Q \neq \varnothing \\
& \text { do } u \leftarrow \text { EXTRACT-MIN }(Q) \\
& \text { for each } v \in A d j[u] \\
& \quad \text { do if } v \in Q \text { and } w(u, v)<k e y[v] \\
& \quad \text { then } \text { key }[v] \leftarrow w(u, v) \\
& \pi[v] \leftarrow u
\end{aligned}
$$

Analysis of Prim

Analysis of Prim

Analysis of Prim

Analysis of Prim

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

Analysis of Prim

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.
Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$

Analysis of Prim (continued)

Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$

Analysis of Prim (continued)

Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$

$$
Q \quad T_{\text {Extract-Min }} T_{\text {Decrease-Key }} \text { Total }
$$

Analysis of Prim (continued)

Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$

$$
Q \quad T_{\text {Extract-Min }} T_{\text {Decrease-Key }} \quad \text { Total }
$$

array $\quad O(V) \quad O(1) \quad O\left(V^{2}\right)$

Analysis of Prim (continued)

Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$

$Q \quad T_{\text {Extract-Min }} T_{\text {Decrease-Key }}$ Total
array
$O(V)$
$O(1)$
$O\left(V^{2}\right)$
binary
heap
$O(\lg V)$
$O(\lg V)$
$O(E \lg V)$

Analysis of Prim (continued)

$$
\text { Time }=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}
$$

$Q \quad T_{\text {Extract-Min }} T_{\text {Decrease-Key }}$ Total

array $\quad O(V) \quad O(1) \quad O\left(V^{2}\right)$
binary
heap

$$
O(\lg V)
$$

$O(\lg V)$
$O(E \lg V)$
$O(1)$
$O(E+V \lg V)$
amortized worst case

MST algorithms

Kruskal's algorithm (see CLRS):

- Uses the disjoint-set data structure (Lecture 10).
- Running time $=O(E \lg V)$.

MST algorithms

Kruskal's algorithm (see CLRS):

- Uses the disjoint-set data structure (Lecture 10).
- Running time $=O(E \lg V)$.

Best to date:

- Karger, Klein, and Tarjan [1993].
- Randomized algorithm.
- $O(V+E)$ expected time.

