CS60020: Foundations of
 Algorithm Design and Machine Learning

 Sourangshu Bhattacharya

 Sourangshu Bhattacharya}

Dynamic programming

Design technique, like divide-and-conquer.
Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.

Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both. "a" not "the"

Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both. "a" not "the"
$x: A$

B

$y: B$
D
C
A

A

Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both. "a" not "the"

but not a function

Brute-force LCS algorithm

Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.

Brute-force LCS algorithm

Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.

Analysis

- Checking $=O(n)$ time per subsequence.
- 2^{m} subsequences of x (each bit-vector of length m determines a distinct subsequence of x).
Worst-case running time $=O\left(n 2^{m}\right)$
$=$ exponential time.

Towards a better algorithm

Simplification:

1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Towards a better algorithm

Simplification:

1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.

Towards a better algorithm

Simplification:

1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.
Strategy: Consider prefixes of x and y.

- Define $c[i, j]=|\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j])|$.
- Then, $c[m, n]=|\operatorname{LCS}(x, y)|$.

Recursive formulation

Theorem.

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j], \\ \max \{c[i-1, j], c[i, j-1]\} & \text { otherwise } .\end{cases}
$$

Recursive formulation

Theorem.

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j \\ \max \{c[i-1, j], c[i, j-1]\} & \text { otherwise } .\end{cases}
$$

Proof. Case $x[i]=y[j]$:

Recursive formulation

Theorem.

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j \\ \max \{c[i-1, j], c[i, j-1]\} & \text { otherwise } .\end{cases}
$$

Proof. Case $x[i]=y[j]$:

Let $z[1 \ldots k]=\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j])$, where $c[i, j]$
$=k$. Then, $z[k]=x[i]$, or else z could be extended. Thus, $z[1 \ldots k-1]$ is CS of $x[1 \ldots i-1]$ and $y[1 \ldots j-1]$.

Proof (continued)

Claim: $z[1 \ldots k-1]=\operatorname{LCS}(x[1 \ldots i-1], y[1 \ldots j-1])$. Suppose w is a longer CS of $x[1 \ldots i-1]$ and $y[1 \ldots j-1]$, that is, $|w|>k-1$. Then, cut and paste: $w \| z[k]$ (w concatenated with $z[k]$) is a common subsequence of $x[1 \ldots i]$ and $y[1 \ldots j]$ with $|w \| z[k]|>k$. Contradiction, proving the claim.

proof (continued)

Claim: $z[1 \ldots k-1]=\operatorname{LCS}(x[1 \ldots i-1], y[1 \ldots j-1])$. Suppose w is a longer CS of $x[1 \ldots i-1]$ and $y[1 \ldots j-1]$, that is, $|w|>k-1$. Then, cut and paste: $w \| z[k](w$ concatenated with $z[k])$ is a common subsequence of $x[1 \ldots i]$ and $y[1 \ldots j]$ with $|w \| z[k]|>k$. Contradiction, proving the claim.
Thus, $c[i-1, j-1]=k-1$, which implies that $c[i, j]$
$=c[i-1, j-1]+1$.
Other cases are similar. \square

Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

Optimal substructure
 An optimal solution to a problem
 (instance) contains optimal solutions to subproblems.

If $z=\operatorname{LCS}(x, y)$, then any prefix of z is an LCS of a prefix of x and a prefix of y.

Recursive algorithm for LCS

$$
\begin{aligned}
& \operatorname{LCS}(x, y, i, j) \\
& \text { if } x[i]=y[j] \\
& \text { then } c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1)+1 \\
& \text { else } c[i, j] \leftarrow \max \{\operatorname{LCS}(x, y, i-1, j), \\
& \operatorname{LCS}(x, y, i, j-1)\}
\end{aligned}
$$

Recursive algorithm for LCS

$\operatorname{LCS}(x, y, i, j)$

$$
\begin{aligned}
& \text { if } x[i]=y[j] \\
& \text { then } c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1)+1 \\
& \text { else } c[i, j] \leftarrow \max \{\operatorname{LCS}(x, y, i-1, j), \\
& \operatorname{LCS}(x, y, i, j-1)\}
\end{aligned}
$$

Worst-case: $x[i] \neq y[j]$, in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Recursion tree

Recursion tree

Height $=m+n \Rightarrow$ work potentially exponential.

Recursion tree

Height $=m+n \Rightarrow$ work potentially exponential., but we're solving subproblems already solved!

Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only $m n$.

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.
$\operatorname{LCS}(x, y, i, j)$
if $c[i, j]=\mathrm{NIL}$
then if $x[i]=y[j]$
then $c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1)+1 \quad$ same
else $\left.c[i, j] \leftarrow \max \{\operatorname{LCS}(x, y, i-1, j),\} \begin{array}{l}\text { as } \\ \operatorname{LCS}(x, y, i, j-1)\}\end{array}\right\}$ before

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.
$\operatorname{LCS}(x, y, i, j)$

$$
\text { if } c[i, j]=\mathrm{NIL}
$$

then if $x[i]=y[j]$ then $c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1)+1 \quad$ same else $\left.c[i, j] \leftarrow \max \{\operatorname{LCS}(x, y, i-1, j),\} \begin{array}{l}\text { as } \\ \operatorname{LCS}(x, y, i, j-1)\}\end{array}\right\}$ before
Time $=\Theta(m n)=$ constant work per table entry.
Space $=\Theta(m n)$.

ALGORITHMS
 Đynamic-programming algorithm

Idea:

 Compute the table bottom-up.| | | | | | A | B | C | B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | D | A | B | | | | | |
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| B | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| D | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 |
| C | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2 |
| A | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3 |
| B | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4 |
| A | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |

Dynamic-programming algorithm

Idea: Compute the table bottom-up.
 Time $=\Theta(m n)$.

	A		B	C	B	D	A	B
	0	0	0	0	0	0	0	0
B	0	0	1	1	1	1	1	1
D	0	0	1	1	1	2	2	2
C	0	0	1	2	2	2	2	2
A	0	1	1	2	2	2	3	3
B	0	1	2	2	3	3	3	4
A	0	1	2	2	3	3	4	4

Dynamic-programming algorithm

Idea:

Compute the table bottom-up.

Time $=\Theta(m n)$.
Reconstruct LCS by tracing backwards.

			B	C	B	D	A	
	0	0	0	0	0	0	0	0
B	0	0	1	1	1	1	1	1
D	0	0	1	1	1	2	2	2
C	0	0	1	2	2	2	2	2
A	0	1	1	2	2	2	3	3
B	0	1	2	2	3	3	3	4
A	0	1	2	2	3	3	4	4

Dynamic-programming algorithm

Idea:

Compute the table bottom-up.
Time $=\Theta(m n)$.
Reconstruct LCS by tracing backwards.
Space $=\Theta(m n)$.
Exercise:
$O(\min \{m, n\})$.

