CS60020: Foundations of
 Algorithm Design and Machine Learning

 Sourangshu Bhattacharya

 Sourangshu Bhattacharya}

Binary Search Tree - Best Time

- All BST operations are $O(d)$, where d is tree depth
- minimum d is $d=\left\lfloor\log _{2} \mathrm{~N}\right\rfloor$ for a binary tree with N nodes
, What is the best case tree?
) What is the worst case tree?
- So, best case running time of BST operations is $\mathrm{O}(\log \mathrm{N})$

Binary Search Tree - Worst Time

- Worst case running time is $\mathrm{O}(\mathrm{N})$
, What happens when you Insert elements in ascending order?
- Insert: 2, 4, 6, 8, 10, 12 into an empty BST
, Problem: Lack of "balance":
- compare depths of left and right subtree
> Unbalanced degenerate tree

Balanced and unbalanced BST

Approaches to balancing trees

- Don't balance
, May end up with some nodes very deep
- Strict balance
, The tree must always be balanced perfectly
- Pretty good balance
, Only allow a little out of balance
- Adjust on access
, Self-adjusting

Balancing Binary Search Trees

- Many algorithms exist for keeping binary search trees balanced
> Adelson-Velskii and Landis (AVL) trees (heightbalanced trees)
, Splay trees and other self-adjusting trees
, B-trees and other multiway search trees

Perfect Balance

- Want a complete tree after every operation
) tree is full except possibly in the lower right
- This is expensive
) For example, insert 2 in the tree on the left and then rebuild as a complete tree

AVL - Good but not Perfect Balance

- AVL trees are height-balanced binary search trees
- Balance factor of a node
, height(left subtree) - height(right subtree)
- An AVL tree has balance factor calculated at every node
) For every node, heights of left and right subtree can differ by no more than 1
, Store current heights in each node

Height of an AVL Tree

- $N(h)=$ minimum number of nodes in an AVL tree of height h.
- Basis

$$
\text { , } N(0)=1, N(1)=2
$$

- Induction

$$
>N(h)=N(h-1)+N(h-2)+1
$$

- Solution (recall Fibonacci analysis)

$$
\text { > } N(h) \geq \phi^{h} \quad(\phi \approx 1.62)
$$

Height of an AVL Tree

- $N(h) \geq \phi^{h} \quad(\phi \approx 1.62)$
- Suppose we have n nodes in an AVL tree of height h.
> $\mathrm{n} \geq \mathrm{N}(\mathrm{h})$ (because $\mathrm{N}(\mathrm{h})$ was the minimum)
) $n \geq \phi^{h}$ hence $\log _{\phi} n \geq h$ (relatively well balanced tree!!)
) $\mathrm{h} \leq 1.44 \log _{2} \mathrm{n}$ (i.e., Find takes $\mathrm{O}(\log \mathrm{n})$)

Node Heights

Tree B (AVL)

height of node $=h$
balance factor $=h_{\text {left }}-h_{\text {right }}$ empty height $=-1$

Node Heights after Insert 7

Tree B (not AVL)
 empty height $=-1$

Insert and Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or -2 for some node
, only nodes on the path from insertion point to root node have possibly changed in height
, So after the Insert, go back up to the root node by node, updating heights
, If a new balance factor (the difference $h_{\text {left }}-\mathrm{h}_{\text {right }}$) is
2 or -2 , adjust tree by rotation around the node

Single Rotation in an AVL Tree

Insertions in AVL Trees

Let the node that needs rebalancing be α.
There are 4 cases:
Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of α.
2. Insertion into right subtree of right child of α.

Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of α.
4. Insertion into left subtree of right child of α.

The rebalancing is performed through four separate rotation algorithms.

AVL Insertion: Outside Case

AVL Insertion: Outside Case

AVL Insertion: Outside Case

Single right rotation

Outside Case Completed

AVL property has been restored!

AVL Insertion: Inside Case

\qquad

AVL Insertion: Inside Case

Inserting into Y destroys the AVL property at node j

Does "right rotation" restore balance?

AVL Insertion: Inside Case

AVL Insertion: Inside Case

\qquad

AVL Insertion: Inside Case

AVL Insertion: Inside Case

Double rotation : first rotation

Double rotation : second

Double rotation : second rotation

right rotation complete

Implementation

No need to keep the height; just the difference in height, i.e. the balance factor; this has to be modified on the path of insertion even if you don't perform rotations

Once you have performed a rotation (single or double) you won't need to go back up the tree

Single Rotation

```
RotateFromRight(n : reference node pointer)
p : node pointer;
p := n.right;
n.right := p.left;
p.left := n;
n := p
}
You also need to modify the heights or balance factors of \(n\) and \(p\)
```


Double Rotation

- Implement Double Rotation in two lines.

DoubleRotateFromRight(n : reference node pointer) ????
\}

Insertion in AVL Trees

- Insert at the leaf (as for all BST)
, only nodes on the path from insertion point to root node have possibly changed in height
, So after the Insert, go back up to the root node by node, updating heights
, If a new balance factor (the difference $h_{\text {left }}-\mathrm{h}_{\text {right }}$) is 2 or -2 , adjust tree by rotation around the node

Insert in BST

```
Insert(T : reference tree pointer, x : element) : integer {
if T = null then
    T := new tree; T.data := x; return 1;//the links to
                                    //children are null
case
    T.data = x : return 0; //Duplicate do nothing
    T.data > x : return Insert(T.left, x);
    T.data < x : return Insert(T.right, x);
endcase
}
```


Insert in AVL trees

```
Insert(T : reference tree pointer, x : element) : {
if T = null then
    {T := new tree; T.data := x; height := 0; return;}
case
    T.data = x : return ; //Duplicate do nothing
    T.data > x : Insert(T.left, x);
        if ((height(T.left)- height(T.right)) = 2){
        if (T.left.data > x ) then //outside case
                            T = RotatefromLeft (T);
        else
                                    //inside case
                            T = DoubleRotatefromLeft (T);}
    T.data < x : Insert(T.right, x);
        code similar to the left case
Endcase
    T.height := max(height(T.left),height(T.right)) +1;
    return;
}
```


Example of Insertions in an AVL

 Tree

Example of Insertions in an AVL

 Tree

Single rotation (outside case)

Double rotation (inside case)

AVL Tree Deletion

- Similar but more complex than insertion
) Rotations and double rotations needed to rebalance
, Imbalance may propagate upward so that many rotations may be needed.

Pros and Cons of AVL Trees

Arguments for AVL trees:

1. Search is $O(\log N)$ since $A V L$ trees are always balanced.
2. Insertion and deletions are also O(logn)
3. The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:

1. Difficult to program \& debug; more space for balance factor.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
4. May be OK to have $\mathrm{O}(\mathrm{N})$ for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees).

Double Rotation Solution

DoubleRotateFromRight(n : reference node pointer) \{ RotateFromLeft(n.right); RotateFromRight(n);

Balanced search trees

Balanced search tree: A search-tree data structure for which a height of $O(\lg n)$ is guaranteed when implementing a dynamic set of n items.

- AVL trees
- 2-3 trees

Examples:

- 2-3-4 trees
- B-trees
- Red-black trees

Red-black trees

This data structure requires an extra onebit color field in each node.

Red-black properties:

1. Every node is either red or black.
2. The root and leaves (NIL's) are black.
3. If a node is red, then its parent is black.
4. All simple paths from any node x to a descendant leaf have the same number of black nodes $=$ black-height (x).

Example of a red-black

Example of a red-black

1. Every node is either red or black.

Example of a red-black

2. The root and leaves (NIL's) are black.

Example of a red-black

3. If a node is red, then its parent is black.

Example of a red-black

4. All simple paths from any node x to a descendant leaf have the same number of black nodes $=$ black-height (x).

Height of a red-black tree

Theorem. A red-black tree with n keys has height

$$
h \leq 2 \lg (n+1) .
$$

Proof. (The book uses induction. Read carefully.)

Intuition:

- Merge red nodes into their black

Height of a red-black tree

Theorem. A red-black tree with n keys has height

$$
h \leq 2 \lg (n+1) .
$$

Proof. (The book uses induction. Read carefully.)

Intuition:

- Merge red nodes into their black parents.

Height of a red-black tree

Theorem. A red-black tree with n keys has height

$$
h \leq 2 \lg (n+1) .
$$

Proof. (The book uses induction. Read carefully.)
Intuition:

- Merge red nodes into their black parents.

ALGORITHMS
 Height of a red-black tree

Theorem. A red-black tree with n keys has height $h \leq 2 \lg (n+1)$.
Proof. (The book uses induction. Read carefully.)
Intuition:

- Merge red nodes into their black parents.

Height of a red-black tree

Theorem. A red-black tree with n keys has height

$$
h \leq 2 \lg (n+1) .
$$

Proof. (The book uses induction. Read carefully.)
Intuition:

- Merge red nodes into their black parents.

ALGORITHMS Height of a red-black tree

Theorem. A red-black tree with n keys has height

$$
h \leq 2 \lg (n+1) .
$$

Proof. (The book uses induction. Read carefully.)
Intuition:

- Merge red nodes into their black parents.

- This process produces a tree in which each node has 2,3 , or 4 children.
- The 2-3-4 tree has uniform depth h^{\prime} of leaves.

Proof

(continued)

- We have
$h^{\prime} \geq h / 2$, since at most half
 the leaves on any path are red.
- The number of leaves in each tree is $n+1$
$\Rightarrow n+1 \geq 2^{h^{\prime}}$
$\Rightarrow \lg (n+1) \geq h^{\prime} \geq h / 2$
$\Rightarrow h \leq 2 \lg (n+1)$.

Query operations

Corollary. The queries Search, Min, Max, Successor, and Predecessor all run in $O(\lg n)$ time on a red-black tree with n nodes.

Modifying operations

The operations Insert and Delete cause modifications to the red-black tree:

- the operation itself,
- color changes,
- restructuring the links of the tree via "rotations".

Rotation

Rotations maintain the inorder ordering of keys:

- $a \in \alpha, b \in \beta, c \in \gamma \Rightarrow a \leq A \leq b \leq B \leq c$.

A rotation can be performed in $O(1)$ time.

...Insertion into a red-black tree

-Idea: Insert x in tree. Color x red. Only red- black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

- Example:

Insertion into a red-black tree

-Idea: Insert x in tree. Color x red. Only red- black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert $x=15$.
- Recolor, moving the violation up the tree.

Insertion into a red-black tree

-Idea: Insert x in tree. Color x red. Only red- black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert $x=15$.
- Recolor, moving the violation up the tree.
- Right-Rotate(18).

Insertion into a red-black tree

-Idea: Insert x in tree. Color x red. Only red- black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert $x=15$.
- Recolor, moving the violation up the tree.
- Right-Rotate (18).
- Left-Rotate(7) and recolor.

Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only redblack property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert $x=15$.
- Recolor, moving the violation up the tree.
- Right-Rotate(18).

- Left-Rotate(7) and recolor.

Pseudocode

RB－INSERT（ T, x ）
$\operatorname{TrEE}-\operatorname{INSERT}(T, x)$
color $[x] \leftarrow$ RED $\quad \Varangle$ only RB property 3 can be violated
while $x \neq \operatorname{root}[T]$ and $\operatorname{color}[p[x]]=\operatorname{RED}$
do if $p[x]=\operatorname{left}[p[p[x]]$
then $y \leftarrow \operatorname{right}[p[p[x]] \quad \triangleleft y=$ aunt／uncle of x if color $[y]=$ RED then \langle Case 1〉 else if $x=\operatorname{right}[p[x]]$ then \langle Case 2〉 \langle Case 2 falls into Case 3
＜Case 3〉
else 〈＂then＂clause with＂left＂and＂right＂swapped〉 color $[$ root $[T]] \leftarrow$ BLACK

Graphical notation

Let Δ denote a subtree with a black root.
All Δ 's have the same black-height.

Case 1

\therefore … Case 2

Transform to Case 3.

Case 3

Done! No more violations of RB property 3 are possible.

Analysis

- Go up the tree performing Case 1 , which only recolors nodes.
- If Case 2 or Case 3 occurs, perform 1 or 2 rotations, and terminate.

Running time: $O(\lg n)$ with $O(1)$ rotations.
RB-Delete - same asymptotic running time and number of rotations as RB-InSERT (see textbook).

