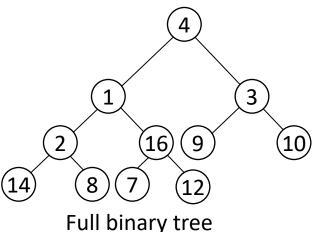
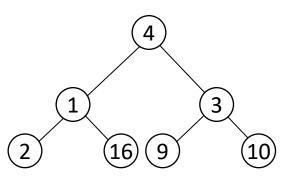
CS60020: Foundations of Algorithm Design and Machine Learning

Sourangshu Bhattacharya

Special Types of Trees Def: Full binary tree = a binary tree in which each node is either a leaf or has degree exactly 2.



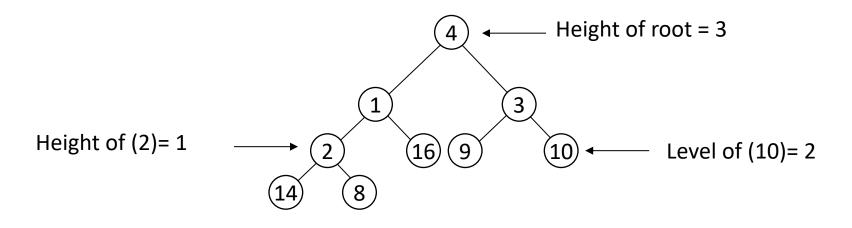
 Def: Complete binary tree
 a binary tree in which all leaves are on the same level and all internal nodes have degree 2.



Complete binary tree

Definitions

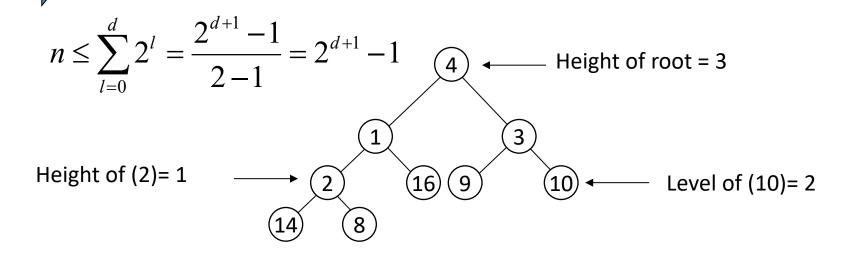
- **Height** of a node = the number of edges on the longest simple path from the node down to a leaf
- Level of a node = the length of a path from the root to the node
- **Height** of tree = height of root node



Useful Properties

- There are at most 2^l nodes at level (or depth) l of a binary tree
- A binary tree with height d has at most $2^{d+1} 1$ nodes

- A binary tree with *n* nodes has height at least $\lfloor lgn \rfloor$ (see Ex 6.1-2, page 129)



The Heap Data Structure

- *Def*: A heap is a <u>nearly complete</u> binary tree with the following two properties:
 - Structural property: all levels are full, except possibly the last one, which is filled from left to right
 - Order (heap) property: for any node x $Parent(x) \ge x$ follows that:

"The root is the maximum element of the heap!"

Heap

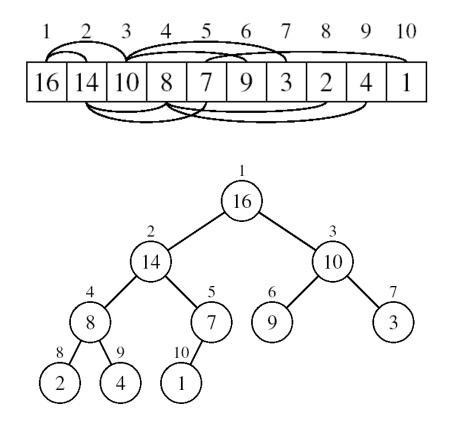
2

5

A heap is a binary tree that is filled in order

Array Representation of Heaps

- A heap can be stored as an array A.
 - Root of tree is A[1]
 - Left child of A[i] = A[2i]
 - Right child of A[i] = A[2i + 1]
 - Parent of $A[i] = A[\lfloor i/2 \rfloor]$
 - Heapsize[A] \leq length[A]
- The elements in the subarray
 A[(_n/2\]+1) .. n] are leaves



Heap Types

• Max-heaps (largest element at root), have the max-heap property:

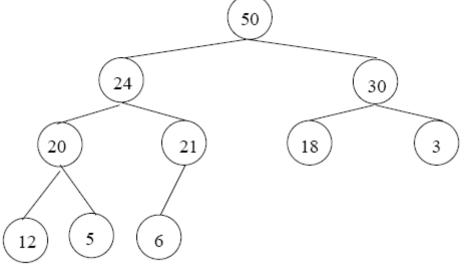
- for all nodes i, excluding the root: $A[PARENT(i)] \ge A[i]$

• Min-heaps (smallest element at root), have the *min-heap property:*

- for all nodes i, excluding the root: A[PADFN]T(i)] < A[i]

Adding/Deleting Nodes

- New nodes are always inserted at the bottom level (left to right)
- Nodes are removed from the bottom level
 (right

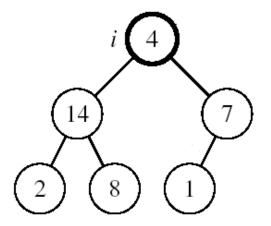


Operations on Heaps

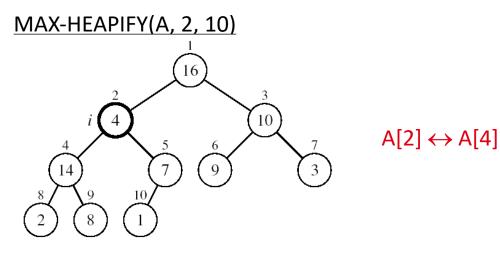
- Maintain/Restore the max-heap property
 - MAX-HEAPIFY
- Create a max-heap from an unordered array
 BUILD-MAX-HEAP
- Sort an array in place
 - HEAPSORT
- Priority queues

Maintaining the Heap Property

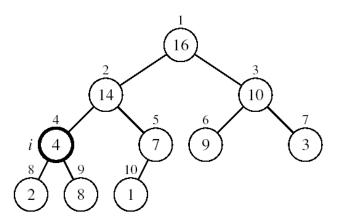
- Suppose a node is smaller than a child
 - Left and Right subtrees of i are max-heaps
- To eliminate the violation:
 - Exchange with larger child
 - Move down the tree
 - Continue until node is not smaller than children



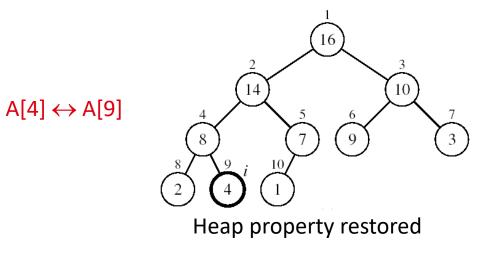
Example



A[2] violates the heap property

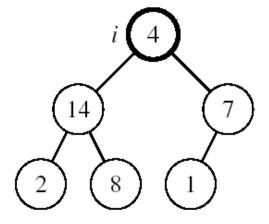


A[4] violates the heap property



Maintaining the Heap Property

- Assumptions:
 - Left and Right subtrees of i are max-heaps
 - A[i] may be smaller than



- Alg: MAX-HEAPIFY(A, i, n)
- 1. $I \leftarrow LEFT(i)$
- 2. $r \leftarrow RIGHT(i)$
- 3. if $I \le n$ and A[I] > A[i]
- 4. then largest $\leftarrow l$
- 5. else largest ←i
- 6. if $r \le n$ and A[r] > A[largest]
- 7. **then** largest \leftarrow r
- 8. if largest \neq i
- 9. then exchange A[i] A[largest]
 10. MAX-HEAPIFY(A, largest, n)

MAX-HEAPIFY Running Time

• Intuitively:

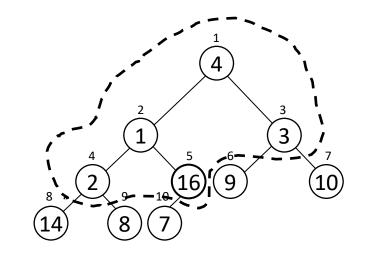
- It traces a path from the root to a leaf (longest path length: h)
 At each level, it makes exactly 2 comparisons
- Total number of comparisons is 2h
- Running time is O(h) or O(lgn)
- Running time of MAX-HEAPIFY is O(lqn)
- Can be written in terms of the height of the heap, as being O(h)
 - Since the height of the heap is $\lfloor Ign \rfloor$

Building a Heap

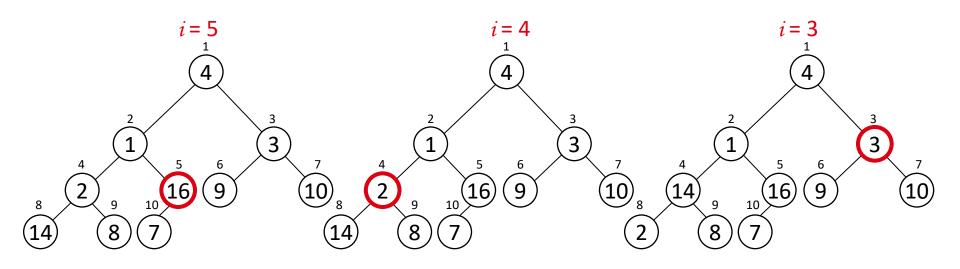
- Convert an array A[1 ... n] into a max-heap (n = length[A])
- The elements in the subarray $A[(\lfloor n/2 \rfloor + 1) \dots n]$ are leaves
- Apply MAX-HEAPIFY on elements between $1 \text{ and } \lfloor n/2 \rfloor$

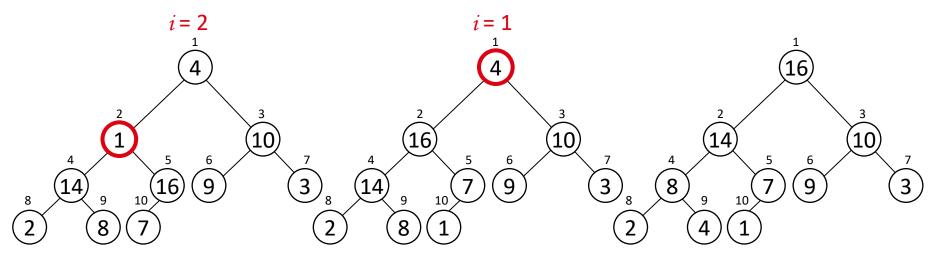
Alg: BUILD-MAX-HEAP(A)

- 1. n = length[A]
- 2. for $i \leftarrow \lfloor n/2 \rfloor$ downto 1
- 3. do MAX-HEAPIFY(A, i, n)



Example:





Running Time of BUILD MAX HEAP

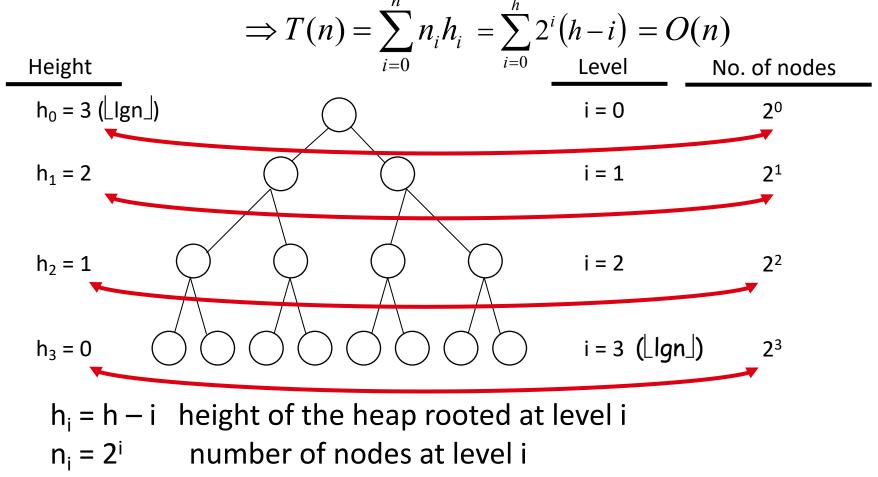
- Alg: BUILD-MAX-HEAP(A)
- 1. n = length[A]
- 2. for $i \leftarrow |n/2|$ downto 1

do MAX-HEAPIFY(A, i, n) O(lgn) O(n) 3.

- \Rightarrow Running time: O(nlqn)
- This is not an asymptotically tight upper bound

Running Time of BUILD MAX HEAP

 HEAPIFY takes O(h) ⇒ the cost of HEAPIFY on a node i is proportional to the height of the node i in the tree

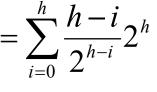


Running Time of BUILD MAX HEAP

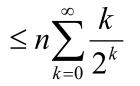
Cost of HEAPIFY at level i * number of nodes at that level

 $T(n) = \sum_{i=1}^{n} n_i h_i$

 $=\sum_{i=1}^{h} 2^{i} (h-i)$ Replace the values of n_i and h_i computed before



 $= \sum_{i=0}^{h} \frac{h-i}{2^{h-i}} 2^{h}$ Multiply by 2^h both at the nominator and denominator and write 2ⁱ as $\frac{1}{2^{-i}}$



= O(n)

The sum above is smaller than the sum of all elements to ∞ and h = Ign

The sum above is smaller than 2

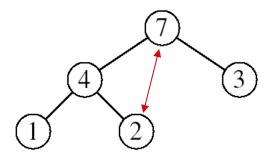
Running time of BUILD-MAX-HEAP: T(n) = O(n)

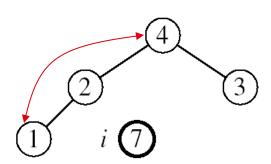
Heapsort

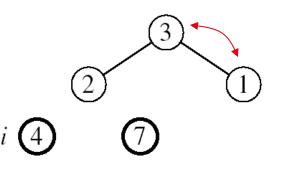
- Goal:
 - Sort an array using heap representations
- Idea:
 - Build a **max-heap** from the array
 - Swap the root (the maximum element) with the last element in the array
 - "Discard" this last node by decreasing the heap size
 - Call MAX-HEAPIFY on the new root

Example:

A=[7, 4, 3, 1, 2]



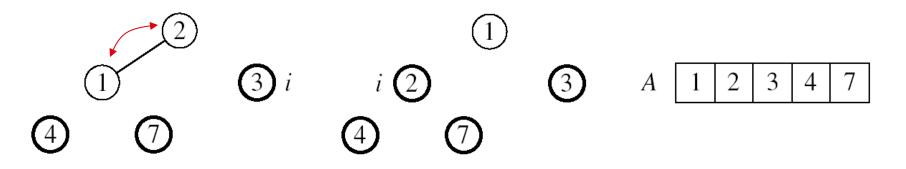




MAX-HEAPIFY(A, 1, 4)

MAX-HEAPIFY(A, 1, 3)

MAX-HEAPIFY(A, 1, 2)



MAX-HEAPIFY(A, 1, 1)

Alg: HEAPSORT(A)

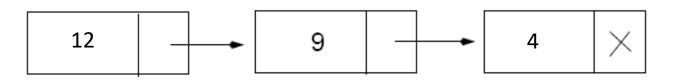
1. BUILD-MAX-HEAP(A) O(n) 2. for i \leftarrow length[A] downto 2 3. do exchange A[1] A[i] O(lgn) 4. MAX-HEAPIFY(A, 1, i - 1)

Running time: O(nlgn) --- Can
 be shown to be Θ(nlgn)

Priority Queues

Properties

- Each element is associated with a value (priority)
- The key with the highest (or lowest) priority is extracted first



Operations on Priority Queues

Max-priority queues support the following

operations:

- INSERT(S, x): inserts element x into set S
- EXTRACT-MAX(S): <u>removes and returns</u> element

of S with largest key

MAXIMUM(S): returns element of S with largest key

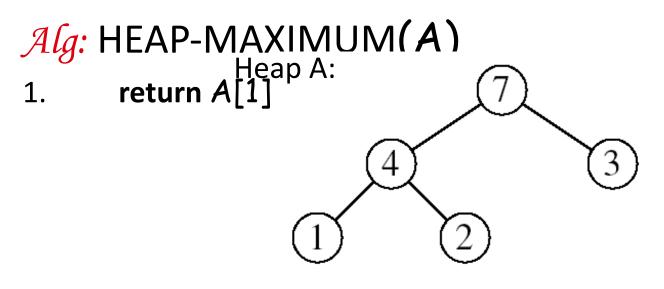
- INCREASE-KEY(S, x, k): increases value of

HEAP-MAXIMUM

Goal:

 Return the largest element of the heap

Running time: O(1)



Heap-Maximum(A) returns 7

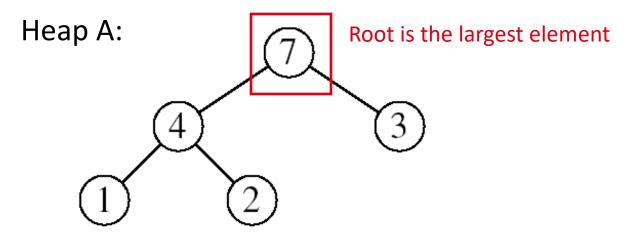
HEAP-EXTRACT-MAX

Goal:

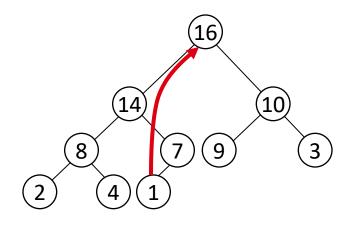
 Extract the largest element of the heap (i.e., return the max value and also remove that element from the heap

Idea:

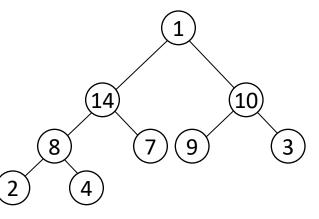
- Exchange the root element with the last
- Decrease the size of the heap by 1 element
- Call MAX-HEAPIFY on the new root, on a heap of size n-1



Example: heap-extract-max

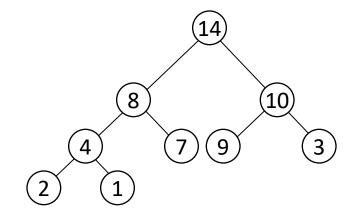


max = 16



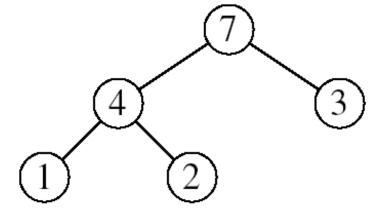
Heap size decreased with 1

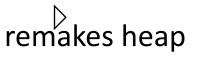
Call MAX-HEAPIFY(A, 1, n-1)



HEAP-EXTRACT-MAX

- Alg: HEAP-EXTRACT-MAX(A, n)
- 1. if n < 1
- 2. **then error** "heap underflow"
- 3. max $\leftarrow A[1]$
- 4. $A[1] \leftarrow A[n]$
- 5. MAX-HEAPIFY(*A*, 1, n-1)





6. return max

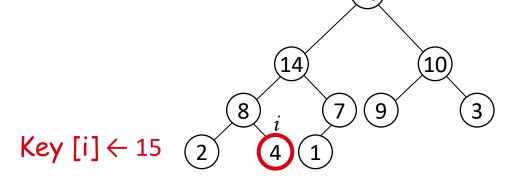
Running time: O(lgn)

HEAP-INCREASE-KEY

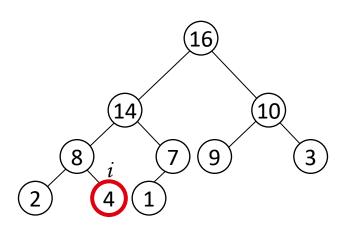
• Goal:

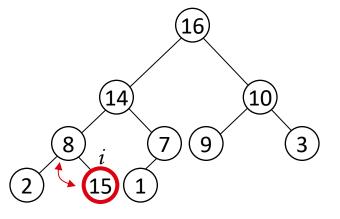
- Increases the key of an element i in the heap

- Idea:
 - Increment the key of A[i] to its new value
 - If the max-heap property does not hold anymore: traverse a path toward the root to find the proper place for the newly increased key

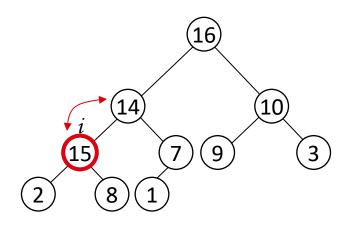


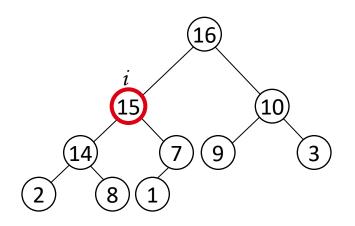
Example: heap-increase-key





 $Key[i] \leftarrow 15$

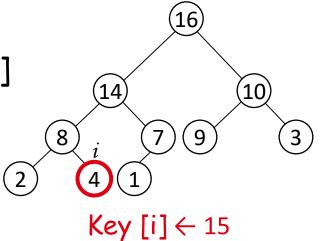




HEAP-INCREASE-KEY

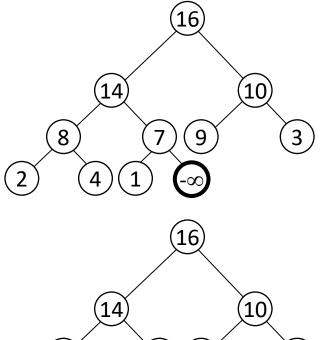
Alg: HEAP-INCREASE-KEY(A, i, key)

- 1. if key < A[i]
- 2. **then error** "new key is smaller than current key"
- 3. $A[i] \leftarrow key$
- 4. while i > 1 and A[PARENT(i)] < A[i]
- 5. **do** exchange A[i] A[PARENT(i)]
- 6. $i \leftarrow PARENT(i)$
- Running time: O(lgn)



MAX-HEAP-INSERT

- Goal:
 - Inserts a new element into a max-heap
- Idea:
 - Expand the max-heap with a new element whose key is $-\infty$
 - Calls HEAP-INCREASE-KEY to set the key of the new node to its
 correct value and maintain the max-heap property



9

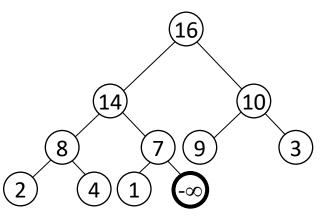
8

4

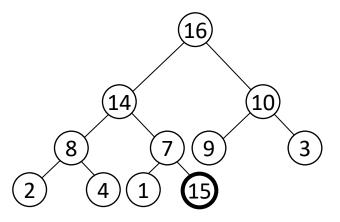
3

Example: MAX-HEAP-INSERT

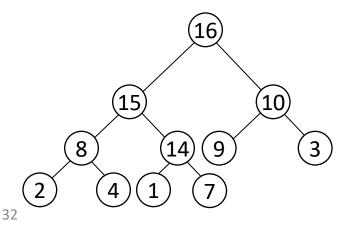
- Insert value 15:
- Start by inserting - ∞

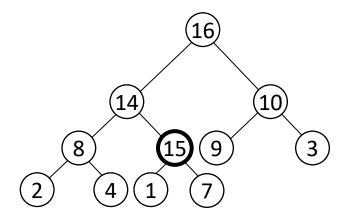


Increase the key to 15 Call HEAP-INCREASE-KEY on A[11] = 15



The restored heap containing the newly added element





MAX-HEAP-INSERT

16

(9)

8

4

2

 $\left[10\right]$

3

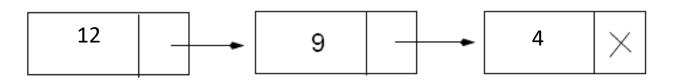
- Alg: MAX-HEAP-INSERT(A, key, n)
- 1. heap-size[A] \leftarrow n + 1
- 2. $A[n + 1] \leftarrow -\infty$
- 3. HEAP-INCREASE-KEY(A, n + 1, key)

Running time: O(lgn)

Summary

- We can perform the following operations on heaps:
 - O(lgn) - MAX-HEAPIFY O(n)- BUILD-MAX-HEAP O(nlgn) - HEAP-SORT O(lgn) Average – MAX-HEAP-INSERT O(lqn) O(lgn) - HEAP-EXTRACT-MAX U(lgn) - HEAP-INCREASE-KEY 34

Priority Queue Using Linked List



 Remove a key: O(1)

 Insert a key: O(n)

 Increase key: O(n)

 Extract max key: O(1)