CS60020: Foundations of
 Algorithm Design and Machine Learning

 Sourangshu Bhattacharya

 Sourangshu Bhattacharya}

How fast can we sort?

All the sorting algorithms we have seen so far are comparison sorts: only use comparisons to determine the relative order of elements.

- E.g., insertion sort, merge sort, quicksort, heapsort.
The best worst-case running time that we've seen for comparison sorting is $O(n \lg n)$.

Is O(nlgn) the best we can do?

Decision trees can help us answer this question.

Decision-tree example

Sort $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$

Each internal node is labeled $i: j$ for $i, j \in\{1,2, \ldots, n\}$.

- The left subtree shows subsequent comparisons if $a_{i} \leq a_{j}$.
- The right subtree shows subsequent comparisons if $a_{i} \geq a_{j}$.

Decision-tree example

Sort $\left\langle a_{1}, a_{2}, a_{3}\right\rangle$
 $=\langle 9,4,6\rangle$:

Each internal node is labeled $i: j$ for $i, j \in\{1,2, \ldots, n\}$.

- The left subtree shows subsequent comparisons if $a_{i} \leq a_{j}$.
- The right subtree shows subsequent comparisons if $a_{i} \geq a_{j}$.

Decision-tree example

$$
\begin{aligned}
& \text { Sort }\left\langle a_{1}, a_{2}, a_{3}\right\rangle \\
& =\langle 9,4,6\rangle \text { : }
\end{aligned}
$$

Each internal node is labeled $i: j$ for $i, j \in\{1,2, \ldots, n\}$.

- The left subtree shows subsequent comparisons if $a_{i} \leq a_{j}$.
- The right subtree shows subsequent comparisons if $a_{i} \geq a_{j}$.

Decision-tree example

Sort $\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ $=\langle 9,4,6\rangle$:

Each internal node is labeled $i: j$ for $i, j \in\{1,2, \ldots, n\}$.

- The left subtree shows subsequent comparisons if $a_{i} \leq a_{j}$.
- The right subtree shows subsequent comparisons if $a_{i} \geq a_{j}$.

Decision-tree example

Sort $\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ $=\langle 9,4,6\rangle$:

Each leaf contains a permutation $\langle\pi(1), \pi(2), \ldots, \pi(n)\rangle$ to indicate that the ordering $a_{\pi(1)} \leq a_{\pi(2)} \leq \mathrm{L} \leq a_{\pi(\mathrm{n})}$ has been established.

Decision-tree model

A decision tree can model the execution of any comparison sort:

- One tree for each input size n.
- View the algorithm as splitting whenever it compares two elements.
- The tree contains the comparisons along all possible instruction traces.
- The running time of the algorithm $=$ the length of the path taken.
- Worst-case running time $=$ height of tree.

Lower bound for decision- tree

sorting

Theorem. Any decision tree that can sort n elements must have height $\Omega(n \lg n)$.

Proof. The tree must contain $\geq n$! leaves, since there are n ! possible permutations. A height- h binary tree has $\leq 2^{h}$ leaves. Thus, $n!\leq 2^{h}$.
$\therefore h \geq \lg (n!)$
$\geq \lg \left((n / e)^{n}\right)$
(lg is mono. increasing)
$=n \lg n-n \lg e$
$=\Omega(n \lg n)$.
(Stirling's formula)

Lower bound for comparison sorting

Sorting in linear time

Counting sort: No comparisons between elements.

- Input: $A[1$. . n], where $A[j] \in\{1,2, \ldots, k\}$.
- Output: $B[1$. . n], sorted.
- Auxiliary storage: $C[1 . . k]$.

Counting sort

for $i \leftarrow 1$ to k

do $C[i] \leftarrow 0$

for $j \leftarrow 1$ to n

$$
\text { do } C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleleft C[i]=\mid\{\text { key }=i\} \mid
$$

for $i \leftarrow 2$ to k
do $C[i] \leftarrow C[i]+C[i-1]$
$\triangleleft C[i]=|\{\mathrm{key} \leq i\}|$
for $j \leftarrow n$ downto 1
do $B[C[A[j]]] \leftarrow \mathrm{A}[j]$

$$
C[A[j]] \leftarrow C[A[j]]-1
$$

Counting-sort example

$\mathbf{f o r} i \leftarrow 1$ to k

do $C[i] \leftarrow 0$

Loop 2

$\boldsymbol{f o r} j \leftarrow 1$ to n
$\mathbf{d o} C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleleft C[i]=|\{\mathrm{key}=i\}|$

Loop 2

$\boldsymbol{f o r} j \leftarrow 1$ to n
do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleleft C[i]=\mid\{$ key $=i\} \mid$

Loop 2

$\boldsymbol{f o r} j \leftarrow 1$ to n
do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleleft C[i]=\mid\{$ key $=i\} \mid$

Loop 2

for $j \leftarrow 1$ to n
do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleleft C[i]=\mid\{$ key $=i\} \mid$

Loop 2

4		4	3		1	0		2		

B :

$\boldsymbol{f o r} j \leftarrow 1$ to n
$\boldsymbol{d o} C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleleft C[i]=\mid\{$ key $=i\} \mid$

$A:$| | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 1 | 3 | 4 | 3 |

B :

for $i \leftarrow 2$ to k

$$
\boldsymbol{d o} C[i] \leftarrow C[i]+C[i-1] \quad \triangleleft C[i]=\mid\{\text { key } \leq i\} \mid
$$

$A:$| | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 1 | 3 | 4 | 3 |

B :

$\mathbf{f o r} i \leftarrow 2$ to k

$$
\boldsymbol{d o} C[i] \leftarrow C[i]+C[i-1] \quad \triangleleft C[i]=\mid\{\text { key } \leq i\} \mid
$$

$A:$| | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 1 | 3 | 4 | 3 |

$\mathbf{f o r} i \leftarrow 2 \boldsymbol{t o} k$

$$
\boldsymbol{d o} C[i] \leftarrow C[i]+C[i-1] \quad \triangleleft C[i]=\mid\{\text { key } \leq i\} \mid
$$

Loop 4

for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

Loop 4

for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

Loop 4

for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

Analysis

$\Theta(k) \quad\left\{\begin{array}{l}\text { for } i \leftarrow 1 \text { to } k \\ \text { do } C[i] \leftarrow 0\end{array}\right.$
$\Theta(n) \quad\left\{\begin{array}{l}\text { for } j \leftarrow 1 \text { to } n\end{array}\right.$ do $C[A[j]] \leftarrow C[A[j]]+1$
$\Theta(k) \quad\left\{\begin{array}{l}\text { for } i \leftarrow 2 \text { to } k \\ \text { do } C[i] \leftarrow C[i]+C[i-1]\end{array}\right.$
$\Theta(n)\left\{\begin{array}{l}\text { for } j \leftarrow n \text { downto } 1 \\ \quad \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j]\end{array}\right.$ $C[A[j]] \leftarrow C[A[j]]-1$
$\Theta(n+k)$

Running time

If $k=O(n)$, then counting sort takes $\Theta(n)$ time.

- But, sorting takes $\Omega(n \lg n)$ time!
- Where's the fallacy?

Answer:

- Comparison sorting takes $\Omega(n \lg n)$ time.
- Counting sort is not a comparison sort.
- In fact, not a single comparison between elements occurs!

Stable sorting

Counting sort is a stable sort: it preserves the input order among equal elements.

Exercise: What other sorts have this property?

Radix sort

- Origin: Herman Hollerith's card-sorting machine for the 1890 U.S. Census. (See Appendix (0)
- Digit-by-digit sort.
- Hollerith's original (bad) idea: sort on most-significant digit first.
- Good idea: Sort on least-significant digit first with auxiliary stable sort.

Operation of radix sort

| 329 | 720 | 720 | 329 |
| ---: | ---: | ---: | ---: | ---: |
| 457 | 355 | 329 | 355 |
| 657 | 436 | 436 | 436 |
| 839 | 457 | 839 | 457 |
| 436 | 657 | 355 | 657 |
| 720 | 329 | 457 | 720 |
| 355 | 839 | 657 | 839 |
| | | | |
| | | | |

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order $t-1$ digits.
- Sort on digit t

| 720 | 329 |
| :--- | :--- | :--- |
| 329 | 355 |
| 436 | 436 |
| 839 | 457 |
| 355 | 657 |
| 457 | 720 |
| 657 | 839 |

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order $t-1$ digits.
- Sort on digit t
- Two numbers that differ in digit t are correctly sorted.

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order $t-1$ digits.
- Sort on digit t
- Two numbers that differ in digit t are correctly sorted.
- Two numbers equal in digit t are put in the same order as the input \Rightarrow correct order.

Analysis of radix sort

- Assume counting sort is the auxiliary stable sort.
- Sort n computer words of b bits each.
- Each word can be viewed as having b / r base- 2^{r} digits.
Example: 32-bit word

$r=8 \Rightarrow b / r=4$ passes of counting sort on base- 2^{8} digits; or $r=16 \Rightarrow b / r=2$ passes of counting sort on base- $2{ }^{16}$ digits.

How many passes should we make?

Analysis (continued)

Recall: Counting sort takes $\Theta(n+k)$ time to sort n numbers in the range from 0 to $k-1$.
If each b-bit word is broken into r-bit pieces, each pass of counting sort takes $\Theta\left(n+2^{r}\right)$ time. Since there are b / r passes, we have

$$
T(n, b)=\Theta\left(\frac{b}{r}\left(n+2^{r}\right)\right) .
$$

Choose r to minimize $T(n, b)$:

- Increasing r means fewer passes, but as $r \gg \lg n$, the time grows exponentially.

Choosing r

$$
T(n, b)=\Theta\left(\frac{b}{r}\left(n+2^{r}\right)\right) .
$$

Minimize $T(n, b)$ by differentiating and setting to 0 .
Or, just observe that we don't want $2^{r} \gg n$, and there's no harm asymptotically in choosing r as large as possible subject to this constraint.
Choosing $r=\lg n$ implies $T(n, b)=\Theta(b n / \lg n)$.

- For numbers in the range from 0 to $n^{d}-1$, we have $b=d \lg n \Rightarrow$ radix sort runs in $\Theta(d n)$ time.

Conclusions

In practice, radix sort is fast for large inputs, as well as simple to code and maintain.
Example (32-bit numbers):

- At most 3 passes when sorting ≥ 2000 numbers.
- Merge sort and quicksort do at least $\lg 2000=11$ passes.
Downside: Unlike quicksort, radix sort displays little locality of reference, and thus a well-tuned quicksort fares better on modern processors, which feature steep memory hierarchies.

