CS60020: Foundations of
 Algorithm Design and Machine Learning

 Sourangshu Bhattacharya

 Sourangshu Bhattacharya}

DIVIDE AND CONQUER

Matrix multiplication

$\left.\begin{array}{ll}\text { Input: } & A=\left[a_{i j}\right], B=\left[b_{i j}\right] . \\ \text { Output: } & C=\left[c_{i j}\right]=A \cdot B .\end{array}\right\} \quad i, j=1,2, \ldots, n$.

$$
\begin{gathered}
{\left[\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
c_{21} & c_{22} & \cdots & c_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \cdots & c_{n n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right] \cdot\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right]} \\
c_{i j}=\sum_{k=1}^{n} a_{i k} \cdot b_{k j}
\end{gathered}
$$

Standard algorithm

for $i \leftarrow 1$ to n
do for $j \leftarrow 1$ to n
do $c_{i j} \leftarrow 0$
\quad for $k \leftarrow 1$ to n
do $c_{i j} \leftarrow c_{i j}+a_{i k} \cdot b_{k j}$

Standard algorithm

for $i \leftarrow 1$ to n

```
        do for }j\leftarrow1\mathrm{ ton
        do }\mp@subsup{c}{ij}{}\leftarrow for \(k \leftarrow 1\) to \(n\)
```

$$
\mathbf{d o} c_{i j} \leftarrow c_{i j}+a_{i k} \cdot b_{k j}
$$

Running time $=\Theta\left(n^{3}\right)$

Divide-and-conquer algorithm

IDEA:

$n \times n$ matrix $=2 \times 2$ matrix of $(n / 2) \times(n / 2)$ submatrices:

$$
\begin{aligned}
{\left[\begin{array}{c:c}
r & s \\
\hdashline t & u
\end{array}\right] } & =\left[\begin{array}{l:l}
a & b \\
\hdashline c & d
\end{array}\right] \cdot\left[\begin{array}{c:c}
e & f \\
\hdashline g & h
\end{array}\right] \\
C & =A \cdot B
\end{aligned}
$$

$$
r=a e+b g
$$

$$
s=a f+b h \zeta 8 \text { mults of }(n / 2) \times(n / 2) \text { submatrices }
$$

$$
t=c e+d g \quad 4 \text { adds of }(n / 2) \times(n / 2) \text { submatrices }
$$

$$
u=c f+d h
$$

Divide-and-conquer algorithm

IDEA:

$n \times n$ matrix $=2 \times 2$ matrix of $(n / 2) \times(n / 2)$ submatrices:

$$
\begin{gathered}
{\left[\begin{array}{c:c}
r & s \\
\hdashline t & u
\end{array}\right]=\left[\begin{array}{c:c}
a & b \\
\hdashline c & d
\end{array}\right] \cdot\left[\begin{array}{c:c}
e & f \\
\hdashline g & h
\end{array}\right]} \\
C=A \cdot B
\end{gathered}
$$

$\left.\begin{array}{l}r=a e+b g \\ s=a f+b h\end{array}\right\} \frac{\text { recursive }}{8 \text { mults of }(n / 2) \times(n / 2) \text { submatrices }}$
$t=c e+d h\} 4$ adds of $(n / 2) \times(n / 2)$ submatrices
$u=c f+d g$ J

Analysis of D\&C algorithm

Analysis of D\&C algorithm

$$
n^{\log _{b} a}=n^{\log _{2} 8}=n^{3} \Rightarrow \text { CASE } 1 \Rightarrow T(n)=\Theta\left(n^{3}\right)
$$

Analysis of D\&C algorithm

$$
n^{\log _{b} a}=n^{\log _{2} 8}=n^{3} \Rightarrow \text { CASE } 1 \Rightarrow T(n)=\Theta\left(n^{3}\right) .
$$

No better than the ordinary algorithm.

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

$$
\begin{aligned}
& P_{1}=a \cdot(f-h) \\
& P_{2}=(a+b) \cdot h \\
& P_{3}=(c+d) \cdot e \\
& P_{4}=d \cdot(g-e) \\
& P_{5}=(a+d) \cdot(e+h) \\
& P_{6}=(b-d) \cdot(g+h) \\
& P_{7}=(a-c) \cdot(e+f)
\end{aligned}
$$

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

$$
\begin{array}{ll}
P_{1}=a \cdot(f-h) & r=P_{5}+P_{4}-P_{2}+P_{6} \\
P_{2}=(a+b) \cdot h & s=P_{1}+P_{2} \\
P_{3}=(c+d) \cdot e & t=P_{3}+P_{4} \\
P_{4}=d \cdot(g-e) & u=P_{5}+P_{1}-P_{3}-P_{7} \\
P_{5}=(a+d) \cdot(e+h) & \\
P_{6}=(b-d) \cdot(g+h) & \\
P_{7}=(a-c) \cdot(e+f) &
\end{array}
$$

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

$$
\begin{aligned}
& P_{1}=a \cdot(f-h) \\
& P_{2}=(a+b) \cdot h \\
& P_{3}=(c+d) \cdot e \\
& P_{4}=d \cdot(g-e) \\
& P_{5}=(a+d) \cdot(e+h) \\
& P_{6}=(b-d) \cdot(g+h) \\
& P_{7}=(a-c) \cdot(e+f)
\end{aligned}
$$

$$
\begin{aligned}
& r=P_{5}+P_{4}-P_{2}+P_{6} \\
& s=P_{1}+P_{2} \\
& t=P_{3}+P_{4} \\
& u=P_{5}+P_{1}-P_{3}-P_{7}
\end{aligned}
$$

7 mults, 18 adds/subs.
Note: No reliance on commutativity of mult!

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

$$
\begin{aligned}
& P_{1}=a \cdot(f-h) \\
& P_{2}=(a+b) \cdot h \\
& P_{3}=(c+d) \cdot e \\
& P_{4}=d \cdot(g-e) \\
& P_{5}=(a+d) \cdot(e+h) \\
& P_{6}=(b-d) \cdot(g+h) \\
& P_{7}=(a-c) \cdot(e+f)
\end{aligned}
$$

$$
\begin{aligned}
r= & P_{5}+P_{4}-P_{2}+P_{6} \\
= & (a+d)(e+h) \\
& +d(g-e)-(a+b) h \\
& +(b-d)(g+h) \\
= & a e+a h+d e+d h \\
& +d g-d e-a h-b h \\
& +b g+b h-d g-d h \\
= & a e+b g
\end{aligned}
$$

Strassen's algorithm

1. Divide: Partition A and B into $(n / 2) \times(n / 2)$ submatrices. Form terms to be multiplied using + and - .
2. Conquer: Perform 7 multiplications of $(n / 2) \times(n / 2)$ submatrices recursively.
3. Combine: Form C using + and - on $(n / 2) \times(n / 2)$ submatrices.

Strassen's algorithm

1. Divide: Partition A and B into $(n / 2) \times(n / 2)$ submatrices. Form terms to be multiplied using + and - .
2. Conquer: Perform 7 multiplications of ($n / 2) \times(n / 2)$ submatrices recursively.
3. Combine: Form C using + and - on $(n / 2) \times(n / 2)$ submatrices.

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
$$

Master theorem

$$
T(n)=a T(n / b)+f(n)
$$

CASE 1: $f(n)=O\left(n^{\log b a-\varepsilon}\right)$, constant $\varepsilon>0$

$$
\Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right)
$$

CASE 2: $f(n)=\Theta\left(n^{\log _{b} a}\right)$

$$
\Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)
$$

CASE 3: $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, constant $\varepsilon>0$, and regularity condition

$$
\Rightarrow T(n)=\Theta(f(n))
$$

Proof of Master theorem

$$
\Theta\left(n^{\log _{b} a}\right)
$$

$$
\text { Total: } \Theta\left(n^{\log _{b} a}\right)+\sum_{j=0}^{\left\lfloor\log _{b} n\right\rfloor-1} a^{j} f\left(n_{j}\right)
$$

Proof of Master theorem

Lemma 4.3

Let $a \geq 1$ and $b>1$ be constants, and let $f(n)$ be a nonnegative function defined on exact powers of b. A function $g(n)$ defined over exact powers of b by

$$
\begin{equation*}
g(n)=\sum_{j=0}^{\log _{b} n-1} a^{j} f\left(n / b^{j}\right) \tag{4.22}
\end{equation*}
$$

has the following asymptotic bounds for exact powers of b :

1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $g(n)=O\left(n^{\log _{b} a}\right)$.
2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $g(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$.
3. If $a f(n / b) \leq c f(n)$ for some constant $c<1$ and for all sufficiently large n, then $g(n)=\Theta(f(n))$.

Proof of Master theorem

- Case 1:

$$
\begin{aligned}
\sum_{j=0}^{\log _{b} n-1} a^{j}\left(\frac{n}{b^{j}}\right)^{\log _{b} a-\epsilon} & =n^{\log _{b} a-\epsilon} \sum_{j=0}^{\log _{b} n-1}\left(\frac{a b^{\epsilon}}{b^{\log _{b} a}}\right)^{j} \\
& =n^{\log _{b} a-\epsilon} \sum_{j=0}^{\log _{b} n-1}\left(b^{\epsilon}\right)^{j} \\
& =n^{\log _{b} a-\epsilon}\left(\frac{b^{\epsilon \log _{b} n}-1}{b^{\epsilon}-1}\right)
\end{aligned}
$$

Proof of Master theorem

- Case 2 :

$$
\begin{aligned}
\sum_{j=0}^{\log _{b} n-1} a^{j}\left(\frac{n}{b^{j}}\right)^{\log _{b} a} & =n^{\log _{b} a} \sum_{j=0}^{\log _{b} n-1}\left(\frac{a}{b^{\log _{b} a}}\right)^{j} \\
& =n^{\log _{b} a} \sum_{j=0}^{\log _{b} n-1} 1 \\
& =n^{\log _{b} a} \log _{b} n
\end{aligned}
$$

Proof of Master theorem

- Case 3:

$$
\begin{aligned}
g(n) & =\sum_{j=0}^{\log _{b} n-1} a^{j} f\left(n / b^{j}\right) \\
& \leq \sum_{j=0}^{\log _{b} n-1} c^{j} f(n)+O(1) \\
& \leq f(n) \sum_{j=0}^{\infty} c^{j}+O(1) \\
& =f(n)\left(\frac{1}{1-c}\right)+O(1) \\
& =O(f(n))
\end{aligned}
$$

