CS60020: Foundations of Algorithm Design and Machine Learning

Sourangshu Bhattacharya

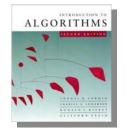
DIVIDE AND CONQUER

Matrix multiplication

Input: $A = [a_{ij}], B = [b_{ij}].$ **Output:** $C = [c_{ij}] = A \cdot B.$ i, j = 1, 2, ..., n.

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

 $c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$



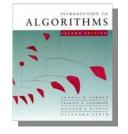
Standard algorithm

for $i \leftarrow 1$ to ndo for $j \leftarrow 1$ to ndo $c_{ij} \leftarrow 0$ for $k \leftarrow 1$ to ndo $c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}$

Standard algorithm

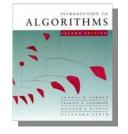
for $i \leftarrow 1$ to ndo for $j \leftarrow 1$ to ndo $c_{ij} \leftarrow 0$ for $k \leftarrow 1$ to ndo $c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}$

Running time = $\Theta(n^3)$



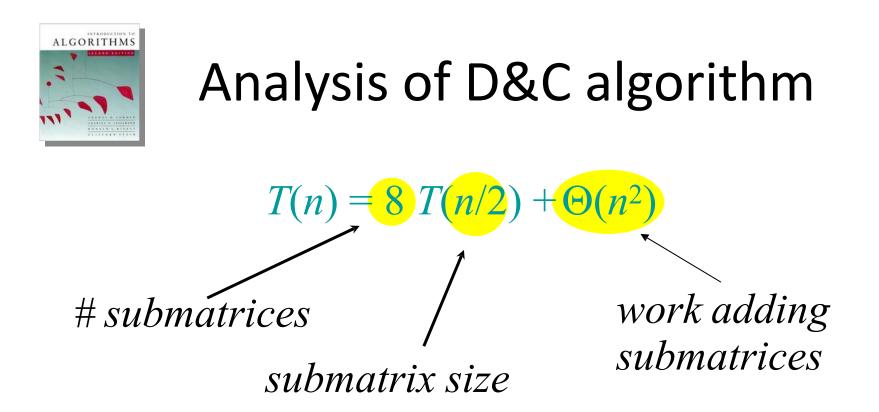
Divide-and-conquer algorithm

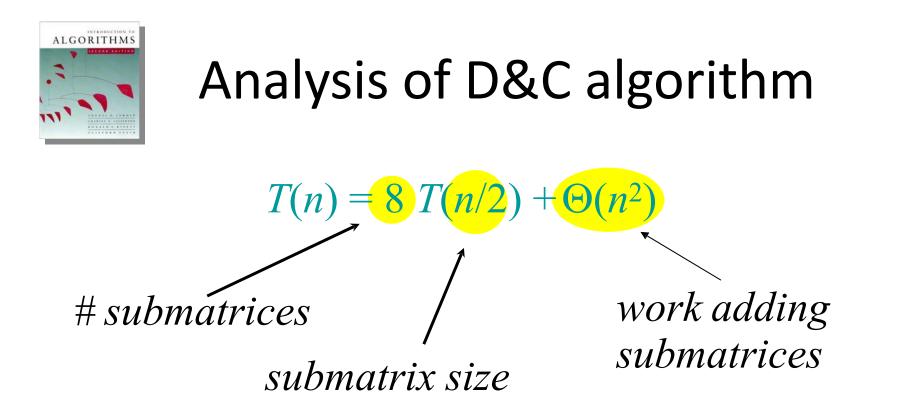
IDEA: $n \times n$ matrix = 2×2 matrix of $(n/2) \times (n/2)$ submatrices: $\begin{vmatrix} r & s \\ -+- \\ t & u \end{vmatrix} = \begin{vmatrix} a & b \\ -+- \\ c & d \end{vmatrix} \cdot \begin{vmatrix} e & f \\ --- \\ \sigma & h \end{vmatrix}$ $C = A \cdot B$ r = ae + bgs = af + bh t = ce + dg 8 mults of $(n/2) \times (n/2)$ submatrices 4 adds of $(n/2) \times (n/2)$ submatrices u = cf + dh



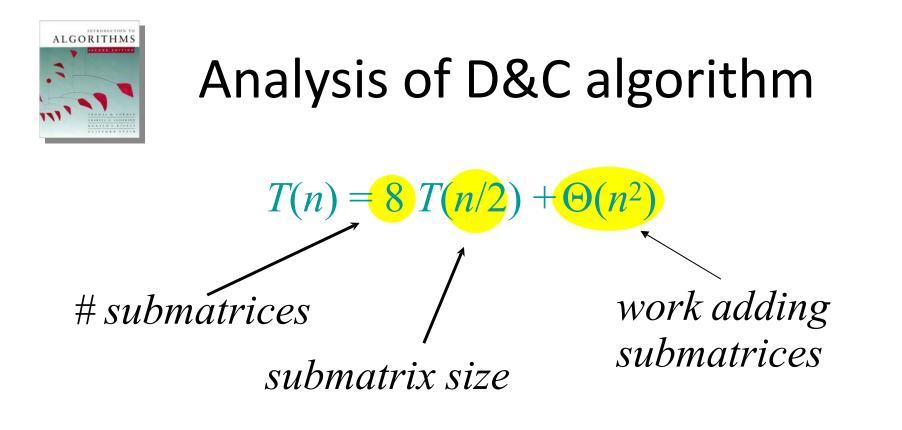
Divide-and-conquer algorithm

IDEA: $n \times n$ matrix = 2×2 matrix of $(n/2) \times (n/2)$ submatrices: $\begin{vmatrix} r & s \\ -+- \\ t & u \end{vmatrix} = \begin{bmatrix} a & b \\ -+- \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ --- \\ o & h \end{bmatrix}$ $C = A \cdot B$ $\begin{array}{l} r = ae + bg \\ s = af + bh \\ t = ce + dh \\ u = cf + dg \end{array} \begin{array}{l} \begin{array}{l} recursive \\ 8 \\ \end{array} \\ \begin{array}{l} nults of (n/2) \times (n/2) \text{ submatrices} \\ 4 \text{ adds of } (n/2) \times (n/2) \text{ submatrices} \end{array}$





 $n^{\log_b a} = n^{\log_2 8} = n^3 \implies CASE 1 \implies T(n) = \Theta(n^3).$



 $n^{\log_b a} = n^{\log_2 8} = n^3 \implies \mathbf{CASE 1} \implies T(n) = \Theta(n^3).$

No better than the ordinary algorithm.

$$P_{1} = a \cdot (f - h)$$

$$P_{2} = (a + b) \cdot h$$

$$P_{3} = (c + d) \cdot e$$

$$P_{4} = d \cdot (g - e)$$

$$P_{5} = (a + d) \cdot (e + h)$$

$$P_{6} = (b - d) \cdot (g + h)$$

$$P_{7} = (a - c) \cdot (e + f)$$

$$P_{1} = a \cdot (f - h)$$

$$P_{2} = (a + b) \cdot h$$

$$P_{3} = (c + d) \cdot e$$

$$P_{4} = d \cdot (g - e)$$

$$P_{5} = (a + d) \cdot (e + h)$$

$$P_{6} = (b - d) \cdot (g + h)$$

$$P_{7} = (a - c) \cdot (e + f)$$

$$r = P_{5} + P_{4} - P_{2} + P_{6}$$

$$s = P_{1} + P_{2}$$

$$t = P_{3} + P_{4}$$

$$u = P_{5} + P_{1} - P_{3} - P_{7}$$

• Multiply 2×2 matrices with only 7 recursive mults.

$$P_{1} = a \cdot (f - h)$$

$$P_{2} = (a + b) \cdot h$$

$$P_{3} = (c + d) \cdot e$$

$$P_{4} = d \cdot (g - e)$$

$$P_{5} = (a + d) \cdot (e + h)$$

$$P_{6} = (b - d) \cdot (g + h)$$

$$P_{7} = (a - c) \cdot (e + f)$$

$$r = P_{5} + P_{4} - P_{2} + P_{6}$$

$$s = P_{1} + P_{2}$$

$$t = P_{3} + P_{4}$$

$$u = P_{5} + P_{1} - P_{3} - P_{7}$$

7 mults, 18 adds/subs. **Note:** No reliance on commutativity of mult!

$$P_{1} = a \cdot (f - h)$$

$$P_{2} = (a + b) \cdot h$$

$$P_{3} = (c + d) \cdot e$$

$$P_{4} = d \cdot (g - e)$$

$$P_{5} = (a + d) \cdot (e + h)$$

$$P_{6} = (b - d) \cdot (g + h)$$

$$P_{7} = (a - c) \cdot (e + f)$$

$$r = P_5 + P_4 - P_2 + P_6$$

= $(a + d) (e + h)$
+ $d(g - e) - (a + b)h$
+ $(b - d) (g + h)$
= $ae + ah + de + dh$
+ $dg - de - ah - bh$
+ $bg + bh - dg - dh$
= $ae + bg$

Strassen's algorithm

- **1.** *Divide:* Partition *A* and *B* into $(n/2) \times (n/2)$ submatrices. Form terms to be multiplied using + and -.
- 2. Conquer: Perform 7 multiplications of $(n/2) \times (n/2)$ submatrices recursively.
- 3. Combine: Form C using + and on $(n/2) \times (n/2)$ submatrices.

Strassen's algorithm

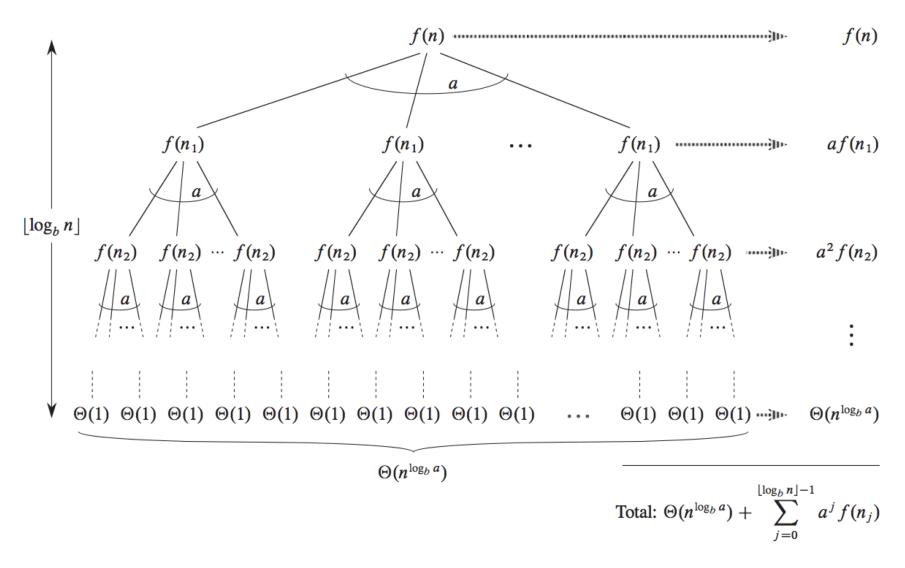
- **1.** *Divide:* Partition *A* and *B* into $(n/2) \times (n/2)$ submatrices. Form terms to be multiplied using + and -.
- 2. Conquer: Perform 7 multiplications of $(n/2) \times (n/2)$ submatrices recursively.
- 3. Combine: Form C using + and on $(n/2) \times (n/2)$ submatrices.

$$T(n) = 7 T(n/2) + \Theta(n^2)$$

Master theorem

T(n) = a T(n/b) + f(n)

CASE 1: $f(n) = O(n^{\log_b a - \varepsilon})$, constant $\varepsilon > 0$ $\Rightarrow T(n) = \Theta(n^{\log_b a})$. **CASE 2:** $f(n) = \Theta(n^{\log_b a})$ $\Rightarrow T(n) = \Theta(n^{\log_b a} \lg n)$. **CASE 3:** $f(n) = \Omega(n^{\log_b a + \varepsilon})$, constant $\varepsilon > 0$, and regularity condition \Rightarrow $T(n) = \Theta(f(n))$.



Lemma 4.3

Let $a \ge 1$ and b > 1 be constants, and let f(n) be a nonnegative function defined on exact powers of b. A function g(n) defined over exact powers of b by

$$g(n) = \sum_{j=0}^{\log_b n-1} a^j f(n/b^j)$$
(4.22)

has the following asymptotic bounds for exact powers of *b*:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $g(n) = O(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $g(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $af(n/b) \le cf(n)$ for some constant c < 1 and for all sufficiently large n, then $g(n) = \Theta(f(n))$.

• Case 1:

$$\sum_{j=0}^{\log_b n-1} a^j \left(\frac{n}{b^j}\right)^{\log_b a-\epsilon} = n^{\log_b a-\epsilon} \sum_{j=0}^{\log_b n-1} \left(\frac{ab^\epsilon}{b^{\log_b a}}\right)^j$$
$$= n^{\log_b a-\epsilon} \sum_{j=0}^{\log_b n-1} (b^\epsilon)^j$$
$$= n^{\log_b a-\epsilon} \left(\frac{b^{\epsilon \log_b n}-1}{b^{\epsilon}-1}\right)$$

• Case 2:

$$\sum_{j=0}^{\log_b n-1} a^j \left(\frac{n}{b^j}\right)^{\log_b a} = n^{\log_b a} \sum_{j=0}^{\log_b n-1} \left(\frac{a}{b^{\log_b a}}\right)^j$$
$$= n^{\log_b a} \sum_{j=0}^{\log_b n-1} 1$$
$$= n^{\log_b a} \log_b n.$$

• Case 3:

$$g(n) = \sum_{j=0}^{\log_b n-1} a^j f(n/b^j)$$

$$\leq \sum_{j=0}^{\log_b n-1} c^j f(n) + O(1)$$

$$\leq f(n) \sum_{j=0}^{\infty} c^j + O(1)$$

$$= f(n) \left(\frac{1}{1-c}\right) + O(1)$$

$$= O(f(n)),$$