CS60020: Foundations of
 Algorithm Design and Machine Learning

 Sourangshu Bhattacharya

 Sourangshu Bhattacharya}

DIVIDE AND CONQUER

Fibonacci numbers

Recursive definition:

$$
F_{n}= \begin{cases}1 & \text { if } n=0 \\ 2 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { if } n \geq 2\end{cases}
$$

$\begin{array}{lllllllllll}0 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & L\end{array}$

Fibonacci numbers

Recursive definition:

$$
F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { if } n \geq 2\end{cases}
$$

$\begin{array}{lllllllllll}0 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & L\end{array}$
Naive recursive algorithm: $\Omega\left(\phi^{n}\right)$ (exponential time), where $\phi=(1+\sqrt{5}) / 2$ is the golden ratio.

Computing Fibonacci numbers

Bottom-up:

- Compute $F_{0}, F_{1}, F_{2}, \ldots, F_{n}$ in order, forming each number by summing the two previous.
- Running time: $\Theta(n)$.

Computing Fibonacci numbers

Bottom-up:

- Compute $F_{0}, F_{1}, F_{2}, \ldots, F_{n}$ in order, forming each number by summing the two previous.
- Running time: $\Theta(n)$.

Naive recursive squaring:
$F_{n}=\phi^{n} / \sqrt{5}$ rounded to the nearest integer.

- Recursive squaring: $\Theta(\lg n)$ time.
- This method is unreliable, since floating-point arithmetic is prone to round-off errors.

Recursive squaring

Theorem: $\left[\begin{array}{cc}F_{n+1} & F_{n} \\ F_{n} & F_{n-1}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$.

Recursive squaring

Theorem: $\left[\begin{array}{cc}F_{n+1} & F_{n} \\ F_{n} & F_{n-1}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{2}$.
Algorithm: Recursive squaring.
Time $=\Theta(\lg n)$.

Maximum Subarray Problem

- You can buy a unit of stock, only one time, then sell it at a later date
- Buy/sell at end of day
- Strategy: buy low, sell high
- The lowest price may appear after the highest price
- Assume you know future prices
- Can you maximize profit by buying at lowest price and selling at highest price?

Buy lowest sell highest

Brute force

- How many buy/sell pairs are possible over n days?
- Evaluate each pair and keep track of maximum
- Can we do better?

Transformation

- Find sequence of days so that:
- the net change from last to first is maximized
- Look at the daily change in price
- Change on day i : price day i minus price day $i-1$
- We now have an array of changes (numbers), e.g.
$12,-3,-24,20,-3,-16,-23,18,20,-7,12,-5,-22,14,-4,6$
- Find contiguous subarray with largest sum
- maximum subarray
- E.g.: buy after day 7, sell after day 11

Brute force again

- Trivial if only positive numbers (assume not)
- Need to check $O\left(n^{2}\right)$ pairs
- For each pair, find the sum
- Thus total time is ...

Divide-and-Conquer

- A[low..high]
- Divide in the middle:
- A[low,mid], A[mid+1,high]
- Any subarray $A[i, . . j]$ is
(1) Entirely in A[low,mid]
(2) Entirely in A[mid+1,high]
(3) In both
- (1) and (2) can be found recursively

Divide-and-Conquer (cont.)

- (3) find maximum subarray that crosses midpoint
- Need to find maximum subarrays of the form A[i..mid], A[mid+1..j], low <= i, j <= high
- Take subarray with largest sum of (1), (2), (3)

Divide-and-Conquer (cont.)

```
Find-Max-Cross-Subarray(A,low,mid,high)
    left-sum \(=-\infty\)
    sum \(=0\)
    for \(i=\) mid downto low
        sum = sum \(+A[i]\)
        if sum \(>\) left-sum then
            left-sum = sum
            max-left = i
right-sum \(=-\infty\)
sum = 0
for \(\mathrm{j}=\mathrm{mid}+1\) to high
    sum = sum \(+A[j]\)
    if sum > right-sum then
    right-sum = sum
    max-right \(=\mathrm{j}\)
return (max-left, max-right, left-sum + right-sum)
```


Time analysis

- Find-Max-Cross-Subarray: O(n) time
- Two recursive calls on input size $\mathrm{n} / 2$
- Thus:

$$
\begin{aligned}
& T(n)=2 T(n / 2)+O(n) \\
& T(n)=O(n \log n)
\end{aligned}
$$

Matrix multiplication

$\left.\begin{array}{ll}\text { Input: } & A=\left[a_{i j}\right], B=\left[b_{i j}\right] . \\ \text { Output: } & C=\left[c_{i j}\right]=A \cdot B .\end{array}\right\} \quad i, j=1,2, \ldots, n$.

$$
\begin{gathered}
{\left[\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
c_{21} & c_{22} & \cdots & c_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \cdots & c_{n n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right] \cdot\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right]} \\
c_{i j}=\sum_{k=1}^{n} a_{i k} \cdot b_{k j}
\end{gathered}
$$

Standard algorithm

for $i \leftarrow 1$ to n

do for $j \leftarrow 1$ to n

do $c_{i j} \leftarrow 0$
for $k \leftarrow 1$ to n

$$
\text { do } c_{i j} \leftarrow c_{i j}+a_{i k} \cdot b_{k j}
$$

Standard algorithm

for $i \leftarrow 1$ to n

```
        do for }j\leftarrow1\mathrm{ to }
        do }\mp@subsup{c}{ij}{}\leftarrow for \(k \leftarrow 1\) to \(n\)
```

$$
\mathbf{d o} c_{i j} \leftarrow c_{i j}+a_{i k} \cdot b_{k j}
$$

Running time $=\Theta\left(n^{3}\right)$

Divide-and-conquer algorithm

IDEA:

$n \times n$ matrix $=2 \times 2$ matrix of $(n / 2) \times(n / 2)$ submatrices:

$$
\begin{aligned}
{\left[\begin{array}{c:c}
r & s \\
\hdashline t & u
\end{array}\right] } & =\left[\begin{array}{l:l}
a & b \\
\hdashline c & d
\end{array}\right] \cdot\left[\begin{array}{c:c}
e & f \\
\hdashline g & h
\end{array}\right] \\
C & =A \cdot B
\end{aligned}
$$

$$
r=a e+b g
$$

$$
s=a f+b h \zeta 8 \text { mults of }(n / 2) \times(n / 2) \text { submatrices }
$$

$$
t=c e+d g \quad 4 \text { adds of }(n / 2) \times(n / 2) \text { submatrices }
$$

$$
u=c f+d h
$$

Divide-and-conquer algorithm

IDEA:

$n \times n$ matrix $=2 \times 2$ matrix of $(n / 2) \times(n / 2)$ submatrices:

$$
\begin{gathered}
{\left[\begin{array}{c:c}
r & s \\
\hdashline t & u
\end{array}\right]=\left[\begin{array}{c:c}
a & b \\
\hdashline c & d
\end{array}\right] \cdot\left[\begin{array}{c:c}
e & f \\
\hdashline g & h
\end{array}\right]} \\
C=A \cdot B
\end{gathered}
$$

$\left.\begin{array}{l}r=a e+b g \\ s=a f+b h\end{array}\right\} \frac{\text { recursive }}{8 \text { mults of }(n / 2) \times(n / 2) \text { submatrices }}$
$t=c e+d h\} 4$ adds of $(n / 2) \times(n / 2)$ submatrices
$u=c f+d g$ J

Analysis of D\&C algorithm

Analysis of D\&C algorithm

$$
n^{\log _{b} a}=n^{\log _{2} 8}=n^{3} \Rightarrow \text { CASE } 1 \Rightarrow T(n)=\Theta\left(n^{3}\right)
$$

Analysis of D\&C algorithm

$$
n^{\log _{b} a}=n^{\log _{2} 8}=n^{3} \Rightarrow \text { CASE } 1 \Rightarrow T(n)=\Theta\left(n^{3}\right) .
$$

No better than the ordinary algorithm.

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

$$
\begin{aligned}
& P_{1}=a \cdot(f-h) \\
& P_{2}=(a+b) \cdot h \\
& P_{3}=(c+d) \cdot e \\
& P_{4}=d \cdot(g-e) \\
& P_{5}=(a+d) \cdot(e+h) \\
& P_{6}=(b-d) \cdot(g+h) \\
& P_{7}=(a-c) \cdot(e+f)
\end{aligned}
$$

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

$$
\begin{array}{ll}
P_{1}=a \cdot(f-h) & r=P_{5}+P_{4}-P_{2}+P_{6} \\
P_{2}=(a+b) \cdot h & s=P_{1}+P_{2} \\
P_{3}=(c+d) \cdot e & t=P_{3}+P_{4} \\
P_{4}=d \cdot(g-e) & u=P_{5}+P_{1}-P_{3}-P_{7} \\
P_{5}=(a+d) \cdot(e+h) & \\
P_{6}=(b-d) \cdot(g+h) & \\
P_{7}=(a-c) \cdot(e+f) &
\end{array}
$$

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

$$
\begin{aligned}
& P_{1}=a \cdot(f-h) \\
& P_{2}=(a+b) \cdot h \\
& P_{3}=(c+d) \cdot e \\
& P_{4}=d \cdot(g-e) \\
& P_{5}=(a+d) \cdot(e+h) \\
& P_{6}=(b-d) \cdot(g+h) \\
& P_{7}=(a-c) \cdot(e+f)
\end{aligned}
$$

$$
\begin{aligned}
& r=P_{5}+P_{4}-P_{2}+P_{6} \\
& s=P_{1}+P_{2} \\
& t=P_{3}+P_{4} \\
& u=P_{5}+P_{1}-P_{3}-P_{7}
\end{aligned}
$$

7 mults, 18 adds/subs.
Note: No reliance on commutativity of mult!

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

$$
\begin{aligned}
& P_{1}=a \cdot(f-h) \\
& P_{2}=(a+b) \cdot h \\
& P_{3}=(c+d) \cdot e \\
& P_{4}=d \cdot(g-e) \\
& P_{5}=(a+d) \cdot(e+h) \\
& P_{6}=(b-d) \cdot(g+h) \\
& P_{7}=(a-c) \cdot(e+f)
\end{aligned}
$$

$$
\begin{aligned}
r= & P_{5}+P_{4}-P_{2}+P_{6} \\
= & (a+d)(e+h) \\
& +d(g-e)-(a+b) h \\
& +(b-d)(g+h) \\
= & a e+a h+d e+d h \\
& +d g-d e-a h-b h \\
& +b g+b h-d g-d h \\
= & a e+b g
\end{aligned}
$$

Strassen's algorithm

1. Divide: Partition A and B into $(n / 2) \times(n / 2)$ submatrices. Form terms to be multiplied using + and - .
2. Conquer: Perform 7 multiplications of $(n / 2) \times(n / 2)$ submatrices recursively.
3. Combine: Form C using + and - on $(n / 2) \times(n / 2)$ submatrices.

Strassen's algorithm

1. Divide: Partition A and B into $(n / 2) \times(n / 2)$ submatrices. Form terms to be multiplied using + and - .
2. Conquer: Perform 7 multiplications of ($n / 2) \times(n / 2)$ submatrices recursively.
3. Combine: Form C using + and - on $(n / 2) \times(n / 2)$ submatrices.

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
$$

