
CS60020: Foundations of
Algorithm Design and Machine

Learning
Sourangshu Bhattacharya

DIVIDE AND CONQUER

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.19

Fibonacci numbers
Recursive definition:

Fn =
1 if n = 0;
2 if n = 1;
Fn–1 + Fn–2 if n ³ 2.

0 1 1 2 3 5 8 13 21 34 L

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.20

Fibonacci numbers
Recursive definition:

Fn =
0
1
Fn–1 + Fn–2

if n = 0;
if n = 1;
if n ³ 2.

0 1 1 2 3 5 8 13 21 34 L

5)/2
Naive recursive algorithm: W(f n)
(exponential time), where f = (1+
is the golden ratio.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.21

Computing Fibonacci
numbers

Bottom-up:
• Compute F0, F1, F2, …, Fn in order, forming

each number by summing the two previous.
• Running time: Q(n).

Computing Fibonacci
numbers

Bottom-up:
• Compute F0, F1, F2, …, Fn in order, forming

each number by summing the two previous.

• Running time: Q(n).

Naive recursive squaring:
Fn = f n/ 5 rounded to the nearest integer.

• Recursive squaring: Q(lg n) time.

• This method is unreliable, since floating-point
arithmetic is prone to round-off errors.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.22

Recursive squaring

Fn
⎥⎦= ⎢⎣1

1⎤nFn ⎤ ⎡1
n-1

⎡Fn+1
⎣⎢ FTheorem: 0⎥⎦ .

Recursive squaring

F ⎥⎦= ⎢⎣1
1⎤nFn ⎤ ⎡1

n n-1

⎡Fn+1

⎣⎢ FTheorem: 0⎥⎦ .

Algorithm: Recursive squaring.
Time = Q(lg n) .

Maximum Subarray Problem
• You can buy a unit of stock, only one time, then sell it at a

later date
– Buy/sell at end of day

• Strategy: buy low, sell high
– The lowest price may appear after the highest price

• Assume you know future prices

• Can you maximize profit by buying at lowest price and
selling at highest price?

Buy lowest sell highest

Brute force

• How many buy/sell pairs are possible over n
days?

• Evaluate each pair and keep track of maximum
• Can we do better?

Transformation

• Find sequence of days so that:
– the net change from last to first is maximized

• Look at the daily change in price
– Change on day i: price day i minus price day i-1
– We now have an array of changes (numbers), e.g.

12,-3,-24,20,-3,-16,-23,18,20,-7,12,-5,-22,14,-4,6
– Find contiguous subarray with largest sum
• maximum subarray

– E.g.: buy after day 7, sell after day 11

Brute force again

• Trivial if only positive numbers (assume not)

• Need to check O(n2) pairs

• For each pair, find the sum

• Thus total time is …

Divide-and-Conquer

• A[low..high]
• Divide in the middle:
– A[low,mid], A[mid+1,high]

• Any subarray A[i,..j] is
(1) Entirely in A[low,mid]
(2) Entirely in A[mid+1,high]
(3) In both

• (1) and (2) can be found recursively

Divide-and-Conquer (cont.)

• (3) find maximum subarray that crosses
midpoint

– Need to find maximum subarrays of the form
A[i..mid], A[mid+1..j], low <= i, j <= high

• Take subarray with largest sum of (1), (2), (3)

Divide-and-Conquer (cont.)
Find-Max-Cross-Subarray(A,low,mid,high)

left-sum = -∞
sum = 0
for i = mid downto low

sum = sum + A[i]
if sum > left-sum then

left-sum = sum
max-left = i

right-sum = -∞
sum = 0
for j = mid+1 to high

sum = sum + A[j]
if sum > right-sum then

right-sum = sum
max-right = j

return (max-left, max-right, left-sum + right-sum)

Time analysis

• Find-Max-Cross-Subarray: O(n) time

• Two recursive calls on input size n/2

• Thus:
T(n) = 2T(n/2) + O(n)
T(n) = O(n log n)

Matrix multiplication

Standard algorithm

for i ¬ 1 to n
do for j ¬ 1 ton

do cij ¬ 0
for k ¬ 1 to n

do cij ¬ cij + aik× bkj

Standard algorithm

for i ¬ 1 to n
do for j ¬ 1 ton

do cij ¬ 0
for k ¬ 1 to n

do cij ¬ cij + aik× bkj

Running time = Q(n3)

Divide-and-conquer algorithm

Divide-and-conquer algorithm

Analysis of D&C algorithm

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) +Q(n2)

Analysis of D&C algorithm

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) +Q(n2)

nlogba = nlog28 = n3 Þ CASE 1 Þ T(n) = Q(n3).

Analysis of D&C algorithm

submatrices
submatrix size

work adding
submatrices

T(n) = 8 T(n/2) +Q(n2)

nlogba = nlog28 = n3 Þ CASE 1 Þ T(n) = Q(n3).

No better than the ordinary algorithm.

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

P1 = a × (f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f)

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.37

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 –P7

P1 = a × (f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.38

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 –P7

P1 = a × (f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f)

7 mults, 18 adds/subs.
Note: No reliance on
commutativity of mult!

7 mults, 18 adds/subs.
Note: No reliance on
commutativity of mult!

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.39

Strassen’s idea
• Multiply 2´2 matrices with only 7 recursive mults.

r = P5 + P4 – P2 + P6
= (a + d) (e + h)

+ d (g – e) – (a + b) h
+ (b – d) (g + h)

= ae + ah + de + dh
+ dg –de – ah – bh
+ bg + bh – dg – dh

= ae + bg

P1 = a × (f – h)
P2 = (a + b) × h
P3 = (c + d) × e
P4 = d × (g – e)
P5 = (a + d) × (e + h)
P6 = (b – d) × (g + h)
P7 = (a – c) × (e + f)

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.40

Strassen’s algorithm
1. Divide: Partition A and B into

(n/2)´(n/2) submatrices. Form terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)´(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)´(n/2) submatrices.

L2.41

Strassen’s algorithm
1. Divide: Partition A and B into

(n/2)´(n/2) submatrices. Form terms
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of
(n/2)´(n/2) submatrices recursively.

3. Combine: Form C using + and – on
(n/2)´(n/2) submatrices.

T(n) = 7 T(n/2) +Q(n2)

