CS60020: Foundations of
Algorithm Design and Machine
Learning

DIVIDE AND CONQUER

if n=0;
ifn=1;
ifn=>2.

13 21 34 L

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.19

Fibonacci numbers

Recursive definition:

(0 if n=0;
F=<1 ifn=1;
\ Fn—l —l_Fn_z ifI/lZZ.

0O 1 1 2 3 5 8 1321 34 1L

Naive recursive algorithm: Q(¢")
(exponential time), where ¢= (1++/5)/2
1s the golden ratio.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.20

w= Computing Fibonacci
fron. numbers

Bottom-up:

» Compute F, 'y, F», ..., F, 1n order, forming
each number by summing the two previous.

* Running time: O(n).

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.21

w== Computing Fibonacci
o numbers

Bottom-up:

» Compute F, 'y, F», ..., F, 1n order, forming
each number by summing the two previous.

* Running time: O(n).
Naive recursive squaring:

F,= ¢"//5 rounded to the nearest integer.
* Recursive squaring: O(lg n) time.

* This method is unreliable, since floating-point
arithmetic 1s prone to round-off errors.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.22

Recursive squaring

.)
Theorem: r’m "B
Fn Fn—l—

Recursive squaring

Folob
Theorem: r’m TR
F F_ Il

n_

Algorithm: Recursive squaring.
Time = O(lg n) .

Maximum Subarray Problem

You can buy a unit of stock, only one time, then sell it at a
later date

— Buy/sell at end of day

Strategy: buy low, sell high
— The lowest price may appear after the highest price

Assume you know future prices

Can you maximize profit by buying at lowest price and
selling at highest price?

Buy lowest sell highest

m
AL

Brute force

 How many buy/sell pairs are possible over n
days?
* Evaluate each pair and keep track of maximum

e Can we do better?

Transformation

* Find sequence of days so that:
— the net change from last to first is maximized

* Look at the daily change in price
— Change on day i: price day i minus price day i-1
— We now have an array of changes (numbers), e.g.
12,-3,-24,20,-3,-16,-23,18,20,-7,12,-5,-22,14,-4,6
— Find contiguous subarray with largest sum
* maximum subarray

— E.g.: buy after day 7, sell after day 11

Brute force again

Trivial if only positive numbers (assume not)
Need to check O(n?) pairs
For each pair, find the sum

Thus total time is ...

Divide-and-Conquer

Allow..high]

Divide in the middle:

— A[low,mid], A[mid+1,high]
Any subarray Alj,..j] is

(1) Entirely in A[low,mid]

(2) Entirely in A[mid+1,high]
(3) In both
(1) and (2) can be found recursively

Divide-and-Conquer (cont.)

e (3) find maximum subarray that crosses
midpoint
— Need to find maximum subarrays of the form
Ali..mid], A[mid+1..j], low <=1, j <= high

e Take subarray with largest sum of (1), (2), (3)

Divide-and-Conquer (cont.)

Find-Max-Cross-Subarray(A,low,mid,high)
left-sum = -oo
sum=0
for i = mid downto low
sum = sum + AJi]
if sum > left-sum then
left-sum = sum

max-left =i
right-sum = -oo
sum=0

for j = mid+1 to high
sum = sum + AJj]
if sum > right-sum then
right-sum = sum
max-right = j
return (max-left, max-right, left-sum + right-sum)

Time analysis

* Find-Max-Cross-Subarray: O(n) time
* Two recursive calls on input size n/2

* Thus:
T(n) = 2T(n/2) + O(n)
T(n) = O(n log n)

Matrix multiplication

Input: A=[aij],B=[bij].} .
Output: C=[c;]=A4-B. Lj=1,2,...,n.

C11 €2 " Cp a;p app "t Ay by by -+ by,

€21 €22 *7 C2p y1 Ay " Ggp | | by by v by,

Cnl Cn2 " Cyp 1 Qn1 Qup " Qyy _bnl bn2 o+ b

nn

n
cj = 2. i by
k=1

Standard algorithm

fori < 1 ton
do for;j <— 1 ton
do cl-j<—O
for k< 1 ton
dO Cl](_ Cl]_l_ aik‘bkj

Standard algorithm

fori < 1 ton
do for;j <— 1 ton
do cl-j<—O
for k< 1 ton
dO Cl](_ Cl]_l_ aik‘bkj

Running time = O(7°)

Divide-and-conquer algorithm

IDEA:
nxn matrix = 2x2 matrix of (n/2)x(n/2) submatrices:

ris| [abllel f
—t+— =] <>

tu|l |cd]|lgh
C = A - B

r =ae+bg)
s =af + bh Y 8 mults of (n/2)x(n/2) submatrices
t =ce+dg | 4 addsof (n/2)x(n/2) submatrices

u =cf +dh_

Divide-and-conquer algorithm

IDEA:
nxn matrix = 2x2 matrix of (n/2)x(»n/2) submatrices:

ris|_ab)| e f]
_tu___c:d_ g h
C = 4 - B

r =ae+bg) recursive
s =af +bh | 8mults of (n/2)x(/2) submatrices
t =ce+dh | 4addsof(n/2)x(n/2) submatrices

u =cf +dg_

Analysis of D&C algorithm

1(n) =8 T(n/2) +O(n?)

submatrices / work adding

oo submatrices
submatrix size

Analysis of D&C algorithm

1(n) =8 T(n/2) +O(n?)

submatrices / work adding

oo submatrices
submatrix size

nlogha=plogd=pn3 — CASEl = T(n)=0(n).

Analysis of D&C algorithm

1(n) =8 T(n/2) +O(n?)

submatrices / work adding

oo submatrices
submatrix size

nlogha=plogd=pn3 — CASEl = T(n)=0(n).

No better than the ordinary algorithm.

| ‘*\‘ Strassen’s idea

\\‘

o Multlply 2x2 matrices with only 7 recursive mults.

Strassen’s idea

* Multiply 2x2 matrices with only 7 recursive mults.

Pi=a-(f-h
P,=(a+b) h
Pi=(c+d)-e
Py=d-(g—e)
Ps=(a+d)-(e+h)
Pe=(b—d)-(g+h)
P;=(a—c)-(etf)

Strassen’s idea

* Multiply 2x2 matrices with only 7 recursive mults.

Pi=a-(f-—h) r =Ps+ P,— P,+ Pg
P,=(a+b)-h s =P+ P,
Py=(c+d)- e t =P+ P,
P,=d-(g—e) u=Ps+ P —P;—P;

Ps=(a+d)-(e+h)
Pe=(b—d)-(g+h)
P;=(a—-c)-(etf)

Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.37

Strassen’s idea

* Multiply 2x2 matrices with only 7 recursive mults.

P=a-(f-h) r =Ps+P,— P,+ P
P,=(a+b)-h s =P+ P,
Py=(c+d)- e t =P+ P,
P,=d-(g—e) u=Ps+ P —P;—P;

Ps=(a+d)-(e+h)
P.=(b—d) - (g+h) 7 mults, 18 adds/subs.

Po=(a—c)-(e+f) Note: No .re.hance on
commutativity of mult!

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.38

Strassen’s idea

* Multiply 2x2 matrices with only 7 recursive mults.

Pi=a-(f-—h) r =Ps+ P,— P,+ Pg
Py=(a+b)-h =(a+d)(e+h)
Py=(ctd)-e td(g—e)—(a+Db)h
Py=d-(g—e) +(b-d) (gth)
Ps=(a+d) (et h) =ae + ah +de + dh
Ps=(b—-d)-(g+h) + dg —de —ah — bh
P,=(a—c)-(e+f) + bg + bh — dg — dh

=qae + bg

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.39

Strassen’s algorithm

1. Divide: Partition 4 and B into

(n/2)x(n/2) submatrices. Form terms
to be multiplied using + and —.

2. Conquer: Perform 7 multiplications of
(n/2)x(n/2) submatrices recursively.

3. Combine: Form C using + and — on
(n/2)x(n/2) submatrices.

September 14, 2005 Copyright © 2001-5 Erik D. Demaine and Charles E. Leiserson L2.40

Strassen’s algorithm

1. Divide: Partition 4 and B into
(n/2)x(n/2) submatrices. Form terms
to be multiplied using + and —.

2. Conquer: Perform 7 multiplications of
(n/2)x(n/2) submatrices recursively.

3. Combine: Form C using + and — on
(n/2)x(n/2) submatrices.

I(n)="T7 T(n/2) + O(n?)

L2.41

