
CS60020: Foundations of
Algorithm Design and Machine

Learning
Sourangshu Bhattacharya

ORDER NOTATION

3

Order Arithmetic

• Big-Oh notation provides a way to compare
two functions

• “f(n) is O(g(n))” means:

f(n) is less than or equal to g(n) up to a
constant factor for large values of n

4

Categorizing functions

• Big-Oh can be used for categorizing or characterizing
functions

• For example, the statements:
2n + 3 is O(n) and 5n is O(n)
place 2n + 3 and 5n in the same category
– Both functions are less than or equal to g(n) = n, up to a

constant factor, for large values of n
– If the functions are running times of two algorithms, the

algorithms are thus comparable

5

Definition of Big-Oh

f(n) is O(g(n)) if there is a real constant c > 0
and an integer constant n0 >= 1 such that

f(n) <= c g(n), for n >= n0

less than or equal up to
a constant factor for large values of n

6

Example

• f(n) = 2n + 5
g(n) = n

• Consider the condition
2n + 5 <= n

will this condition ever hold? No!
• How about if we tack a constant to n?

2n + 5 <= 3n
the condition holds for values of n greater than or
equal to 5

• This means we can select c = 3 and n0 = 5

7

2n+5

n

2n+5
3n

point where 3n
“beats” 2n+5

Example

2n+5 is O(n)

8

Use of Big-Oh notation

• Big-Oh allows us to ignore constant factors
and lower order (or less dominant) terms

2n2 + 5n – 4 is O(n2)

constants lower order terms

9

Function categories revisited

• The constant function: f(n) = 1
• The linear function: f(n) = n
• The quadratic function: f(n) = n2

• The cubic function: f(n) = n3

• The exponential function: f(n) = 2n

• The logarithm function: f(n) = log n
• The n log n function: f(n) = n log n

10

Functions by increasing growth
rate

• The constant function: f(n) = 1
• The logarithm function: f(n) = log n
• The linear function: f(n) = n
• The n log n function: f(n) = n log n
• The quadratic function: f(n) = n2

• The cubic function: f(n) = n3

• The exponential function: f(n) = 2n

11

Big-Oh as an upper bound

• The statement f(n) is O(g(n)) indicates that g(n) is
an upper bound for f(n)

• Which means it is also correct to make statements
like:
– 3n+5 is O(n2)
– 3n+5 is O(2n)
– 3n+5 is O(5n + log n - 2)
– But the statement 3n+5 is O(n) is the “tightest” statement

one can make

12

Relatives of Big-Oh

• Big Omega W : lower bound
• Big Theta Q : the function is both a lower

bound and an upper bound
• For this course, only Big-Oh notation will be

used for algorithm analysis

