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Presentation Summary 

• Artificial Neuron Structure 

• Feed forward Neural Networks (FNN) 

• Recurrent Neural Networks (RNN) and 
Bidirectional RNNs 
 

• Long Short Term Memory (LSTM) architecture 
 

• Using LSTM and BLSTM from lstm.py from 
OCROPUS library to recognize Embedded 
Reber Grammar 
 

• How to Parallelize neural networks? 



Artificial Neuron Structure 
 

• Artificial neurons were first conceived in the 1940s to mimic 
the functioning of biological neurons. 



The transfer function can be a threshold function or a piecewise linear 
function or a sigmoid  function. 



Since they are linearly related , any function computed by a neural network 
of tanh units can be computed by another network with logistic sigmoid 
units and vice-versa. 



• Tanh and logistic functions are non linear. Nonlinear neural networks 
are more powerful than linear ones since they can find nonlinear 
classification boundaries and model nonlinear equations. 

 
• Any combination of linear operators is itself a linear operator, which 

means that any MLP(Multi Layer Perceptron) with multiple linear 
hidden layers is exactly equivalent to some other MLP with a single 
linear hidden layer. 



Feed Forward Neural Networks (FNN) Or Multi Layer Perceptions (MLP) 

• Input patterns are presented to the input layer, then propagated through the  
hidden layers to the output layer. This process is known as the forward pass of 
the network. 

 
• Since the output of an MLP depends only on the current input, and not on 

any past or future inputs, MLPs are more suitable for pattern classification 
than for sequence labeling. 
 

• Typical classification problems include classifying emails as Spam/Non 
Spam and Tumors as Benign or Malignant 



• For binary classification tasks, the standard configuration is a single unit with 
a logistic sigmoid activation . Since the range of the logistic sigmoid is the 
open interval (0, 1), the activation of the output unit can be interpreted as the 
probability that the input vector belongs to the first class C1 (and conversely, 
one minus the activation gives the probability that it belongs to the second 
class C2) 
 
 
 

• We can also introduce a coding a scheme to represent these equations easily. 
 

• For binary classification, if we use a coding scheme for the target vector z 
where z = 1 if the correct class is C1 and z = 0 if the correct class is C2, we can 
write: 
 
 



• For classification problems with K > 2 classes, the convention is to have K 
output units, and normalize the output activations with the softmax 
function  to obtain the class probabilities. 
 
 
 
 

• A 1-of-K coding scheme represent the target class z as a binary vector 
with all elements equal to zero except for element k, corresponding to the 
correct class C k , which equals one. For example, if K = 6 and the correct 
class is C2 , z is represented by  [0  1  0  0  0  0]. Using this scheme we 
obtain the following convenient form for the target probabilities: 
 
 
 

• So to classify the input vector, simply feed in the input vector, activate the 
network, and choose the class label corresponding to the most active 
output unit 



 
• Network training has two parts, Forward Pass and Backward Pass 

 
• Since sigmoid functions are differentiable, the network can be trained with 

gradient descent. 
 
 
 
 
 
 



• First we define a loss function  for the output target vector z as: 
 
 

• For Binary classification this is: 
 
 
 

• For Multi-class classification this is: 
 
 
 
 
 
 

• Then we perform gradient descent through BackPropagation. The basic idea 
of gradient descent is to find the derivative of the loss function with respect 
to each of the network weights, then adjust the weights in the direction of 
the negative slope. This is achieved through repeated use of chain rule. 
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Recurrent Neural Networks (RNN) 
 
 
 
 
 
 
 
 
 

• An MLP can only map from input to output vectors, whereas an RNN can in 
principle map from the entire history of previous inputs to each output.  
 

• The idea is that the recurrent connections allow a ȁmemoryȂ of previous 
inputs to persist in the networkȂs internal state, and thereby influence the 
network output. 



Consider a length T input sequence x presented to an RNN with I input 
units, H hidden units, and K output units. Let xt

i be the value of input i at 
time t, and let at

j and bt
j be respectively the network input to unit j at time t 

and the activation of unit j at time t. Denoting the weight from unit i to unit 
j as wi j  
 
 
 
The forward pass is calculated for a length T input sequence x by starting at 
t = 1 and iteratively applying the update equations while incrementing t 



Backward Propagation Through Time (BPTT) 
 

• The time step diagram is the same but with all the arrows inverted. 
 

• The loss function depends on the activation of the hidden layer not 
only through its influence on the output layer, but also through its 
influence on the hidden layer at the next time step. 

• The complete sequence of δ terms can be calculated by starting at t = T and 
iteratively applying above equation decrementing t at each step. 
 

• Finally we sum over the whole sequence to get the derivatives with respect 
to the network weights. 



Bidirectional RNNs 



The forward pass for the BRNN hidden layers is the same as for a 
unidirectional RNN, except that the input sequence is presented in opposite 
directions to the two hidden layers, and the output layer is not updated until 
both hidden layers have processed the entire input sequence 

for t = 1 to T do 
 Forward pass for the forward hidden layer, storing activations at 
 each time step 
for t = T to 1 do 
 Forward pass for the backward hidden layer, storing activations at 
 each time step 
for all t, in any order do 
 Forward pass for the output layer, using the stored activations from 
 both hidden layers 



Similarly, the backward pass proceeds as for a standard RNN trained with 
BPTT, except that all the output layer δ terms are calculated first, then fed back 
to the two hidden layers in opposite directions 

for all t, in any order do 
 Backward pass for the output layer, storing δ terms at each time step 
for t = T to 1 do 
 BPTT backward pass for the forward hidden layer, using the stored δ 
 terms from the output layer 
for t = 1 to T do 
 BPTT backward pass for the backward hidden layer, using the stored 
 δ terms from the output layer 



Long Short Term Memory (LSTM) architecture 
 

• RNNs suffer from the problem of Vanishing Gradients  
 

• The sensitivity of the network decays over time as new inputs 
overwrite the activations of the hidden layer, and the network 
ȁforgetsȂ the first inputs. 
 

• This problem is remedied by using LSTM blocks instead of 
sigmoid cells in the hidden layer. 
 

• LSTM blocks can choose to retain their memory over arbitrary 
periods of time and also ȁforget ȁ if necessary. 
 

 







• wij is the weight of the connection from unit i to unit j. 
• The network input to unit j at time t is denoted at

j and activation of unit j at 
time t is bt

j . 
• The subscripts ι, φ and ω refer respectively to the input gate, forget gate and 

output gate of the block.  
 

• The subscripts c refers to one of the C memory cells. The peephole weights 
from cell c to the input, forget and output gates are denoted wcι, wcφ and wcω 
respectively.  
 

• st
c  is the state of cell c at time t (i.e. the activation of the linear cell unit).  

 
• f is the activation function of the gates, and g and h are respectively the cell 

input and output activation functions. 
 

• Let I be the number of inputs, K be the number of outputs and H be the 
number of cells in the hidden layer 

 
As with standard RNNs the forward pass is calculated for a length T input 
sequence x by starting at t = 1 and applying the update equations while 
incrementing t, and the BPTT backward pass is calculated by starting at t = T , 
and calculating the unit derivatives while decrementing t to one. The final 
weight derivatives are found by summing over the derivatives at each time step. 







Computational Complexity 
 

• In Forward pass, we evaluate the weighted sum of inputs from 
previous layer to the next. 

• In Backward pass, we calculate the errors and modify these 
weights. 

• Hence for all networks thus far, FNNs, RNNs, BRNNs, LSTM and 
BLSTM computational complexity is O(W) i.e., the total number of 
edges in the network. 
 

• For FNN: W = IH + HK 
 

• For RNN: W = IH + H2 + HK 
 

• For LSTM : W = 4IH + 4H2 + 3H + HK 
 

• For Bidirectional networks, W = 2(W for unidirectional network) 
 
 



• In most applications ,  I<< H~ K 
 

• Take Japanese character recognition for instance 
 

• Total number of kanji characters ~ 85,000 
 

• But most of them are archaic and 13,000 are listed in Japanese 
Industrial Standards for kanji of which 5000 are regularly used 
 

• So K=5,000 
 

• Number of features extracted for each time step is at max 30. 
 

• Number of hidden cells used are of the order of the total classes 
(there is no definite answer to how many hidden cell to use , find 
optimal number by trial and error) 
 

• So  computational complexity is ~ O (KH) 



Reber Grammar 

• We start at B, and move from one node to the next, adding the symbols we 
pass to our string as we go. When we reach the final E, we stop. If there are 
two paths we can take, e.g. after T we can go to either S or X, we randomly 
choose one (with equal probability). 

•  An S can follow a T, but only if the immediately preceding symbol was a B. 
A V or a T can follow a T, but only if the symbol immediately preceding it 
was either a T or a P.  

• In order to know what symbol sequences are legal, therefore, any system 
which recognizes reber strings must have some form of memory, which can 
use not only the current input, but also fairly recent history in making a 
decision. RNNs can recognize a Reber Grammar. 



Embedded Reber Grammar 



• Using this grammar two types of strings are generated: one kind which is 
made using the top path through the graph: BT<reber string>TE and one 
kind made using the lower path: BP<reber string>PE.  
 

• To recognize these as legal strings, and learn to tell them from illegal strings 
such as BP<reber string>TE, a system must be able to remember the second 
symbol of the series, regardless of the length of the intervening input ,and to 
compare it with the second last symbol seen.  
 

• A simple RNN can no longer solve this task, but LSTM can solve it with after 
about 10000 training examples . BLSTM can solve it after 1000 training 
examples 



Programming example 
 

• Here we use an implementation of  LSTM in OCROPUS which 
is an open source document analysis and OCR system. 
 

• OCROPUS is written in Python, NumPy, and SciPy focusing on 
the use of large scale machine learning for addressing problems 
in document analysis. 
 

• https://code.google.com/p/ocropus/ 
 

 

https://code.google.com/p/ocropus/
https://code.google.com/p/ocropus/
https://code.google.com/p/ocropus/


http://www.felixgers.de/SourceCode_Data.html 
 
• Input  is  (T x 7) matrix which represents the present move and output is 

also a (T x 7) matrix which represents the possible next moves 
 

• Encoding: B      T      P      S      X      V      E 
 

• Now can we present the output directly as target vector ? 

http://www.felixgers.de/SourceCode_Data.html
http://www.felixgers.de/SourceCode_Data.html


• The answer is NO! 
• One might say we can create 7 output classes and take the top 2 

most active outputs as the answer. 
 

• But training wont work as multi class output layer is softmax which 
follows a 1-of-K encoding scheme 
 

• So we need to identify the different output classes: 
 

• TP , SX ,TV ,PV ,B ,T ,P and E are all possible next moves. So total of 
8 output classes not 7. 
 

• TP: 0110000                 encoding   10000000 
• SX: 0001100    01000000 
• TV: 0100010    00100000 
• PV: 0010010    00010000 
• B: 1000000    00001000 
• T: 0100000    00000100 
• P: 0010000    00000010 
• E: 0000001    00000001 
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Parallelizing FNNs 

• The weights between two layers can be represented by a matrix 
• WIH is a (HxI) matrix and input XI is a (Ix1) vector 
• Their product is a (HX1) vector AH  representing  the activations 

of the 4 Hidden cells. 
• Applying the sigmoid function to individual elements of this 

vector, we get a vector BH representing the outputs of Hidden 
Layer. 

• This is the input to the next layer. 

ܻ =   �ሺܣሻ       ܣ = ுܹܤு + �ு 
 

ுܤ =   �ሺܣுሻ         ܣு = ூܹு ூܺ + �ூ 



• In BackPropagation, first we find error vector (Kx1) at output layer 
and then the error matrix (KxH)of the edges between hidden and 
output layer ���� = ܻ  − ܼ 

���ಹ = � ሺܣு) .* ሺܹ���  ����) 

���ಹ� = 
����  ு�ܤ 

���ಹ = 
���ಹ  ܺ�ூ 

• Next we find error vector (Hx1)at the hidden layer and find the 
error matrix (HxI) for the edges between input and output layer 

���ಹ = 
���� 

��� = 
���ಹ 

• Weight updates are done after Back Propagation 



Parallelizing RNNs 

• Consider an input X having T time steps 
• The Weight matrices of the network change only after the backward pass, so 

we can find the excitations of a layer for all T time steps one after the other, 
instead of completely propagating through the layers for every single time 
step. 
 

• [WIH | WHH ]  is a (H x (I+H)) matrix and input [Xt
I | Bt-1

H] is a ((I+H)x1) 
vector. Their product is At

H  and applying sigmoid to this we get Bt
H. This is 

done for t = 1 to T. 
 

• Now we have a matrix BH  which has dimensions (HxT) 
 

• Now the product WHK BH  gives the output (KxT) for all T time steps 
 

• For Backprop, the output error �� (KxT) for all time steps is YK – ZK , so 
error matrix (KxH) is the product �� BȂH 

 

• For the hidden layer error �H (KxT), repeatedly find the vector from t =T to 1 

  �tH = � ́(At
H).* ( [WȂIH | WȂHH ] 

����� + 1�  ) 

• After finding the complete error over time T find the product �H XȂI hang 
dimensions (HxI) 
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