
FNNs ,RNNs ,LSTM and
BLSTM

Sudeep Raja

Presentation Summary

• Artificial Neuron Structure

• Feed forward Neural Networks (FNN)

• Recurrent Neural Networks (RNN) and
Bidirectional RNNs

• Long Short Term Memory (LSTM) architecture

• Using LSTM and BLSTM from lstm.py from
OCROPUS library to recognize Embedded
Reber Grammar

• How to Parallelize neural networks?

Artificial Neuron Structure

• Artificial neurons were first conceived in the 1940s to mimic
the functioning of biological neurons.

The transfer function can be a threshold function or a piecewise linear
function or a sigmoid function.

Since they are linearly related , any function computed by a neural network
of tanh units can be computed by another network with logistic sigmoid
units and vice-versa.

• Tanh and logistic functions are non linear. Nonlinear neural networks
are more powerful than linear ones since they can find nonlinear
classification boundaries and model nonlinear equations.

• Any combination of linear operators is itself a linear operator, which

means that any MLP(Multi Layer Perceptron) with multiple linear
hidden layers is exactly equivalent to some other MLP with a single
linear hidden layer.

Feed Forward Neural Networks (FNN) Or Multi Layer Perceptions (MLP)

• Input patterns are presented to the input layer, then propagated through the
hidden layers to the output layer. This process is known as the forward pass of
the network.

• Since the output of an MLP depends only on the current input, and not on

any past or future inputs, MLPs are more suitable for pattern classification
than for sequence labeling.

• Typical classification problems include classifying emails as Spam/Non
Spam and Tumors as Benign or Malignant

• For binary classification tasks, the standard configuration is a single unit with
a logistic sigmoid activation . Since the range of the logistic sigmoid is the
open interval (0, 1), the activation of the output unit can be interpreted as the
probability that the input vector belongs to the first class C1 (and conversely,
one minus the activation gives the probability that it belongs to the second
class C2)

• We can also introduce a coding a scheme to represent these equations easily.

• For binary classification, if we use a coding scheme for the target vector z
where z = 1 if the correct class is C1 and z = 0 if the correct class is C2, we can
write:

• For classification problems with K > 2 classes, the convention is to have K
output units, and normalize the output activations with the softmax
function to obtain the class probabilities.

• A 1-of-K coding scheme represent the target class z as a binary vector
with all elements equal to zero except for element k, corresponding to the
correct class C k , which equals one. For example, if K = 6 and the correct
class is C2 , z is represented by [0 1 0 0 0 0]. Using this scheme we
obtain the following convenient form for the target probabilities:

• So to classify the input vector, simply feed in the input vector, activate the
network, and choose the class label corresponding to the most active
output unit

• Network training has two parts, Forward Pass and Backward Pass

• Since sigmoid functions are differentiable, the network can be trained with

gradient descent.

• First we define a loss function for the output target vector z as:

• For Binary classification this is:

• For Multi-class classification this is:

• Then we perform gradient descent through BackPropagation. The basic idea
of gradient descent is to find the derivative of the loss function with respect
to each of the network weights, then adjust the weights in the direction of
the negative slope. This is achieved through repeated use of chain rule.

Output Layer

Hidden Layer

Partial differential
wrt wij

∆w

��+1 = �� + Δw�

Recurrent Neural Networks (RNN)

• An MLP can only map from input to output vectors, whereas an RNN can in
principle map from the entire history of previous inputs to each output.

• The idea is that the recurrent connections allow a ȁmemoryȂ of previous
inputs to persist in the networkȂs internal state, and thereby influence the
network output.

Consider a length T input sequence x presented to an RNN with I input
units, H hidden units, and K output units. Let xt

i be the value of input i at
time t, and let at

j and bt
j be respectively the network input to unit j at time t

and the activation of unit j at time t. Denoting the weight from unit i to unit
j as wi j

The forward pass is calculated for a length T input sequence x by starting at
t = 1 and iteratively applying the update equations while incrementing t

Backward Propagation Through Time (BPTT)

• The time step diagram is the same but with all the arrows inverted.

• The loss function depends on the activation of the hidden layer not
only through its influence on the output layer, but also through its
influence on the hidden layer at the next time step.

• The complete sequence of δ terms can be calculated by starting at t = T and
iteratively applying above equation decrementing t at each step.

• Finally we sum over the whole sequence to get the derivatives with respect
to the network weights.

Bidirectional RNNs

The forward pass for the BRNN hidden layers is the same as for a
unidirectional RNN, except that the input sequence is presented in opposite
directions to the two hidden layers, and the output layer is not updated until
both hidden layers have processed the entire input sequence

for t = 1 to T do
 Forward pass for the forward hidden layer, storing activations at
 each time step
for t = T to 1 do
 Forward pass for the backward hidden layer, storing activations at
 each time step
for all t, in any order do
 Forward pass for the output layer, using the stored activations from
 both hidden layers

Similarly, the backward pass proceeds as for a standard RNN trained with
BPTT, except that all the output layer δ terms are calculated first, then fed back
to the two hidden layers in opposite directions

for all t, in any order do
 Backward pass for the output layer, storing δ terms at each time step
for t = T to 1 do
 BPTT backward pass for the forward hidden layer, using the stored δ
 terms from the output layer
for t = 1 to T do
 BPTT backward pass for the backward hidden layer, using the stored
 δ terms from the output layer

Long Short Term Memory (LSTM) architecture

• RNNs suffer from the problem of Vanishing Gradients

• The sensitivity of the network decays over time as new inputs
overwrite the activations of the hidden layer, and the network
ȁforgetsȂ the first inputs.

• This problem is remedied by using LSTM blocks instead of
sigmoid cells in the hidden layer.

• LSTM blocks can choose to retain their memory over arbitrary
periods of time and also ȁforget ȁ if necessary.

• wij is the weight of the connection from unit i to unit j.
• The network input to unit j at time t is denoted at

j and activation of unit j at
time t is bt

j .
• The subscripts ι, φ and ω refer respectively to the input gate, forget gate and

output gate of the block.

• The subscripts c refers to one of the C memory cells. The peephole weights
from cell c to the input, forget and output gates are denoted wcι, wcφ and wcω
respectively.

• st
c is the state of cell c at time t (i.e. the activation of the linear cell unit).

• f is the activation function of the gates, and g and h are respectively the cell

input and output activation functions.

• Let I be the number of inputs, K be the number of outputs and H be the
number of cells in the hidden layer

As with standard RNNs the forward pass is calculated for a length T input
sequence x by starting at t = 1 and applying the update equations while
incrementing t, and the BPTT backward pass is calculated by starting at t = T ,
and calculating the unit derivatives while decrementing t to one. The final
weight derivatives are found by summing over the derivatives at each time step.

Computational Complexity

• In Forward pass, we evaluate the weighted sum of inputs from
previous layer to the next.

• In Backward pass, we calculate the errors and modify these
weights.

• Hence for all networks thus far, FNNs, RNNs, BRNNs, LSTM and
BLSTM computational complexity is O(W) i.e., the total number of
edges in the network.

• For FNN: W = IH + HK

• For RNN: W = IH + H2 + HK

• For LSTM : W = 4IH + 4H2 + 3H + HK

• For Bidirectional networks, W = 2(W for unidirectional network)

• In most applications , I<< H~ K

• Take Japanese character recognition for instance

• Total number of kanji characters ~ 85,000

• But most of them are archaic and 13,000 are listed in Japanese
Industrial Standards for kanji of which 5000 are regularly used

• So K=5,000

• Number of features extracted for each time step is at max 30.

• Number of hidden cells used are of the order of the total classes
(there is no definite answer to how many hidden cell to use , find
optimal number by trial and error)

• So computational complexity is ~ O (KH)

Reber Grammar

• We start at B, and move from one node to the next, adding the symbols we
pass to our string as we go. When we reach the final E, we stop. If there are
two paths we can take, e.g. after T we can go to either S or X, we randomly
choose one (with equal probability).

• An S can follow a T, but only if the immediately preceding symbol was a B.
A V or a T can follow a T, but only if the symbol immediately preceding it
was either a T or a P.

• In order to know what symbol sequences are legal, therefore, any system
which recognizes reber strings must have some form of memory, which can
use not only the current input, but also fairly recent history in making a
decision. RNNs can recognize a Reber Grammar.

Embedded Reber Grammar

• Using this grammar two types of strings are generated: one kind which is
made using the top path through the graph: BT<reber string>TE and one
kind made using the lower path: BP<reber string>PE.

• To recognize these as legal strings, and learn to tell them from illegal strings
such as BP<reber string>TE, a system must be able to remember the second
symbol of the series, regardless of the length of the intervening input ,and to
compare it with the second last symbol seen.

• A simple RNN can no longer solve this task, but LSTM can solve it with after
about 10000 training examples . BLSTM can solve it after 1000 training
examples

Programming example

• Here we use an implementation of LSTM in OCROPUS which
is an open source document analysis and OCR system.

• OCROPUS is written in Python, NumPy, and SciPy focusing on
the use of large scale machine learning for addressing problems
in document analysis.

• https://code.google.com/p/ocropus/

https://code.google.com/p/ocropus/
https://code.google.com/p/ocropus/
https://code.google.com/p/ocropus/

http://www.felixgers.de/SourceCode_Data.html

• Input is (T x 7) matrix which represents the present move and output is

also a (T x 7) matrix which represents the possible next moves

• Encoding: B T P S X V E

• Now can we present the output directly as target vector ?

http://www.felixgers.de/SourceCode_Data.html
http://www.felixgers.de/SourceCode_Data.html

• The answer is NO!
• One might say we can create 7 output classes and take the top 2

most active outputs as the answer.

• But training wont work as multi class output layer is softmax which
follows a 1-of-K encoding scheme

• So we need to identify the different output classes:

• TP , SX ,TV ,PV ,B ,T ,P and E are all possible next moves. So total of
8 output classes not 7.

• TP: 0110000 encoding 10000000
• SX: 0001100 01000000
• TV: 0100010 00100000
• PV: 0010010 00010000
• B: 1000000 00001000
• T: 0100000 00000100
• P: 0010000 00000010
• E: 0000001 00000001

I H K

 1

 1

 2

 2

 3

 4

 1

 2

 3

Parallelizing FNNs

• The weights between two layers can be represented by a matrix
• WIH is a (HxI) matrix and input XI is a (Ix1) vector
• Their product is a (HX1) vector AH representing the activations

of the 4 Hidden cells.
• Applying the sigmoid function to individual elements of this

vector, we get a vector BH representing the outputs of Hidden
Layer.

• This is the input to the next layer.

ܻ = �ሺܣሻ ܣ = ுܹܤு + �ு

ுܤ = �ሺܣுሻ ܣு = ூܹு ூܺ + �ூ

• In BackPropagation, first we find error vector (Kx1) at output layer
and then the error matrix (KxH)of the edges between hidden and
output layer ���� = ܻ − ܼ

���ಹ = � ሺܣு) .* ሺܹ��� ����)

���ಹ� =
���� ு�ܤ

���ಹ =
���ಹ ܺ�ூ

• Next we find error vector (Hx1)at the hidden layer and find the
error matrix (HxI) for the edges between input and output layer

���ಹ =
����

��� =
���ಹ

• Weight updates are done after Back Propagation

Parallelizing RNNs

• Consider an input X having T time steps
• The Weight matrices of the network change only after the backward pass, so

we can find the excitations of a layer for all T time steps one after the other,
instead of completely propagating through the layers for every single time
step.

• [WIH | WHH] is a (H x (I+H)) matrix and input [Xt
I | Bt-1

H] is a ((I+H)x1)
vector. Their product is At

H and applying sigmoid to this we get Bt
H. This is

done for t = 1 to T.

• Now we have a matrix BH which has dimensions (HxT)

• Now the product WHK BH gives the output (KxT) for all T time steps

• For Backprop, the output error �� (KxT) for all time steps is YK – ZK , so
error matrix (KxH) is the product �� BȂH

• For the hidden layer error �H (KxT), repeatedly find the vector from t =T to 1

 �tH = � ́(At
H).* ([WȂIH | WȂHH]

����� + 1�)

• After finding the complete error over time T find the product �H XȂI hang
dimensions (HxI)

Citations:

1. Supervised Sequence Labelling with Recurrent Neural

Networks - Alex Graves
2. Long Short-Term Memory in Recurrent Neural

Networks - Felix Gers
3. Long Short-Term Memory - Sepp Hochreiter and Jürgen

Schmidhuber
4. The OCRopus Open Source OCR System - Thomas M.

Breuel
5. Parallel Implementations of Recurrent Neural Network

Learning -Uros Lotric and Andrej Dobnikar

