| Polygons and Visibility | Art Gallery Problem | Hardness & Approximation | Our Results<br>00000000000 | Open Problems |
|-------------------------|---------------------|--------------------------|----------------------------|---------------|
|                         |                     |                          |                            |               |

Constant Approximation Algorithms for Guarding Simple Polygons using Vertex Guards

#### Pritam Bhattacharya

Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur

pritam.bhattacharya@cse.iitkgp.ernet.in

December 7, 2018

Hardness & Approximation

Our Results

# Visible Region from a Single Guard / Camera



Hardness & Approximation

Our Results

ヘロト ヘ週ト ヘヨト ヘヨト

3

# Coverage by Multiple Guards / Cameras



P

# Polygons and Visibility





Figure: Polygon without holes

#### Definition (Visibility of a Point)

Any point  $z \in P$  is said to be *visible* from another point  $g \in P$  if the line segment zg lies wholly in the interior of P.

# Art Gallery Problem

The art gallery problem (AGP) is about finding the least number of guards that are necessary to ensure that an art gallery is fully guarded, assuming that a guard's field of view covers  $360^{\circ}$  as well as an unbounded distance.

# Art Gallery Problem

The art gallery problem (AGP) is about finding the least number of guards that are necessary to ensure that an art gallery is fully guarded, assuming that a guard's field of view covers  $360^{\circ}$  as well as an unbounded distance.

An art gallery can be abstracted as an *n*-sided polygon P (with or without holes), and guards as special points within P.

Open Problems

# Art Gallery Problem - Types of Guards

Different types of guards considered in Art Gallery Problem:

- (1) Point guards (stationary)
- (2) Perimeter guards (stationary)
- (3) Vertex guards (stationary)

# Art Gallery Problem - Types of Guards

Different types of guards considered in Art Gallery Problem:

- (1) Point guards (stationary)
- (2) Perimeter guards (stationary)
- (3) Vertex guards (stationary)
- (4) Edge guards (mobile)
- (5) Segment guards (mobile)

# Visibility Polygon of a Guard



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Sufficient Number of Guards

# Theorem ( Chvatal (1975), Fisk (1978) )

For guarding a simple polygon with n vertices,  $\lfloor \frac{n}{3} \rfloor$  point guards or vertex guards are sufficient and sometimes necessary.

# Sufficient Number of Guards

# Theorem ( Chvatal (1975), Fisk (1978) )

For guarding a simple polygon with n vertices,  $\lfloor \frac{n}{3} \rfloor$  point guards or vertex guards are sufficient and sometimes necessary.



Figure: A polygon where  $\lfloor \frac{n}{3} \rfloor$  point guards or vertex guards are necessary.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Open Problems

# Art Gallery Problem - Computational Hardness

Definition (Decision Version of the Art Gallery Problem)

Given a polygon P and a number k as input, can the polygon P be guarded with k or fewer guards?

# Art Gallery Problem - Computational Hardness

Definition (Decision Version of the Art Gallery Problem)

Given a polygon P and a number k as input, can the polygon P be guarded with k or fewer guards?

Hardness results known for the decision version of AGP:

- Proved to be NP-complete for vertex guards (Lee and Lin)
- Proved to be NP-hard for point guards (Aggarwal)
- Very recently proved to be ETR-complete (Abrahamsen, Adamaszek & Miltzow)
- Proved to be APX-hard (Eidenbenz, Stamm and Widmayer), implying that no PTAS can exist for AGP.
- Specifically for polygons with holes, AGP cannot be approximated to within a factor of Ω(In n) (Eidenbenz, Stamm and Widmayer).

Our Results

Open Problems

# Art Gallery Problem - Approximation Algorithms

• Approximation algorithms are efficient algorithms that find approximate solutions to NP-hard optimization problems.

# Art Gallery Problem - Approximation Algorithms

- Approximation algorithms are efficient algorithms that find approximate solutions to NP-hard optimization problems.
- They provide provable guarantees on the distance of the returned solution to the optimal one.

# Art Gallery Problem - Approximation Algorithms

- Approximation algorithms are efficient algorithms that find approximate solutions to NP-hard optimization problems.
- They provide provable guarantees on the distance of the returned solution to the optimal one.
- Typically the returned solution is always guaranteed to be within a multiplicative factor of the optimal solution, and this multiplicative factor is referred to as the *approximation ratio*.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

# Motivation for our Work

### Theorem (Ghosh, 1987)

By discretization of the polygon and a subsequent reduction to the Set Cover problem, we can obtain a  $\mathcal{O}(\log n)$ -approximation algorithm for guarding polygons using vertex and edge guards.

## Theorem (Ghosh, 1987)

Motivation for our Work

By discretization of the polygon and a subsequent reduction to the Set Cover problem, we can obtain a  $\mathcal{O}(\log n)$ -approximation algorithm for guarding polygons using vertex and edge guards.

### Theorem (Eidenbenz, Stamm & Widmayer, 1998)

For polygons with holes, there cannot exist a polynomial time algorithm for AGP with an approximation ratio better than  $((1-\epsilon)/12) \ln n$  for any  $\epsilon > 0$ , unless  $NP \subseteq TIME(n^{\mathcal{O}(\log \log n)})$ .

# Motivation for our Work

## Theorem (Ghosh, 1987)

By discretization of the polygon and a subsequent reduction to the Set Cover problem, we can obtain a  $\mathcal{O}(\log n)$ -approximation algorithm for guarding polygons using vertex and edge guards.

### Theorem (Eidenbenz, Stamm & Widmayer, 1998)

For polygons with holes, there cannot exist a polynomial time algorithm for AGP with an approximation ratio better than  $((1-\epsilon)/12) \ln n$  for any  $\epsilon > 0$ , unless  $NP \subset TIME(n^{\mathcal{O}(\log \log n)})$ .

#### Conjecture (Ghosh, 1987)

There exist polynomial time algorithms with a constant approximation ratio for guarding polygons without holes using vertex guards or edge guards.

# Our Results - Polygons Weakly Visible from an Edge

### Definition (Weak Visibility Polygon)

A polygon P is said to be a *weakly visible* if it has a special edge uv such that, for every point p within P, p is visible from some point q on uv.



Figure: An example of a polygon weakly visible from an edge uv

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

# Our Results - Polygons Weakly Visible from an Edge

### Definition (Weak Visibility Polygon)

A polygon P is said to be a *weakly visible* if it has a special edge uv such that, for every point p within P, p is visible from some point q on uv.

# Our Results - Polygons Weakly Visible from an Edge

### Definition (Weak Visibility Polygon)

A polygon P is said to be a *weakly visible* if it has a special edge uv such that, for every point p within P, p is visible from some point q on uv.

We obtained:

• A **6**-approximation algorithm, which has running time  $\mathcal{O}(n^2)$ , for guarding polygons that are weakly visible from an edge and contain no holes, using vertex guards.

# **Our Results - General Simple Polygons**

#### $u_{21}$ $v_{15}$ $v_{20}$ $\widetilde{v}_{19}$ $u_{17}$ $v_{16}$ $V_{5,1}$ $V_{5,2}$ $v_3$ $zv_{18}$ v17 $v_2$ $u_5$ $u_{11}$ V3.1 $V_{4,1}$ $v_5$ $u_{23}$ $v_{23}$ $v_{13}$ $v_{10} v_8$ $V_{5.3}$ $u_{10}$ $u_{30}$ $v_{22}$ $v_{11}$ $V_{3,2}$ $u_{14}$ $V_{2,2}$ $v_{25}$ $v_{26}$ $v_{14}$ $v_{2}$ $V_{1,1}$ $v_{30}$ $V_{4,2}$ $V_{3,3}$ $v_{24}$ $u_{24}$ $u_{12}$ $v_{12}$ $v_{27}$ $v_{28}$ $v_{29}$ $v_1$ $v_{31}$

ヘロト ヘ週ト ヘヨト ヘヨト æ

Our Results 00000000000 Open Problems

# Our Results - General Simple Polygons

#### Theorem

A set S of vertex (edge) guards for guarding all vertices of a simple polygon P can be computed in  $\mathcal{O}(n^4)$  time, such that  $|S| \leq 18 \times |G_{opt}|$ , where  $G_{opt}$  is an optimal vertex (edge) guard cover for all vertices of P.

# **Our Results - General Simple Polygons**



・ロト ・ 一下・ ・ モト ・ モト・ æ

Our Results 00000000000 Open Problems

# Our Results - General Simple Polygons

#### Theorem

A set S of vertex (edge) guards for guarding all vertices of a simple polygon P can be computed in  $\mathcal{O}(n^4)$  time, such that  $|S| \leq 18 \times |G_{opt}|$ , where  $G_{opt}$  is an optimal vertex (edge) guard cover for all vertices of P.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

# Our Results - General Simple Polygons



Figure: All vertices are visible from  $p(u, z_k)$  or  $p(v, z_k)$ , but the triangle  $x_1 x_2 x_3$  is invisible.

# Our Results - General Simple Polygons



Figure: Multiple invisible cells exist within the polygon that are not visible from the guards placed at  $p(u, z_k)$  and  $p(v, z_k)$ .

Our Results 000000000000 Open Problems

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

# Our Results - General Simple Polygons

#### Theorem

A set S of vertex (edge) guards for guarding the entire boundary of a simple polygon P can be computed in  $\mathcal{O}(n^5)$  time, such that  $|S| \leq 18 \times |G_{opt}|$ , where  $G_{opt}$  is an optimal vertex (edge) guard cover for the entire boundary of P.

Our Results 00000000000000

Our Results - General Simple Polygons



Our Results

Open Problems

0000000000

# Our Results - General Simple Polygons

#### Theorem

A set S of vertex (edge) guards for guarding the entire interior of a simple polygon P can be computed in  $\mathcal{O}(n^5)$  time, such that  $|S| \leq 27 \times |G_{opt}|$ , where  $G_{opt}$  is an optimal vertex (edge) guard cover for the entire interior of P.

Our Results 00000000000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

**Open Problems** 

# Future Directions and Open Problems

• Can we obtain similar approximation algorithms when using perimeter guards rather than vertex / edge guards?

# Future Directions and Open Problems

- Can we obtain similar approximation algorithms when using perimeter guards rather than vertex / edge guards?
- What about the case where the polygon *P* under question can have vertices inserted or deleted dynamically?

# Future Directions and Open Problems

- Can we obtain similar approximation algorithms when using perimeter guards rather than vertex / edge guards?
- What about the case where the polygon *P* under question can have vertices inserted or deleted dynamically?
- Can we obtain similar results if we consider one-reflection or k-modems visibility instead of direct visibility?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

# Thank you!