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Polygons and Visibility

Figure: Polygon with holes Figure: Polygon without holes

Definition (Visibility of a Point)

A point z ∈ P is said to be visible from another point g ∈ P if the
line segment zg does not intersect the exterior of P.
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Art Gallery Problem

The art gallery problem (AGP) enquires about the least number of
guards that are sufficient to ensure that an art gallery is fully
guarded, assuming that a guard’s field of view covers 360◦ as well
as an unbounded distance.

An art gallery can be viewed as an n-sided polygon P (with or
without holes) and guards as points in P.

Guards may be allowed to be placed anywhere within P (point
guards), or they may be allowed to be placed only on the vertices
of P (vertex guards).

Victor Klee (1973) → How many point guards or vertex guards are
always sufficient to guard a simple polygon having n vertices?
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Sufficient Number of Guards

Theorem ( Chvatal (1975), Fisk (1978) )

For guarding a simple polygon with n vertices, bn3c point guards or
vertex guards are sufficient and sometimes necessary.

Figure: A polygon where b n3c point guards or vertex guards are necessary.
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Sufficient Number of Guards

Theorem ( O’Rourke(1983) )

For guarding a simple orthogonal polygon with n vertices, bn4c
point guards or vertex guards are sufficient and sometimes
necessary.

Figure: A polygon where b n4c stationary guards are necessary.
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Literature Survey - Hardness Results

Definition (Decision Version of the Art Gallery Problem)

Given a polygon P and a number k as input, can the polygon P be
guarded with k or fewer guards?

Hardness results known for the decision version of AGP:

Proved to be NP-complete for vertex guards (Lee and Lin).

Proved to be NP-complete for point guards (Aggarwal).

Proved to be APX-complete (Eidenbenz, Stamm and
Widmayer), implying that no PTAS can exist for AGP.

Specifically for polygons with holes, AGP cannot be
approximated to within a factor of Ω(ln n) (Eidenbenz,
Stamm and Widmayer).
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Literature Survey - Approximation Algorithms

For computing the minimum number of guards, the following
approximation algorithms exist:

O(log n)-approximation algorithm for vertex and edge guards
by Ghosh in 1987 via a reduction to set cover.

O(log OPT )-approximation pseudopolynomial time algorithm
for point guards and perimeter guards by Deshpande et al.

O(log OPT )-approximation randomized algorithm with fully
polynomial expected running time by Efrat and Har-Peled.

O(log log OPT )-approximation algorithm for perimeter guards
by King and Kirkpatrick in 2011 by using ε-nets.

Conjecture (Ghosh (1987))

There exist polynomial time algorithms with a constant
approximation ratio for vertex guarding polygons without holes.
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Summary of Our Results

We obtain a 6-approximation algorithm, which has running
time O(n2), for vertex guarding polygons that are weakly
visible from an edge and contain no holes. This result settles
Ghosh’s conjecture for a special class of polygons.

We prove that the above approximation ratio can be improved
to 3 for the special class of polygons without holes that are
orthogonal as well as weakly visible from an edge.

Through a reduction from the Set Cover problem, we prove
that, for the special class of polygons containing holes that
are weakly visible from an edge, there cannot exist a
polynomial time algorithm for the vertex guard problem with
an approximation ratio better than ((1− ε)/12) ln n for any
ε > 0, unless NP = P.

We prove that the point guard problem for weak visibility
polygons is NP-hard by showing a reduction from the decision
version of the minimum line cover problem.
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Visibility Polygons
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Figure: Figure showing visibility polygon VP(v2) and weak visibility
polygon VP(v16v17), along with several pockets created by constructed
edges belonging to both. Observe that the boundary of VP(z) consists
of polygonal edges and constructed edges. Note that one point of a
constructed edge is a vertex of P, while the other point lies on bd(P).
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Visibility Polygons

Definition (Visibility Polygon)

The visibility polygon of P from a point z , denoted as VP(z), is
defined to be the set of all points of P that are visible from z . In
other words, VP(z) = {q ∈ P : q is visible from z}.

Definition (Weak Visibility Polygon)

A point q of P is said to be weakly visible from bc if there exists a
point z ∈ bc such that q is visible from z . The set of all such
points of P is said to be the weak visibility polygon of P from bc,
and denoted as VP(bc).
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Weakly Visible Polygons

Definition (Weak Visibility Polygon)

A point q of P is said to be weakly visible from bc if there exists a
point z ∈ bc such that q is visible from z . The set of all such
points of P is said to be the weak visibility polygon of P from bc,
and denoted as VP(bc).

Definition (Weakly Visible Polygon)

If VP(vivi+1) = P for a polygonal edge vivi+1, then P is called a
weakly visible polygon.
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Euclidean Shortest Path Tree

s

z

y

x

ps(y)

ps(x)

ps(z)

Figure: Euclidean shortest path tree rooted at s. The parents of vertices
x , y and z in SPT (s) are marked as ps(x), ps(y) and ps(z) respectively.
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A Naive Algorithm for Guarding All Vertices

u v

A = {}; SA = {}
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A Naive Algorithm for Guarding All Vertices

u v

pv(x)

x

A = {x} ; SA = {u, pv (x)}
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A = {x} ; SA = {u, pv (x)}
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A Naive Algorithm for Guarding All Vertices

pv(y)

u v
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pu(y)
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z

A = {x , y} ; SA = {u, pv (x), pu(y), pv (y)}
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A Naive Algorithm for Guarding All Vertices

pv(y)

u v

pv(x)

pu(y)

pu(z)

x
y

z

A = {x , y , z} ; SA = {u, pv (x), pu(y), pv (y), pu(z), v}
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A Naive Algorithm for Guarding All Vertices

pv(y)

u v

pv(x)

pu(y)

pu(z)

x
y

z

A = {x , y , z} ; SA = {u, pv (x), pu(y), pv (y), pu(z), v}
N.B. - |SA| = 2|A|



Introduction Literature Survey Approximation Algorithms Inapproximability Results Future Roadmap

Performance Guarantee under a Special Condition

pv(y)

u v

pu(y)

x
y

z

N.B. - The vertex y ∈ A is such that every vertex lying on the
clockwise boundary between pu(y) and pv (y) (henceforth denoted

as bdc(pu(y), pv (y)) ) is visible from pu(y) or pv (y).
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Performance Guarantee under a Special Condition

Lemma

If each vertex z ∈ A is such that every vertex of bdc(pu(z), pv (z))
is visible from pu(z) or pv (z), then |SA| ≤ 2|Sopt |.

Proof.

|SA| = 2|A|
|A| ≤ |Sopt | (to be shown next)

Therefore, |SA| = 2|A| ≤ 2|Sopt |
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Location of an Optimal Guard for Vertex z

z

pu(z)

pv(z)

u v

x

Lemma

Any guard x ∈ Sopt that sees z must lie on bdc(pu(z), pv (z)).
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Proof sketch of |A| ≤ |Sopt |
z

pu(z)

pv(z)

u v

x

q

All vertices of bdc(pu(z), pv (z)) are visible from pu(z) or pv (z).

If q is visible from x , then q must be visible from pu(z) or pv (z).
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A Bad Input Polygon for the Naive Algorithm

z1

z2
z3

zk

g

u v

pu2 pu3

pvk

pv3
pv2

pv1

puk

For this input instance, |SA| = 2k, whereas Sopt = {u, g}.
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A Better Strategy for Guarding All Vertices

B = {} ; S = {}

Improved Strategy - Skip some unmarked vertices along the
clockwise scan and choose vertices to include in B more carefully!

Invariant - If z is the current vertex under consideration along the
clockwise scan, then every vertex of bdc(u, z) is visible from some
guard in S ∪ {pu(z), pv (z)}.
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A Better Strategy for Guarding All Vertices

Case 1 - Every vertex lying on bdc(z , pv (z)), except z itself, is
either visible already from guards currently in S or becomes visible
if new guards are placed at pu(z) and pv (z).

z

u v

pv(z)

pu(z)

g2
g1

B = B ∪ {z} ; S = S ∪ {pu(z), pv (z)} ; z = x
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A Better Strategy for Guarding All Vertices

Case 2 - There exist some vertices lying on bdc(z , pv (z)), not
visible already from guards currently in S , such that they do not
become visible even if new guards are placed at pu(z) and pv (z).

z

z′

u v
pv(z)

pu(z)

Let z ′ be the next vertex along the clockwise scan that is not
visible from any guard already in S .
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A Better Strategy for Guarding All Vertices

Case 2a - Not every unmarked vertex of bdc(pu(z ′), z ′) is visible
from pu(z ′) or pv (z ′).

z

z′

u v
pv(z)

pv(z
′)

pu(z
′)

pu(z)

q

r

B = B ∪ {z} ; S = S ∪ {pu(z), pv (z)} ; z = x
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A Better Strategy for Guarding All Vertices

Case 2b - Every unmarked vertex of bdc(pu(z ′), z ′) is visible from
pu(z ′) or pv (z ′).
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B = B ∪ {} ; S = S ∪ {} ; z = z ′
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A Better Strategy for Guarding All Vertices

Case 2b - Every unmarked vertex of bdc(pu(z ′), z ′) is visible from
guards at pu(z ′) or pv (z ′).

z

u v

pv(z)

pu(z)

B = B ∪ {} ; S = S ∪ {} ; z = z ′
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Approximation Ratio of our Algorithm

Lemma

|B| ≤ 2|Sopt |.

Proof.

There exists a bipartite graph G = (B ∪ Sopt ,E ) such that:
(a) the degree of each vertex in B is exactly 1, and,
(b) the degree of each vertex in Sopt is at most 2.

Lemma

|S | ≤ 4|Sopt |.

Proof.

|S | = 2|B|
|B| ≤ 2|Sopt |

Therefore, |S | = 2|B| ≤ 4|Sopt |.
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Insufficiency of Guards in S to Cover all Interior Points

pv(z)

a1 a2

pu(z)
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Figure: All vertices are visible from the guard set S = {pu(z), pv (z)}, but
all points in the triangular interior region x1x2x3 are invisible.

NOTE: One of the sides x1x2 of the triangle x1x2x3 is a part of the
polygonal edge a1a2. In fact, for any such invisible region, one of the
sides must always be part of a polygonal edge.
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Insufficiency of Guards in S to Cover all Interior Points
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Figure: Multiple invisible regions exist within the polygon that are not
visible from the guard set S = {pu(z), pv (z)}.
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Placement of More Guards to Cover all Interior Points
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Figure: Multiple invisible regions exist within the polygon that are not
visible from the guard set S = {pu(z), pv (z)}.

Lemma

It is possible to choose an additional set of guards S ′ to cover all
invisible regions such that |S ′| ≤ 2|Sopt |.
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Approximation Ratio of our Algorithm

Theorem

Our algorithm has an approximation ratio of 6.

Proof.

The final guard set returned by our algorithm is |S ∪ S ′|.

|S ∪ S ′| = |S |+ |S ′|
≤ 4|Sopt |+ 2|Sopt |
= 6|Sopt |
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Running Time of our Algorithm

Theorem

For a weak visibility polygon P having n vertices, the running time
of our algorithm is O(n2).

Proof.

Computation of SPT (u) and SPT (v) takes O(n) time.

Computation of guard set S takes O(n2) time.

Computation of guard set S ′ also takes O(n2) time.

Hence, the overall running time of our algorithm is O(n2).
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Improvement for Orthogonal Weakly Visible Polygons

Lemma

For orthogonal simple polygons weakly visible from an edge,
|S | ≤ 2|Sopt |.
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Figure: All vertices are visible from the guard set S = {pu(z), pv (z)}, but
all points in the triangular interior region x1x2x3 are invisible.
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Improvement for Orthogonal Weakly Visible Polygons
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all points in the triangular interior region x1x2x3 are invisible.

NOTE: One of the sides x1x2 of the triangle x1x2x3 is a part of the
polygonal edge a1a2. In fact, for any such invisible region, one of the
sides must always be part of a polygonal edge.

Lemma

It is possible to choose an additional set of guards S ′ to cover all invisible
regions such that |S ′| ≤ |Sopt |.
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Improvement for Orthogonal Weakly Visible Polygons

Lemma

It is possible to choose an additional set of guards S ′ to cover all
invisible regions such that |S ′| ≤ |Sopt |.

Theorem

For orthogonal simple polygons weakly visible from an edge, our
algorithm has an improved approximation ratio of 3.

Proof.

|S ∪ S ′| ≤ |S |+ |S ′| ≤ 2|Sopt |+ |Sopt | ≤ 3|Sopt |
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A Known Inapproximability Result

Theorem (Eidenbenz, Stamm and Widmayer (1998))

For polygons with holes, there cannot exist a polynomial time
algorithm for AGP with an approximation ratio better than
((1− ε)/12) ln n for any ε > 0, unless NP ⊆ TIME(nO(log log n)).

The above theorem utilizes the following result by Feige -

Theorem (Feige (1998))

Set Cover cannot be approximated to within a factor of (1− ε) ln n
for every ε > 0 unless NP ⊆ TIME(nO(log log n)).
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Our Inapproximability Result

A modification of their reduction leads us to the following result -

Theorem

For weak visibility polygons with holes, there cannot exist a
polynomial time algorithm for the vertex guarding problem with an
approximation ratio better than ((1− ε)/12) ln n for any ε > 0,
unless NP ⊆ TIME(nO(log log n)).
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Our Inapproximability Result

A very recent result by Dinur and Steurer -

Theorem (Dinur and Steurer (2014))

Set Cover cannot be approximated to within a factor of (1− ε) ln n
for every ε > 0 unless NP = P.

With this strengthening of Feige’s quasi-NP-hardness, our
inapproximability result gets improved to -

Theorem

For weak visibility polygons with holes, there cannot exist a
polynomial time algorithm for the vertex guarding problem with an
approximation ratio better than ((1− ε)/12) ln n for any ε > 0,
unless NP = P.
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Hardness for Point Guards in Weakly Visible Polygons

Definition (Minimum Line Cover Problem (MLCP))

Let L = {l1, . . . , ln} be a set of n lines in the plane. Find a set P
of points, such that for each line l ∈ L there is a point in P that
lies on l , and P is as small as possible.

Definition (Decision Version of Line Cover Problem (DLCP))

Given L and an integer k > 0, decide whether there exists a line
cover of size k .

DLCP is known to be NP-hard.
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Hardness for Point Guards in Weakly Visible Polygons

u v

Figure: NP-hardness reduction from DLCP for point guarding polygons
weakly visible from an edge

Theorem

The Point Guard problem is NP-hard for polygons weakly visible
from an edge.
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Theorem

The Point Guard problem is NP-hard for polygons weakly visible
from an edge.
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Roadmap for Future Work

Designing a constant factor approximation algorithm for vertex
guarding all simple polygons, with the intention of proving
Ghosh’s conjecture to be true even in the most general case.

Implement our approximation algorithms using the CGAL
library in C++, and then perform extensive benchmark testing
using our implementation. This should help us accumulate
practical evidence regarding how closely the size of the guard
sets computed by our algorithms approximates the size of the
optimal guard set.
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Roadmap for Future Work

Investigate the problem of vertex guarding in a setting where
the guards are allowed to see points within the polygon
directly as well as via a single diffuse reflection along one of
the edges, which act as mirrors.

Explore natural variations of the problem where certain
restrictions are imposed on the guard sets themselves - for
example, a guard set may be considered to be valid only when
it is, say a hidden set, or perhaps a clique in the visibility
graph of the polygon.

In all these parallel threads of exploration, our objective would
be to come up with an approximation algorithm with a
reasonable approximation ratio, and also to show the
optimality of our algorithm by establishing corresponding
inapproximability bounds.
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Thank You!
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