
Abstract Data Types and Linked Lists

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
1

Abstract Data Types

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
2

Definition

An abstract data type (ADT) is a specification of a set of data and the set of
operations that can be performed on the set of data.
Such a data type is abstract in the sense that it is independent of various concrete
implementations.

• To perform some operation on the ADT, the user just calls a function.
• Details of how the ADT is implemented or how the functions are written is not

required to be known by the user.
• Even if the underlying implementations of the functions are changed, as long

as the function interfaces remain the same, the user can continue using the
ADT in the same way.

Some examples follow.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
3

Example 1: List (a sequence of data items of the same type)

List
implementation

and the
related functions

Insert

Delete

Traverse

Create

We shall later look into a concrete
way of implementing a list

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
4

A list is ordered: There are a first element, a second element, a third element, and so on.

Set

union

size

difference

intersection

delete

insert

Example 2 :: Set

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
5

Note: A set is an
unordered collection.

{1,2,3}, {1,3,2}, {2,1,3},
{2,3,1}, {3,1,2}, {3,2,1}
are all the same set.

void insert (set a, int x);

void delete (set a, int x);

int size (set a);

set union (set a, set b);

set intersection (set a, set b);

set difference (set a, set b);

Example 2 :: Set

Function
prototypes

6

STACK

push

create

pop

isfull

isempty

Example 3 :: Last-In-First-Out STACK

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
7

Visualization of a Stack

In Out

ABC CB

We shall later look into a concrete
way of implementing a stack

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
8

Example 3 :: Last-In-First-Out STACK
Assume:: stack contains integer elements
 void push (stack s, int element);
 /* Insert an element in the stack */
 int pop (stack s);
 /* Remove and return the top element */
 void create (stack s);
 /* Create a new stack */
 int isempty (stack s);
 /* Check if stack is empty */
 int isfull (stack s);
 /* Check if stack is full */

We shall later look into a concrete
way of implementing a stack

9

QUEUE

enqueue

create

dequeue

size

isempty

Example 4 :: First-In-First-Out QUEUE

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
10

Visualization of a Queue

In Out

AC B AB

We shall later look into a concrete
way of implementing a queue

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
11

Example 4 :: First-In-First-Out QUEUE
Assume:: queue contains integer elements
 void enqueue (queue q, int element);
 /* Insert an element in the queue */
 int dequeue (queue q);
 /* Remove an element from the queue */
 queue createq();
 /* Create a new queue */
 int isempty (queue q);
 /* Check if queue is empty */
 int size (queue q);
 /* Return the no. of elements in queue */

We shall later look into a concrete
way of implementing a queue

12

Lists

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
13

List (an ordered sequence of data items of the same type)

List
implementation

and the
related functions

Insert

Delete

Traverse

Create

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
14

Lists
• List is a sequence of data items (usually of the same type).
• Array – one way to represent a list.
• Advantages of arrays:

• Compact: no wastage of space
• Easy and constant time access given index of an element

• Problems with arrays
• Size of an array should be specified beforehand (at least while dynamically allocating

memory).
• Deleting/Inserting an element requires shifting of elements.

Can we have some other implementation of Lists, to address these problems?

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
15

Self-Referential Structures
A structure referencing itself – how?

We use a pointer inside a structure that points to a structure of the same type.

struct list {
 int data;
 struct list *next;
};

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
16

Self-Referential Structures

struct list {

int data ;

struct list *next ;

} ;

The pointer variable next is called a link.
Each structure is linked to a succeeding structure by the next pointer.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
17

Pictorial representation

A structure of type struct list

data next

The pointer variable next contains either
• address of the location in memory of the successor list element
• or the special value NULL defined as 0.

NULL is used to denote the end of the list.

struct list {

int data ;

struct list *next ;

} ;

NULL
18

struct list a, b, c;

a.data = 1; b.data = 2; c.data = 3;
a.next = b.next = c.next = NULL;

1 NULL
data next

a
2 NULL

data next

b
3 NULL

data next

c

19

Chaining these together

a.next = &b;
b.next = &c;

1
data next

a
2

data next

b
3

data next

c
NULL

What are the values of :
• a.next->data
• a.next->next->data

2
3

20

Linked Lists

A singly linked list is a concrete data
structure consisting of a sequence of nodes
Each node stores

• an element
• a link to the next node

next
elem

node

A B C D NULL

head

A head pointer addresses the first element of the list.
Each element points at a successor element.
The last element has a link value NULL.

21

Header file : list.h

typedef char DATA;

// In this example, we store a char in each node; can be int, float, ...

struct list {

DATA d;

struct list * next;

};

typedef struct list ELEMENT;

typedef ELEMENT* LINK;
Our own header file !!

We can place this .h file in the same directory as
the .c source file, and include the header file as
#include “list.h”

22

Dynamic memory allocation: Review
typedef struct {

int hiTemp;
int loTemp;
double precip;

} WeatherData;
int main ()
{

int numdays;

WeatherData *days;

scanf (“%d”, &numdays) ;

days=(WeatherData *)malloc(sizeof(WeatherData)*numdays);

if (days == NULL) printf (“Insufficient memory\n”);

...

 free(days) ;

}

LINK head ;

head = (LINK) malloc (sizeof(ELEMENT));

head->d = ‘n’;

head->next = NULL;

creates a single element list.

n NULLhead

Recall:

typedef struct list ELEMENT;
typedef ELEMENT* LINK;

24

Storage allocation

Storage allocation
head->next = (LINK) malloc (sizeof(ELEMENT));

head->next->d = ‘e’;

head->next->next = NULL;

A second element is added.

nhead e NULL

Recall:

typedef struct list ELEMENT;
typedef ELEMENT* LINK;

25

Storage allocation
head->next->next = (LINK) malloc (sizeof(ELEMENT));

head->next->next->d = ‘w’;

head->next->next->next = NULL;

We have a 3-element list pointed to by head.
The list ends when next is the NULL pointer.
So linked lists are NULL-terminated lists.

nhead e w NULL

Recall:

typedef struct list ELEMENT;
typedef ELEMENT* LINK;

26

Operations on Lists

(i) How to initialize such a self-referential structure (LIST),
(ii) How to insert such a structure into the LIST,
(iii) How to delete elements from it,
(iv) How to search for an element in it,
(v) How to print it,
(vi) How to free the space occupied by the LIST?

Creating a list from scratch

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
28

LINK StrToList (char s[]) {
LINK head = NULL, tail;
int i;

if (s[0] != ‘\0’) {
head = (LINK) malloc (sizeof(ELEMENT));
head->d = s[0];
tail = head;
for (i=1; s[i] != ‘\0’; i++) {
 tail->next = (LINK) malloc(sizeof(ELEMENT));
 tail = tail->next;
 tail->d = s[i];

 }
 tail->next = NULL;
}
return head;

}

Produce a list from a string (each character in a node)

Hhead

tail

H E L L O \0s

Hhead

tail

Hhead

tail

E

Inserting a new element (node) into an existing linked list

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
30

Inserting at the Head 1. Allocate a new node
2. Insert new element
3. Make new node point to old head
4. Update head to point to new node

Xhead Y

Wnew new = (LINK)malloc(sizeof(ELEMENT));

Xhead Y

Wnew new-> next = head;

Xhead Y

Wnew head = new;

31

Inserting at the Tail 1. Allocate a new node
2. Insert new element
3. Have new node point to null
4. Have old last node point to new node
5. Update tail to point to new node

Xhead Y
NULL

tail

Znew

Xhead Y

tail

NULL
Z

new

Xhead Y
NULL

Z

tail

new = malloc(sizeof(ELEMENT));

new->next = NULL;

tail->next = new;

tail = new;

32

NULL

Insertion into a sorted list Create a new node containing the data
Find the correct place in the list, and
Link the new node at this place.

Ahead M

prev

P

Nnewp

Ahead M

prev

P

Nnewp

newp = malloc(sizeof(ELEMENT));

prev -> next = newp;
newp -> next = ptr;

We will ensure that the pointer prev is
always one element behind pointer ptr.
The new node is to be inserted
between prev and ptr

ptr

ptr

Insertion into a sorted list: Implementation

struct list {
int data;
struct list *next;

};
typedef struct list ELEMENT;
typedef ELEMENT *LINK;

LINK create_node(int val)
{
 LINK newp;
 newp = (LINK) malloc (sizeof(ELEMENT));
 newp -> data = val;
 return newp;
}

Note: The Tail pointer is not maintained.

Insertion function

35

LINK insert (int value, LINK ptr)
{

LINK newp, prev, first;
 newp = create_node(value);
 if (ptr == NULL || value <= ptr-> data) { // insert as new first node

newp -> next = ptr;
return newp; // return pointer to first node

} else { // insert in the middle (not first element)
first = ptr; // remember start
prev = ptr;
ptr = ptr-> next;
while (ptr != NULL && value > ptr -> data) {

prev = ptr; ptr = ptr -> next;
}
prev -> next = newp; // link in
newp -> next = ptr; //new node
return first;

}
}

We assume the list is kept sorted in increasing
order of data in the nodes.

The insert function is called as
head = insert(val, head);
where val is the new value to be inserted

Deleting an element (node) from an existing list

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
36

Removing the first node 1. Update head to point to next node
in the list

2. Free the former first node

ptr = head;

head = ptr->next;

free(ptr);

Xhead Y

ptr

X Y

ptr head

X Y

ptr head 37

Removing the Tail (last node)
1. Bring ptr to the second last node
2. Make ptr->next equal to NULL
3. Free tail
4. Make ptr the new tail

Xhead Y

ptr

NULL
Z

tail

ptr->next = NULL;

free(tail);
tail = ptr;

Xhead Y

ptr

NULL
Z

tail

NULL

Xhead Y

ptr

NULL
Z

tail

NULL

38

Deletion from the middle of the list
Item to delete: N

Steps:
• Find the item (to be deleted) in the list
• Bring prev to the previous node
• Link out node to be deleted, and
• Free up this node as free space.

Ahead M

prev

PN

ptr

Ahead M

prev

PN

ptr

prev->next = ptr->next;
free(ptr);

What will happen if we did the following?
free(ptr);
prev->next = ptr->next; 39

// delete the item from a sorted list
LINK delete_item (int val, LINK ptr)
{
 LINK prev, first;

 first = ptr; // remember start

 if (ptr == NULL) return NULL;

 if (val == ptr -> data) { // first node to be deleted
ptr = ptr -> next; // second node
free(first); // free up node
return ptr; // 2nd node is new head

 }

Deletion function

The function is called as
head = delete_item (val, head);
where val is the value to be deleted. Note: The Tail pointer is not maintained.

41

// check rest of list
prev = ptr;
ptr = ptr -> next;

// find node to delete
while ((ptr != NULL) && (val > ptr->data)) {

prev = ptr;
ptr = ptr -> next;

}

if ((ptr == NULL) || (val != ptr->data)) {
// val not found in ascending list
return first; // no change in the original list

 // val found, delete ptr node
prev -> next = ptr -> next;
free(ptr); // free node
return first; // original

}

Deletion function: Continued

Search, print, and other operations

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
42

int Search(LINK head, int element)
{
 LINK temp;

 temp = head;
 while (temp != NULL) {
 if (temp -> data == element) return 1;
 temp = temp -> next;

}
return 0;

}

Searching for a data element in a linked list

Returns 1 if element is found,
0 otherwise

43

void print_list (LINK head)

{

 LINK temp;

 temp = head;

 while(temp != NULL) {
 if (temp->next == NULL) // for the last element

 printf("%d. END OF LIST \n", temp->data);

 else // for other elements

printf("%d -> ", temp->data);

 temp = temp->next;

 }

}

Printing a linked list

We are dealing with the last element as a special case since we
want to print ‘END OF LIST” at the end.

44

.
head

How can you print the elements of a list backwards when the links are in forward direction ?

Printing a linked list backwards

45

void PrintList(LINK head)
{

if (head == NULL) return; /* Empty list: Nothing to print */

if (head -> next == NULL) { /* boundary condition to stop recursion */

 printf ("%d", head -> data);

 return;

}

PrintList(head -> next); /* calling function recursively */

printf(" %d", head -> data); /* Printing current element */

return;

}

Printing a linked list backwards – recursively

46

RECURSIVE APPROACH

int count (LINK head)

{

 if (head == NULL) return 0;

 return 1 + count(head->next);

}

ITERATIVE APPROACH
int count (LINK head)
{

int cnt = 0;
while (head) {

++cnt;
head = head->next;

 }
return cnt;

}

Counting the nodes in a linked list

47

In each iteration temp1 points to the head of
the list and temp2 points at the second node.

void FreeAll (ELEMENT *head)

{

ELEMENT *temp1, *temp2;

temp1 = head;

while (temp1 != NULL) {

temp2 = temp1 -> next;

free(temp1);

temp1 = temp2;

 }

}

Freeing all the nodes of a linked list

What will happen if we free the first node of the list without placing a
pointer on the second?

What will happen if we traverse a freed linked list? 48

Recursive approach

void FreeAll (ELEMENT *head)
{

if (head == NULL) return;

/* Recursively free the
 rest of the list */
FreeAll(head -> next);

/* Free the first node */
free(head);

}

Practice Problems
1. Concatenate two lists (iteratively)
2. Reverse a list
3. Delete the maximum element from a list
4. Rotate the list by k positions counter-clockwise

For each of the above, first create the linked list by reading in integers from the keyboard and
inserting one by one to an empty list

Split a linked list of integers into two sublists as follows. The new lists must use the same nodes of
the original list, that is, do not malloc, but adjust the links only.

5. The two sublists are the first and the second halves of the original list.
6. The first sublist consists of the odd integers, and the second sublist the even integers of the

original list.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
49

