
Structures
CS10003 PROGRAMMING AND DATA STRUCTURES

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
1

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
2

Basic Definitions

What is a Structure?
It is a convenient construct for representing a group of logically related data items.
Particularly relevant when the constituent data items are of different types.
Compare with arrays that are collections of items of the same type.
Better readability even when the constituent data items are of the same type.
• Examples:

• Student name (string), roll number (string), height (float), and marks (int).
• Real part and imaginary part of a complex number (pair of double).

Structures help in organizing composite data in a programmer-friendly way.
The individual structure elements are called members or fields.
This is our first look at a user-defined data type.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
3

Defining a Structure
The composition of a structure may be defined as:

struct 〈name of structure〉 {
 〈data type〉 〈member1 name〉;

 〈data type〉 〈member2 name〉;

 . . .

 〈data type〉 〈memberk name〉;
};

For example:
 struct point {

 float xcoord;

 float ycoord;

 };

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
4

Example
A structure definition:

 struct student {
 char name[30];
 char roll_number[12];
 float height;
 int total_marks;
 };

Defining structure variables:

 struct student a1, a2, a3;

A new data type

• struct is the required C keyword

• Do not forget the ; at the end of the structure defn
• The individual members can be ordinary

variables, pointers, arrays, or other structures
(any data type)

• The member names within a particular structure
must be distinct from one another

• A member name can be the same as the name of a
variable defined outside the structure

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
5

Structure Definition versus Structure Variable Declaration

Structure Definition

struct point {
 float xcoord;
 float ycoord;
};

• No memory is allocated

• Only defining a new data type

6

Structure Variable Declaration

struct point a, b, c;

• Here a, b, c are variables of the type
struct point

• Memory is allocated for a, b, c.

• Variable declaration is allowed after
definition

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Structure Variable Declaration can be clubbed with Definition

Separately

struct point {
 float xcoord;
 float ycoord;
};

struct point a, b, c;

7

Together

struct point {
 float xcoord;
 float ycoord;
} a, b, c;

• The struct definition can be
reused elsewhere

• Like:
 struct point p, q;

Another way

struct {
 float xcoord;
 float ycoord;
} a, b, c;

• In this case we do not have a
name for the struct

• Hence we cannot reuse the
struct definition

Each structure type variable (like a, b, c) has its own copy of each member of that structure type.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
8

Type Definitions

The typedef construct

The typedef construct can be used to give new names to (existing) data types in C.

typedef float kilometers_per_hour; // kilometers_per_hour is a new name for float
 // Note: no variable is allocated space here

kilometers_per_hour speed; // Here speed is a declared variable
speed = 40;

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
9

More complicated examples of typedef
typedef int intarray[50];

intarray A, // A is an array of 50 integers
 B[20], // B is an array of 20 arrays of 50 integers (a 20 x 50 array)

 *C; // C is a pointer to an array of 50 integers

typedef int *intptr;

intptr p, // p is an int pointer
 q[10], // q is an array of 10 int pointers

 *r; // r is a pointer to an int pointer

These declarations are equivalent to:

int A[50], B[20][50], (*C)[50];

int *p, *q[10], **r;

10

Structures and typedef

Without typedef

struct complex
{
 float real;
 float imag;
};

struct complex a, b, c;

Here struct complex is a new
data type.

With typedef

typedef struct {
 float real;
 float imag;
} complex;

complex a, b, c;

Here complex is a new data
type. Since struct is not
followed by a name, this data
type can be addressed only by
the given name complex.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
11

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
12

Accessing members and using structures

Accessing the members of a structure
• The members of a structure are accessed individually, as separate entities.

• A structure member can be accessed by writing
 〈variable-name〉.〈member-name〉
where variable refers to the name of a structure-type variable, and member refers to the
name of a member within the structure.

struct point {
 float xcoord;
 float ycoord;
} a, b;
a.xcoord = 2.5; a.ycoord = 3.2;
b.xcoord = b.ycoord = 0;

Dot operator is used to access members
of a structure, through a structure-type
variable

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
13

Structure initialization

Structure variables may be initialized following similar rules of an array.
The values are provided within braces separated by commas.
An example:
 struct complex a = {1.0,2.0}, b = {-3.0,4.0};

a.real = 1.0;
a.imag = 2.0;
b.real = -3.0;
b.imag = 4.0;

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
14

Example: Addition of two complex numbers
#include <stdio.h>
int main()
{
 struct complex {
 float real;
 float imag;
 } a, b, c;

 scanf ("%f %f", &a.real, &a.imag);
 scanf ("%f %f", &b.real, &b.imag);

 c.real = a.real + b.real;
 c.imag = a.imag + b.imag;
 printf ("a + b = %f + %f j\n", c.real,
c.imag);
}

Structure declaration can be outside main()
as well. This is necessary if a program has
multiple functions using a structure type.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
15

Assignment of Structure Variables

struct class {
 int number;
 char name[20];
 float marks;
 };

int main()
{
 struct class student1 = {111, "Rao", 72.50};
 struct class student2 = {222, "Reddy", 67.00};
 struct class student3;

 student3 = student2;
}

A structure variable can be directly assigned to another variable of the same type.
All the individual members get assigned / copied.

But two structure variables CANNOT be compared for equality or inequality
 if (student1 == student2) . . . this cannot be done

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
16

An interesting observation
int a[5] = {10, 20, 30, 40, 50};
int b[5];

b = a;

 X This is not allowed

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
17

struct list {
 int x[5];
};

struct list a, b;
a.x[0] = 10;
a.x[1] = 20;
a.x[2] = 30;
a.x[3] = 40;
a.x[4] = 50;

b = a;

 This is allowed !!

Structures can be copied directly – even if they contain arrays !!

Assigning all the members of a structure together

struct student {

 char name[50];

 float CGPA;

 int height;

} s;

s = { “Foolan Barik”, 8.79, 176 };
 NOT ALLOWED

s = (struct student){ “Foolan Barik”, 8.79, 176 }; ALLOWED

18

Size of a structure
struct student {
 char name[50];
 float CGPA;
 int height;
} s;

Calculation shows a total space of
50 + 4 + 4 = 58 bytes to store all the
members of struct student.

But sizeof(struct student) or
sizeof(s) may be 60 (the nearest
larger multiple of 4) or even 64 (the
nearest larger multiple of 8).

19

struct student {

 char *name;

 float CGPA;

 int height;

} s;

Assume 64-bit addresses. Then
sizeof(struct student) or sizeof(s)
would be 8 + 4 + 4 = 16.

This will be true irrespective of how
much memory you malloc to
s.name.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
20

Arrays of structures

Arrays of Structures
Once a structure data type has been defined, we can declare an array of structures.

 struct class {
 int number;
 char name[20];
 float marks;
 };
 struct class student[50];

• The individual members can be accessed as:
student[k].marks marks of the kth student
student[k].name name of the kth student
student[k].name[j] jth character in the name of the kth student

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
21

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Example: Store a list of students (name, CGPA), compute
average CGPA
#include <stdio.h>

struct student{
 float cgpa;
 char name[10];
};
int main(
{
 int i; float avg;
 struct student st[5];
 printf("Enter records of 5 students\n");
 for (i=0; i<5; i++) {
 printf ("Enter Cgpa:");
 scanf ("%f",&st[i].cgpa);
 printf ("Enter Name:");
 scanf ("%s”,st[i].name);

}

 // compute average cgpa
 avg = 0.0;
 for (i=0;i<5;i++)
 avg += st[i].cgpa;

 avg = avg / 5.0;
 printf ("Avg cgpa:%f",
avg);

 return 0;
}

22

Note: &st[i].cgpa is to be
interpreted as &(st[i].cgpa),
not as (&st[i]).cgpa (an
address cannot have a member).

A structure may contain other structures

23

typedef struct {
 double x, y;
} point;

typedef struct {
 point A, B, C;
 double area;
} triangle;

triangle T = { {1.0, 2.0}, {-4.0, 5.0}, {3.0, -6.0}, -1 };

T.area = T.A.x * (T.B.y - T.C.y) +
T.B.x * (T.C.y - T.A.y) +
T.C.x * (T.A.y - T.B.y);

T.area /= 2;
if (T.area < 0) T.area = -T.area;
printf(“Area of T = %lf\n”, T.area);

Output

Area of T = 17.000000

Structure containment cannot be recursive

24

It is not allowed that struct a contains struct a members.

It is not allowed that struct a contains struct b, and struct b contains struct a.

It is allowed that a structure contains a pointer to a structure of the same type.

These are called self-referencing pointers.

Such pointers are used extensively to create chains and other types of linked data structures.

typedef struct _student { // A name after struct is
mandatory
 char name[50];
 float CGPA;
 struct _student *next; // A self-referencing pointer
} student;

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
25

Structures and functions

Structures are passed by value to functions
void print (COMPLEX a)
{
 printf ("(%f, %f) ",
 a.real, a.imag);
}

main()
{
 COMPLEX x = {4.0, 5.0},
 y = {10.0, 15.0};

 print(x); print(y); printf("\n");
 swap(x, y);
 print(x); print(y); printf("\n");
}

#include <stdio.h>

typedef struct {
 float real;
 float imag;
} COMPLEX;

void swap (COMPLEX a, COMPLEX b)
{
 COMPLEX tmp;

 tmp = a; a = b; b = tmp;
}

Program output

(4.000000, 5.000000) (10.000000, 15.000000)
(4.000000, 5.000000) (10.000000, 15.000000)

No swapping takes place actually, similar to
what we saw for integers, floats, and so on.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
26

Structures can be returned from functions
main()
{
 COMPLEX x = {4.0, 5.0},
 y = {10.0, 15.0};
 COMPLEX z;

 z = add(x, y);
 printf (" %f, %f \n",
 z.real, z.imag);
}

#include <stdio.h>

typedef struct {
 float real;
 float imag;
} COMPLEX;

COMPLEX add (COMPLEX a, COMPLEX b)
{
 COMPLEX tmp;
 tmp.real = a.real + b.real;
 tmp.imag = a.imag + b.imag;
 return tmp;
}

Program output

14.000000, 20.000000

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
27

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
28

Pointers to Structures

Pointers and Structures

Once ptr points to a structure variable, the members can be accessed as:

 ptr –> roll;
 ptr –> name;
 ptr –> marks;

• The symbol “–>” is called the arrow operator.

29

struct class {
 int roll;
 char name[20];
 float marks;
};

struct class *ptr;

Arrow operator used to access members of a
structure, through a structure-type pointer.

ptr -> member is a shortcut for (*ptr).member.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Use of pointers to structures
#include <stdio.h>
struct complex {
 float real;
 float imag;
};

main()
{
 struct complex a, b, c;
 scanf ("%f %f", &a.real, &a.imag);
 scanf ("%f %f", &b.real, &b.imag);
 add(&a, &b, &c) ;
 printf ("%f %f\n", c.real, c.imag);
}

void add (struct complex *x,
 struct complex *y, struct complex *t)
{
 t->real = x->real + y->real;
 t->imag = x->imag + y->imag;
}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
30

A Warning

When using structure pointers, we should take care of operator precedence.
• Member operator “.” has higher precedence than the dereferencing operator “*”

 ptr –> roll and (*ptr).roll mean the same thing.
 *ptr.roll will lead to error.

• The operator “–>” enjoys the highest priority among operators.
 ++ptr –> roll will increment roll, not ptr.
 (++ptr) –> roll will increment the pointer (to the next structure in an array) and

access roll in the next structure.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
31

Practice problems

1. Extend the complex number program to include functions for addition,
subtraction, multiplication, and division

2. Define a structure for representing a point in two-dimensional Cartesian
coordinate system. Using this structure for a point, do the following.

a. Write a function to return the distance between two given points

b. Write a function to return the middle point of the line segment joining two
given points

c. Write a function to compute the area of a triangle formed by three given
points

d. Write a main function and call the functions from there after reading in
appropriate inputs (the points) from the keyboard

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
32

3. Define a structure STUDENT to store the following data for a student: name (null-
terminated string of length at most 20 chars), roll no. (integer), CGPA (float). Then

a. In main, declare an array of 100 STUDENT structures. Read an integer n and
then read in the details of n students in this array

b. Write a function to search the array for a student by name. Returns the
structure for the student if found. If not found, return a special structure with
the name field set to empty string (just a ‘\0’)

c. Write a function to search the array for a student by roll no.

d. Write a function to print the details of all students with CGPA > x for a given x

e. Call the functions from the main after reading in name/roll no/CGPA to search

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
33

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
34

Unions

Unions
• In a struct, space is allocated as the sum of the space required by its members.
• In a union, space is allocated as the union of the space required by its members.

• We use union when we want only one of the members, but don’t know which one.
Suppose that we wish to store the height of a student in one of the following formats.
• In the FPS system, it is a string like 5′10′′ (let us use a character array of size 8).
• In the CGS system, it is an integer like 178 (4 bytes are needed).
• In the MKS system, it is a floating-point number like 1.78 (4 bytes are needed).
• If we use a structure with all these members, we need 8 + 4 + 4 = 16 bytes of space.
• A union will use only max(8, 4, 4) = 8 bytes of space.
• You need to store an additional flag to tell which representation it is.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
35

Union example

typedef struct {

 char name[50];

 float CGPA;

 char htype;

 union {

 char fps[8];

 int cgs;

 float mks;

 } height;

} student;

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
36

int main ()
{
 student S;
 printf("size of the union is %lu\n", sizeof(S.height));
 printf("Enter type of height (f/c/m): ");
 scanf("%c", &S.htype);
 printf("Enter height: ");
 if (S.htype == 'f') scanf("%s", S.height.fps);
 else if (S.htype == 'c') scanf("%d", &S.height.cgs);
 else if (S.htype == 'm') scanf("%f", &S.height.mks);
 switch (S.htype) {
 case 'f' : printf("%s\n", S.height.fps); break;
 case 'c' : printf("%d\n", S.height.cgs); break;
 case 'm' : printf("%.2f\n", S.height.mks); break;
 default: printf("Unknown height type\n");
 }
}

Output
size of the union is 8
Enter type of height (f/c/m): f
Enter height: 6'5''
6'5''

