INDIAN INSTITUTE OF TECHNOLOGY

KHARAGPUR
Stamp / Signature of the Invigilator
EXAMINATION: Mid Semester (Autumn 2023-24) Answer all (Duration: 2 hours)
Roll Number Section Name
SubjectNumber | C | S |1 | 0| 0| 0| 1| Subject Name Programming and Data Structures
Department / Center of the Student Additional sheets

Important Instructions and Guidelines for Students

1. You must occupy your seat as per the Examination Schedule/Sitting Plan.
2. Do not keep mobile phones or any similar electronic gadgets with you even in the switched off mode.

3. Loose papers, class notes, books or any such materials must not be in your possession, even if they are irrelevant to the
subject you are taking examination.

4. Data book, codes, graph papers, relevant standard tables/charts or any other materials are allowed only when instructed
by the paper-setter.

5. Use of instrument box, pencil box and non-programmable calculator is allowed during the examination. However,
exchange of these items or any other papers (including question papers) is not permitted.

6. Write on the answer-script and do not tear off any page. For rough work, use last page(s) of the answer script and
white spaces around the questions. Report to the invigilator if the answer script has torn or distorted page(s).

7. ltis your responsibility to ensure that you have signed the Attendance Sheet. Keep your Admit Card/Identity Card on the
desk for checking by the invigilator.

8. You may leave the examination hall for wash room or for drinking water for a very short period. Record your absence
from the Examination Hall in the register provided. Smoking and the consumption of any kind of beverages are strictly
prohibited inside the Examination Hall.

9. Do not leave the Examination Hall without submitting your answer script to the invigilator. In any case, you are not
allowed to take away the answer script with you. After the completion of the examination, do not leave the seat until
the invigilators collect all the answer scripts.

10. During the examination, either inside or outside the Examination Hall, gathering information from any kind of sources or
exchanging information with others or any such attempt will be treated as ‘unfair means’. Do not adopt unfair means and
do not indulge in unseemly behavior.

Violation of any of the above instructions may lead to severe punishment.

Signature of the Student

To be filled in by the examiner

Question Number 1 2 3 4 5 6 7 8 9 10-14 Total

Marks Obtained

Marks obtained (in words) Signature of the Examiner Signature of the Scrutineer

The end of this question paper is marked by — END —.
Write the answers only in the designated boxes or above the blank lines.

1. What will be printed by the following program? [5]
#include <stdio.h>

int main ()
{
char ¢l = "A", ¢c2 = '2'; /* ASCII value of 'A’ is 65 =/
char ¢c3 = ¢c2 - cl + 45;
int 1 = (cl < ¢3) && (c3 > "\0");
int 3 = (c3 !'= c2) || ((c3 = c2) > cl);
int k = (1 !'= 3j) + (¢c3 > 100) - (c3 < 80);
printf("c3 = %c ¢c3 = %d i = %d j = %d k = %d", c3, c3, i, J, k);

return 0;

c3 =Fc3=701=13=1%k-=-1

2. Consider the following code. [1+2+1+1=5]

#include <stdio.h>

int main () {

int i, sum = 0, count=0;

printf ("Numbers: ");

for(i = 1; !'((i+1)%5==0 || (i+7)%6 == 1 ||
(1-27)%7==2); 1 = 1% (1+3)/2, count++) {

printf("sd ", i%17);
sum += 1/12345678;

}
printf ("\n");

printf ("Count = %d\n", count);
printf ("Sum = %d\n", sum);

return 0;

Does the loop terminate (yes/no)? Yes

What will be the output of the above code?

Numbers: 1 2 5 3 9 3 9
Count = 7

Sum = 29

3. Given an array of n integers and an integer k, the following code determines whether there are two
elements in the array such that their difference is k. If found, it prints their indices. Fill up the following

code so that it produces the correct result. Assume that 2 < n < 100.

#include <stdio.h>

int main () {
int a[100], n, k, i, 7,

printf ("Enter n & k: "); scanf ("%d%d",
printf ("Enter the elements: ");
for (i=0; i<n; 1i++)

scanf ("%d", &alil);
for (i=1; i<n && ! (found); i++)

for (j=0; j<i && ! (found); j++)

1f((ali]-aljl==k) |l (aljl-alil==
found = 1;

if (found)

printf ("Found indices:
return 0;

}

found = 0;

%d, sd.\n",

[5]

&k); // 1 mark

) // 2 marks

__); // 2 marks

4. A and B are two points on the plane whose coordinates are integers and given as input. We have to
find the number of points whose coordinates are integers and which lie on the straight line segment
AB. For example, if A = (—2,3) and B = (2,9), then the answer is 3 because the points with integer
coordinates that lie on AB are (—2,3),(0,6),(2,9) and none else. Fill up the following code so that it

produces the correct result.
#include <stdio.h>
int main () {

int x1, vy1, x2, y2, a, b,
printf ("Enter coordinates

scanf ("___ %d%d%d%d ",
a = (x1 < x2) ? (x2 - x1)
b = (yl <y2) 2?2 (y2 - yl)
while(__b !'=0____){ // 2
c =D ; // 2 marks

b = a%b;
a =c ; // 2 marks

printf ("Number of points
return O;

Cs

of A and B: ");

&x1, &yl, &x2,
(x1 - x2)
(vl - y2)

marks

= %d.\n", atl);

&y2);

[10]

// 2 marks

; // 1 mark

___; // 1 mark

5. The following program populates the first n (1 < n < 100) prime numbers in an array, using the facts
that (i) 2 is the smallest prime and (ii) a number is prime if and only if it is not divisible by any prime
less than its square root. Every newly discovered prime, obtained this way, is put in the array. Fill in
the blanks. [10]

#include <stdio.h>
#include <math.h>

int main () {
int n, i=2, tag, j=0, number, _PRIME[100], limit;

_PRIME[]] = 2 ; // 1 mark
printf ("How many primes? ");
scanf ("%d", &n);

for (number = PRIME[j]+1 ; ; number++) { // 1 mark
limit = floor (sgrt (number)) ; // 2 marks
tag = 0;

4
for (i=0; _PRIME[i] <= limit; i++) {

if (number % PRIME [1i] == 0) { // 2 marks
tag = 1;
break;
}
}
if (!¢ tag)) { // 1 mark
J++ ; _PRIME[Jj] = number;} // 1 mark

if (3 > n-1) break; // 1 mark
}
printf ("The first %d primes: ", n);
for (1i=0; i<j; i++)
printf("%d ", _PRIMEI[i]);
return 0;

Write the output when n = 8. // 2 marks

The first 8 primes: 2 3 5 7 11 13 17 19

6. Fill in the one blank line given and write the output (five lines) of the program when input =2. [5]

#include <stdio.h>
#include <math.h>

float myfunc(float); // Function declaration: 2 marks

int main () {

float r, area, a = 10.0;
scanf ("%$f", &r);

printf ("A = $f\n", a

area cArea (cArea(r)

a

\

4

)
);
)

printf ("A = $f\n",
printf ("Area is %f \n", area);

return 0;

/+ Function to compute the area of a circle =/
float cArea(float r) {

printf("r = $f\n", r);

return 3.14159 x r x r;

A = 10.000000

r = 2.000000
r = 12.566360
A = 10.000000

Area is 496.099213

7. The school-book multiplication algorithm for two non-negative decimal integers a and b, each
possibly having multiple digits, can be written as:

axb=a-by-10°+a-by- 10" +---+a-b,_;-10" 1,

where the number b is represented in terms of its n decimal digits as b,,_1 - - - b by.
For example, if a = 413 and b = 7685, then

axb=413-5-14+413-8-10+413-6-1004413-7-1000.

Fill in the blanks of the following program to compute and print the product of two non-negative
integers following the above algorithm. The two non-negative integers are input by the user. [6]

// Each blank carries 1 mark
#include <stdio.h>
int main () {

// declare non-negative integer variables

unsigned a, b, weight=1, product;

printf ("\nEnter the values of a and b

scanf ("%$u%u", &a, &b);

product = 0; // initial value

// Perform the iterative multiplication

while (b > 0) {

product += a » (b % 10) *» weight;

b =Db / 10; // update b

weight = weight * 10; // update place value

} // end while

printf ("\nProduct = %u\n", product);

return O;

}

8. Fill in the blanks to calculate the value of the power-series e = 14+ x+ %2, + “g—? + ---. Once the user
enters the value of x, the calculations continue till the difference (returned by fabs ()) between the
calculated value and the value returned by exp () is not less than 10~*. The functions fabs () and

exp () are used from the math library.

// Each blank carries 1 mark
#include <stdio.h>

#include <math.h> // for exp() and fabs{()
int main () {
double x, term, val;
int n;
printf ("\nEnter the value of x: ");
scanf ("$1£f", &x);
val = 1.0; // value of the power-series
term = 1.0; // value of a single term of the power-series
n=1; // iteration number
while (fabs(val - exp(x)) >= le-4) {
term = term * x / n;
val += term; n = n + 1;

}
printf ("\nexp (%1f): $1f\n", x,
return 0;

val);

(non—-negative) :

// update product

// Print the product

9.

10.

Write the output of the following code.

#include <stdio.h>
int server = 1, taskid =1
void serve (int num_tasks)
int taskid = 1;
for (int i = 0; i < num_tasks; i++) {
printf ("Task %d - Server %d \n", taskid,
server++; taskid++;

{

if (server > 3) server = 1;

int main () {
serve (2);
serve (3);

server) ;

[3+2]

Task 1 - Server 1
Task 2 - Server 2
Task 1 - Server 3
Task 2 - Server 1
Task 3 - Server 2

Suppose the serve () function in the above code prints the tasks executed on different servers.
Suggest a change in only one line of the code so that the serve () function prints the total number
of tasks executed till that time. Write that line of code before the change and the same after the change.

Before change: int taskid = 1;

After change: // int taskid = 1;

Consider the following function which calculates the mode of a given integer array (a []), passed as
an argument along with the size (n). [Mode is an element that appears the maximum number of times.

Ties are broken arbitrarily.] Fill in the blanks to complete the code.

// Each blank carries 1 mark

int mode (int al[],int n) {
int maxValue, maxCount, i, Jj,count;

; // initialization of maxCount

[5]

for (i = 0; i < n; ++1i) {

for (3 = 0; 7 < n; ++3) {

if |)
++count;

}

if (count > maxCount) {

}

return maxValue;

Blank 1: maxCount=0;
Blank 2: count = 0;

Blank 3: a[j] == ali]

Blank 4: maxCount = count;
Blank 5: maxValue = a[i];

11. Determine the single-precision floating-point representation from the given normalized number
—1.111100011001 x 2%°. [2]

Sign bit = 1 (for -ve numbers) (1 bit)

Exponent = E - 127 = 56 -> E = 183 -> 10110111 (8 bits)
Mantissa 11110001100100000000000 (23 bits)

Single-precision floating-point representation = 32 bits

sign bit|Exponent |Mantissa = 11011011111110001100100000000000

12. Print the output of the following program. [3]

finclude <stdio.h>
int main () {
int a=5, b=10, c=-6, d;
d=a-/2.0 ==2.5 && b/5.0 != 0.0 && c¢/-3.0 && ++a/2.0 == 2;
a = bt+2 == -2+c != d+a+c;
printf("d = %d, a = %d\n", d, a);
return 0;

13. Print the output of the following program for the input x = 78.467523. [3]

#include <stdio.h>
int main () {
double x, vy;
long int aj;
scanf ("$1f", &x);
y = x — (int)x;
a = (int)x;
if (y >= 0.5) ++a;
printf ("x = %0.21f, y = %0.21f, a = %1d", x, y, a);
return 0;

x = 78.47, y = 0.47, a =178

14. Print the output of the following program. [2]

#include <stdio.h>

int main() {
int § = (printf("TEN = "), 10);
printf ("sd", 3J);
return 0;

TEN = 10

— END —

Rough work

