
1

Functions

2

Function

 A program segment that carries out some specific,
well-defined task

 Example
A function to add two numbers
A function to find the largest of n numbers

 A function will carry out its intended task whenever it
is called or invoked
Can be called multiple times

3

 A function is a block of statements that performs a
specific task.

 Say you are writing a C program and you need to
perform a same task in that program more than once.
In such case you have two options:
a) Use the same set of statements every time you want
to perform the task
b) Write a function to perform that task, and just call it
every time you need to perform that task.

4

 Every C program consists of one or more functions
 One of these functions must be called main
 Execution of the program always begins by carrying

out the instructions in main
 Functions call other functions as instructions

5

Function Control Flow

void print_banner ()
{

printf(“************\n”);
}

int main ()
{

. . .
print_banner ();
. . .
print_banner ();

}

int main ()
{

print_banner ();

print_banner ();

}

print_banner {

}

print_banner {

}

6

 Calling function (caller) may pass information to the
called function (callee) as parameters/arguments
 For example, the numbers to add

 The callee may return a single value to the caller
 Some functions may not return anything

7

int main()
{
float cent, fahr;
scanf(“%f”,¢);
fahr = cent2fahr(cent);
printf(“%fC = %fF\n”,
cent, fahr);

return 0;
}

float cent2fahr(float data)
{
float result;
result = data*9/5 + 32;
return result;

}

Calling/Invoking the cent2fahr function

Calling function (Caller)
Called function (Callee) Parameter

Returning valueParameter passed

8

32
Input is 32.000000
data = 32.000000
result = 89.599998
32.000000C = 89.599998F

How it runs
float cent2fahr(float data)
{
float result;
printf(“data = %f\n”, data);
result = data*9/5 + 32;
printf(“result = %f\n”, result);
return result;

}

int main()
{ float cent, fahr;
scanf(“%f”,¢);
printf(“Input is %f\n”, cent);
fahr = cent2fahr(cent);
printf(“%fC = %fF\n”, cent, fahr);
return 0;

}

Outputs

-45.6
Input is -45.599998
data = -45.599998
result = -50.079998
-45.599998C = -50.079998F

9

32
Input is 32.000000
data = 32.000000
32.000000C = 89.599998F

What will be the output?
float cent2fahr(float data)
{
float result;
printf(“data = %f\n”, data);
result = data*9/5 + 32;
return result;
printf(“result = %f\n”, result);

}
int main()
{ float cent, fahr;
scanf(“%f”,¢);
printf(“Input is %f\n”, cent);
fahr = cent2fahr(cent);
printf(“%fC = %fF\n”, cent, fahr);
return 0;

}

Outputs

-45.6
Input is -45.599998
data = -45.599998
-45.599998C = -50.079998F

10

int factorial (int m)
{

int i, temp=1;
for (i=1; i<=m; i++)

temp = temp * i;
return (temp);

}

int main()
{

int n;
for (n=1; n<=5; n++)

printf (“%d! = %d \n”,
n, factorial (n));

return 0;
}

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120

Another Example

Output

11

Why Functions?
 Allows one to develop a program in a modular

fashion
 Divide-and-conquer approach
 Construct a program from small pieces or components

 Use existing functions as building blocks for new
programs - reusability of the code

 Abstraction: hide internal details (library functions)
 To improve the readability of code.
 Debugging of the code would be easier
 Reduces the size of the code, duplicate set of

statements are replaced by function calls.

12

Defining a Function

 A function definition has two parts:
 The first line, called header
 The body of the function

return-value-type function-name (parameter-list)
{

declarations and statements
}

13

 The first line contains the return-value-type, the
function name, and optionally a set of comma-
separated arguments enclosed in parentheses
 Each argument has an associated type

declaration
 The arguments are called formal arguments or

formal parameters
 The body of the function is actually a block of

statement that defines the action to be taken by the
function

14

int gcd (int A, int B)
{

int temp;
while ((B % A) != 0) {

temp = B % A;
B = A;
A = temp;

}
return (A);

}

BODY

Return-value type Formal parameters

Value returned

15

Return value
 A function can return a value

 Using return statement
 Like all values in C, a function return value has a type
 The return value can be assigned to a variable in the

caller

int x, y, z;
scanf(“%d%d”, &x, &y);
z = gcd(x,y);
printf(“GCD of %d and %d is %d\n”, x, y, z);

16

Function Not Returning Any Value

 Example: A function which prints if a number is
divisible by 7 or not
void div7 (int n)
{

if ((n % 7) == 0)
printf (“%d is divisible by 7”, n);

else
printf (“%d is not divisible by 7”, n);

return;
}

Optional

Return type is void

17

return statement
 In a value-returning function (result type is not void), return

does two distinct things
 specify the value returned by the execution of the

function
 terminate that execution of the callee and transfer control

back to the caller
 A function can only return one value

 The value can be any expression matching the return
type

 but it might contain more than one return statement.
 In a void function

 return is optional at the end of the function body.
 return may also be used to terminate execution of the

function explicitly.
 No return value should appear following return.

18

void compute_and_print_itax ()
{

float income;
scanf (“%f”, &income);
if (income < 50000) {

printf (“Income tax = Nil\n”);
return;

}
if (income < 60000) {

printf (“Income tax = %f\n”, 0.1*(income-50000));
return;

}
if (income < 150000) {

printf (“Income tax = %f\n”, 0.2*(income-60000)+1000);
return ;

}
printf (“Income tax = %f\n”, 0.3*(income-150000)+19000);

}

Terminate function
execution before
reaching the end

19

 Called by specifying the function name and parameters
in an instruction in the calling function

 When a function is called from some other function, the
corresponding arguments in the function call are called
actual arguments or actual parameters
 The function call must include a matching actual parameter

for each formal parameter
 Position of an actual parameters in the parameter list in the

call must match the position of the corresponding formal
parameter in the function definition

 The formal and actual arguments must match in their data
types

Calling a function

20

Functions

(Contd…)

21

Example

int main ()
{

double x, y, z;
char op;
. . .
z = operate (x, y, op);

. . .
}

Actual parameters

double operate (double x, double y, char op)
{

switch (op) {
case ‘+’ : return x+y+0.5 ;
case ‘~’ : if (x>y)

return x-y + 0.5;
return y-x+0.5;

case ‘x’ : return x*y + 0.5;
default : return –1;

}
}

Formal parameters

22

 When the function is executed, the value of the actual
parameter is copied to the formal parameter

int main ()
{ . . .

double circum;
. . .
area1 = area(circum/2.0);
. . .

}

double area (double r)
{

return (3.14*r*r);
}

parameter passing

23

/* Compute the GCD of four numbers */
int main()
{

int n1, n2, n3, n4, result;
scanf (“%d %d %d %d”, &n1, &n2, &n3, &n4);
result = gcd (gcd (n1, n2), gcd (n3, n4));
printf (“The GCD of %d, %d, %d and %d is %d \n”,
n1, n2, n3, n4, result);
return 0;

}

Another Example

func-gcd.c

24

Another Example
int main()
{
int numb, flag, j=3;
scanf(“%d”,&numb);
while (j <=numb)
{

flag = prime(j);
if (flag==0)

printf(“%d is prime\n”,j);
j++;

}
return 0;

}

int prime(int x)
{

int i, test;
i=2, test =0;
while ((i <= sqrt(x)) && (test
==0))

{
if (x%i==0) test = 1;
i++;
}

return test;
}

25

Tracking the flow of control

int main()
{
int numb, flag, j=3;
scanf(“%d”,&numb);
printf(“numb = %d \n”,numb);
while (j <= numb)
{ printf(“Main, j = %d\n”,j);

flag = prime(j);
printf(“Main, flag = %d\n”,flag);
if (flag == 0)

printf(“%d is prime\n”,j);
j++;

}
return 0;

}

int prime(int x)
{

int i, test;
i = 2; test = 0;
printf(“In function, x = %d \n”,x);
while ((i <= sqrt(x)) && (test == 0))
{

if (x%i == 0) test = 1;
i++;

}
printf(“Returning, test = %d \n”,test);
return test;

}

26

The output

5
numb = 5
Main, j = 3
In function, x = 3
Returning, test = 0
Main, flag = 0
3 is prime
Main, j = 4
In function, x = 4

Returning, test = 1
Main, flag = 1
Main, j = 5
In function, x = 5
Returning, test = 0
Main, flag = 0
5 is prime

27

Points to note

 The identifiers used as formal parameters are “local”.
Not recognized outside the function
Names of formal and actual arguments may differ

 A value-returning function is called by including it in
an expression
A function with return type T (≠ void) can be used

anywhere an expression of type T can be used

28

 Returning control back to the caller
 If nothing returned

 return;
 or, until reaches the last right brace ending the

function body
 If something returned

 return expression;

29

Function Prototypes
 Usually, a function is defined before it is called
main() is the last function in the program written
Easy for the compiler to identify function definitions

in a single scan through the file

 However, many programmers prefer a top-down
approach, where the functions are written after main()
Must be some way to tell the compiler
Function prototypes are used for this purpose

 Only needed if function definition comes after
use

30

Function prototypes are usually written at the
beginning of a program, ahead of any functions
(including main())

Prototypes can specify parameter names or just
types (more common)

Examples:
int gcd (int , int);
void div7 (int number);

 Note the semicolon at the end of the line.
 The parameter name, if specifed, can be

anything; but it is a good practice to use the
same names as in the function definition

Example:
#include <stdio.h>
int sum(int, int);
int main()
{

int x, y;
scanf(“%d%d”, &x, &y);
printf(“Sum = %d\n”, sum(x, y));

}
int sum (int a, int b)
{

return(a + b);
}

31

Example:
#include <stdio.h>

int sum (int a, int b)
{

return(a + b);
}

int main()
{

int x, y;
scanf(“%d%d”, &x, &y);
printf(“Sum = %d\n”, sum(x, y));

} 32

33

Some more points
 A function cannot be defined within another

function
 All function definitions must be disjoint

 Nested function calls are allowed
 A calls B, B calls C, C calls D, etc.
 The function called last will be the first to return

 A function can also call itself, either directly or in a
cycle
 A calls B, B calls C, C calls back A.
 Called recursive call or recursion

34

Example: main calls ncr, ncr calls fact

int ncr (int n, int r);
int fact (int n);

int main()
{

int i, m, n, sum=0;
scanf (“%d %d”, &m, &n);
for (i=1; i<=m; i+=2)

sum = sum + ncr (n, i);
printf (“Result: %d \n”,
sum);
return 0;

}

int ncr (int n, int r)
{

return (fact(n) / fact(r) /
fact(n-r));

}

int fact (int n)
{

int i, temp=1;
for (i=1; i<=n; i++)

temp *= i;
return (temp);

}

35

Local variables

 A function can define its own local variables
 The locals have meaning only within the function
Each execution of the function uses a new set of

locals
 Local variables cease to exist when the function

returns
 Parameters are also local

36

Local variables

/* Find the area of a circle with diameter d */
double circle_area (double d)
{

double radius, area;
radius = d/2.0;
area = 3.14*radius*radius;
return (area);

}

parameter
local
variables

37

int ncr(int x,int y)
{

int p,q,r;
p=fact(x);
q=fact (y);
r = fact(x-y);
return p/(q*r);

}

int fact(int x)
{ int i,fact=1;
for(i=2; i<=x; ++i) fact=fact*i;
return fact;

}

int main()
{

int n, r;
scanf(“%d%d”,&n,&r);
printf(“n=%d, r=%d,
nCr=%d\n”,n, r, ncr(n,r));
return 0;

}
The variable x in function fact and
x in function ncr are different.

The values computed from the
arguments at the point of call are
copied on to the corresponding
parameters of the called function
before it starts execution.

Revisiting nCr

38

Scope of a variable
 Part of the program from which the value of the variable

can be used (seen)
 Scope of a variable - Within the block in which the variable

is defined
 Block = group of statements enclosed within { }

 Local variable – scope is usually the function in which it is
defined
 So two local variables of two functions can have the

same name, but they are different variables
 Global variables – declared outside all functions (even

main)
 scope is entire program by default, but can be hidden in

a block if local variable of same name defined

39

Variable
Scope

Output:

A = 3

A = 2

A = 1

#include <stdio.h>
int A = 1;
int main()
{

myProc();
printf ("A = %d\n", A);

}

void myProc()
{ int A = 2;

if (A==2)
{
int A = 3;
printf ("A = %d\n", A);

}
printf ("A = %d\n", A);

}

Global variable

Hides the global A

40

Functions

(Contd…)

41

Parameter Passing: by Value and
by Reference
 Used when invoking functions
 Call by value
Passes the value of the argument to the function
Execution of the function does not change the

actual parameters
 All changes to a parameter done inside the function are

done on a copy of the actual parameter
 The copy is removed when the function returns to the

caller
 The value of the actual parameter in the caller is not

affected
Avoids accidental changes

42

 Call by reference
Passes the address to the original argument.
Execution of the function may affect the original
Not directly supported in C except for arrays

43

Parameter passing & return: 1
int main()
{

int a=10, b;
printf (“Initially a = %d\n”, a);
b = change (a);
printf (“a = %d, b = %d\n”, a, b);
return 0;

}
int change (int x)
{

printf (“Before x = %d\n”,x);
x = x / 2;

printf (“After x = %d\n”, x);
return (x);

}

Initially a = 10

Before x = 10

After x = 5

a = 10, b = 5

Output

44

Parameter passing & return: 2
int main()
{

int x=10, b;
printf (“M: Initially x = %d\n”, x);
b = change (x);
printf (“M: x = %d, b = %d\n”, x, b);
return 0;

}
int change (int x)
{

printf (“F: Before x = %d\n”,x);
x = x / 2;

printf (“F: After x = %d\n”, x);
return (x);

}

M: Initially x = 10

F: Before x = 10

F: After x = 5

M: x = 10, b = 5

Output

45

Parameter passing & return: 3
int main()
{

int x=10, b;
printf (“M: Initially x = %d\n”, x);
x = change (x); b = x;
printf (“M: x = %d, b = %d\n”, x, x);
return 0;

}
int change (int x)
{

printf (“F: Before x = %d\n”,x);
x = x / 2;

printf (“F: After x = %d\n”, x);
return (x);

}

M: Initially x = 10

F: Before x = 10

F: After x = 5

M: x = 5, b = 5

Output

46

Parameter passing & return: 4
int main()
{

int x=10, y=5;
printf (“M1: x = %d, y = %d\n”, x, y);
interchange (x, y);
printf (“M2: x = %d, y = %d\n”, x, y);
return 0;

}

void interchange (int x, int y)
{ int temp;
printf (“F1: x = %d, y = %d\n”, x, y);
temp= x; x = y; y = temp;
printf (“F2: x = %d, y = %d\n”, x, y);

}

M1: x = 10, y = 5

F1: x = 10, y = 5

F2: x = 5, y = 10

M2: x = 10, y = 5

How do we write an
interchange function?

(will see later)

Output

47

Passing Arrays to Function

 Array element can be passed to functions as ordinary
arguments

 IsFactor (x[i], x[0])
 sin (x[5])

48

Passing Entire Array to a Function
 An array name can be used as an argument to a

function
Permits the entire array to be passed to the function
The way it is passed differs from that for ordinary

variables
 Rules:
The array name must appear by itself as argument,

without brackets or subscripts
The corresponding formal argument is written in the

same manner
 Declared by writing the array name with a pair of

empty brackets

49

Whole Array as Parameters
const int ASIZE = 5;
float average (int B[])
{

int i, total=0;
for (i=0; i<ASIZE; i++)

total = total + B[i];
return ((float) total / (float) ASIZE);

}

int main () {
int x[ASIZE] ; float x_avg;
x = {10, 20, 30, 40, 50};
x_avg = average (x) ;
return 0;

}

Only Array Name/address passed.
[] mentioned to indicate that

is an array.

Called only with actual array name

50

Contd.
int main()
{

int n;
float list[100], avg;
:
avg = average (n, list);
:

}

float average (int a, float x[])
{

:
sum = sum + x[i];

}

We don’t need to
write the array size.
It works with arrays
of any size.

51

Arrays used as Output Parameters
void VectorSum (int a[], int b[], int vsum[], int length) {

int i;
for (i=0; i<length; i=i+1)

vsum[i] = a[i] + b[i] ;
}
void PrintVector (int a[], int length) {

int i;
for (i=0; i<length; i++) printf (“%d “, a[i]);

}

int main () {
int x[3] = {1,2,3}, y[3] = {4,5,6}, z[3];
VectorSum (x, y, z, 3) ;
PrintVector (z, 3) ;
return 0;

}

52

The Actual Mechanism
 When an array is passed to a function, the values

of the array elements are not passed to the
function
The array name is interpreted as the address of

the first array element
The formal argument therefore becomes a

pointer to the first array element
When an array element is accessed inside the

function, the address is calculated using the
formula stated before

Changes made inside the function are thus also
reflected in the calling program

53

Contd.

 Passing parameters in this way is called
call-by-reference

 Normally parameters are passed in C using
call-by-value

 Basically what it means?
 If a function changes the values of array elements,

then these changes will be made to the original
array that is passed to the function

This does not apply when an individual element is
passed on as argument

54

Library Functions

55

Library Functions

 Set of functions already written for you, and bundled
in a “library”

 Example: printf, scanf, getchar,
 C library provides a large number of functions for

many things
 Already seen math library functions earlier
 Will look at string library functions

56

String Library Functions
 String library functions
 perform common operations on null terminated

strings
Must include a special header file

#include <string.h>
 Example
 printf ("%f", strlen(C));

 C is a null-terminated string
 Calls function strlen, which returns the

number of characters in C (not counting the
‘\0’ character)

Common string library functions
 strlen – returns the length of a string
 strcmp – compares two strings (lexicographic)

 Returns 0 if the two strings are equal, < 0 if first string is
less than the second string, > 0 if the first string is greater
than the second string

 Commonly used for sorting strings
 strcat – concatenates two strings
 strcpy – copy one string to another

 we will need some basic knowledge of pointers to
understand how to use strcat and strcpy

 Many others, but these are the ones you will know in this
course

57

Example#include <stdio.h>
#include <string.h>

int main()
{

char A[20], B[20];
int n, m, val;
scanf(“%s%s”, A, B);
n = strlen(A);
m = strlen(B);
printf(“The lengths of the strings are %d and %d\n”, n, m);
val = strcmp(A, B);
if (val == 0)

printf(“The strings are the same\n”);
else if (val < 0)

printf(“%s is smaller than %s\n”, A, B);
else

printf(“%s is greater than %s\n”, A, B);
}

58

59

program program
The lengths of the strings are 7 and 7
The strings are the same

Outputs

arobinda abhijit
The lengths of the strings are 8 and 7
arobinda is larger than abhijit

iit-kgp iit-mandi
The lengths of the strings are 7 and 9
iit-kgp is smaller than iit-mandi

arobinda Arobinda
The lengths of the strings are 8 and 8
arobinda is larger than Arobinda

60

Practice Problems
 No separate problems needed. Look at everything

that you did so far, such as finding sum, finding
average, counting something, checking if something
is true or false (“ Is there an element in array A such
that….) etc. in which the final answer is one thing only
(like sum, count, 0 or 1,…). Then for each of them,
rather than doing it inside main (as you have done so
far), write it as a function with appropriate
parameters, and call from main() to find and print.
 Normally, read and print everything from main(). Do

not read or print anything inside the function. This will
give you better practice. However, you can write
simple functions for printing an array.

