
CS11001/CS11002	
Programming	and	Data	Structures	

(PDS)	(Theory:	3-0-0)	

Teacher:	Sourangshu	Bha@acharya	
sourangshu@gmail.com	

h@p://cse.iitkgp.ac.in/~sourangshu/	
	

Department	of	Computer	Science	and	Engineering	
Indian	InsJtute	of	Technology	Kharagpur	

Pointers	
Part	1	

IntroducJon	
•  Whenever	we	declare	a	variable,	the	system	
allocates	memory	to	store	the	value	of	the	
variable.	
–  Since	every	byte	in	memory	has	a	unique	address,	this	
loca:on	will	also	have	its	own	(unique)	address.	

•  Every	stored	data	item	occupies	one	or	more	
con:guous	memory	cells.	
–  The	number	of	memory	cells	required	to	store	a	data	
item	depends	on	its	type	(char,	int,	double,	etc.).	

•  A	pointer	is	a	variable	that	represents	the	
loca:on	(rather	than	the	value)	of	a	data	item.	

Example	

•  Consider	the	statement	
								int			xyz	=	50;	
–  This	statement	instructs	the	compiler	to	allocate	a	loca:on	
for	the	integer	variable	xyz,	and	put	the	value	50	in	that	
loca:on.	

–  Suppose	that	the	address	loca:on	chosen	is	1380.	

50	1380	xyz	

Variable	name	
(iden:ty	to	the	
programmer)	

Memory	address	
(iden:ty	to	the	
system)	

content	

Example	

50	1380	xyz	

Variable	name	
(iden:ty	to	the	
programmer)	

Memory	address	
(iden:ty	to	the	
system)	

content	

Access	Protocol	
1.  During	execu:on	of	the	program,	the	system	always	associates	

the	name	xyz	with	the	address	1380	

2.  Since	memory	addresses	are	simply	numbers,	they	can	be	
assigned	to	some	variables	which	can	be	stored	in	memory.	

3.  The	value	50	can	be	accessed	by	using	either	the	name	xyz	or	
the	address	1380.	

Remember	
	
scanf(“%d”,&xyz);	
xyz=50;	
prinT(“%d”,xyz);	

Pointers	

– Variables	that	hold	memory	addresses	are	called	
pointers.	

– Since	a	pointer	is	a	variable,	its	value	is	also	stored	
in	some	memory	loca:on.	

p	=	&xyz;	

50	1380	

xyz	

1380	2545	

p	

Variable							Value							Address	

				xyz																50													1380	

						p																1380											2545	

Example	

Returns	no.	of	bytes	required		
for	data	type	representa:on	

#include	<stdio.h>	
int	main()	
{	
								char	a='A';	
								int	b=100;	
								long	int	c=100;	
								float	d=100.0;	
								double	e=100.0;	
	
								prinT("a:	size	is	%d,	address	is	%x	and	content	is	%c\n",		sizeof(a),	&a,a);	
								prinT("b:	size	is	%d,	address	is	%x	and	content	is	%d\n",		sizeof(b),	&b,b);	
								prinT("c:	size	is	%d,	address	is	%x	and	content	is	%ld\n",	sizeof(c),	&c,	c);	
								prinT("d:	size	is	%d,	address	is	%x	and	content	is	%f\n",		sizeof(d),	&d,	d);	
								prinT("e:	size	is	%d,	address	is	%x	and	content	is	%lf\n",	sizeof(e),	&e,	e);	
	
								return	0;	
}	

Example	Output	
a:	size	is	1,	address	is	a11e251f	and	content	is	A	
b:	size	is	4,	address	is	a11e2518	and	content	is	100	
c:	size	is	8,	address	is	a11e2510	and	content	is	100	
d:	size	is	4,	address	is	a11e250c	and	content	is	100.000000	
e:	size	is	8,	address	is	a11e2500	and	content	is	100.000000	

Higher	Address	
	
	
	
	
	
	
	
	
	
	

a11e251f	

Accessing	the	Address	of	a	Variable	

•  The	address	of	a	variable	can	be	determined	
using	the	‘&’	operator.	
– The	operator	‘&’	immediately	preceding	a	
variable	returns	the	address	of	the	variable.	

•  Example:	
	int	xyz;	

							
			p	=	&xyz;				//	the	address	of	xyz	is	assigned	to	p.	

What	is	the	data	type	of	p?	

DeclaraJon	of	pointer	

•  int	xyz;	
•  int	*p;	
•  p=&xyz;	

•  prinT(“%d”,xyz);	is	equivalent	to	prinT(“%d”,*p);	

•  So	xyz	and	*p	can	be	used	for	same	purpose.	

•  Both	can	be	declared	simultaneously.	
–  Example:	

•  int	xyz,*p;	

Summary	
	
int	*p;	

Data	Type 	Pointer 	 	Variable	

Data	Type	

•  Pointer	must	have	a	data	type.	That	is	the	data	
type	of	the	variable	whose	address	will	be	stored.	
–  int	xyz,	*p; 		//	p	is	the	pointer	to	data	of	type	int.	
–  float	abc,	*p1;		//	p1	is	the	pointer	to	data	of	type	float.	
–  long	int	pqr,	*p2;	 	//	p2	is	the	pointer	to	data	of	type	long	int.	

Remember	
int	x;	
float	*a;	
a=&x;					//	NOT	ALLOWED	

NOTE	
	
int		*ptr	and	int*		ptr	are	same.	
	
However	the	first	one	helps	you	to	
declare	in	one	statement:	
int		*ptr,	var1;	

Example	
#include		<stdio.h>	
int	main()	
{	
				int			a,	b;	
				int			c	=	5;	
				int			*p;	
	
				a		=		4		*		(c		+		5)	;	
	
				p		=		&c;	
				b		=		4		*		(*p		+		5)	;		
				prinT		(“a=%d		b=%d	\n”,		a,	b);	
	
				return	0;	
}	

Equivalent	

Example	
#include		<stdio.h>	
int	main()	
{	
				int		x,	y;	
				int		*ptr;	
					
				x	=	10	;	
				ptr	=	&x	;	
				y	=	*ptr	;	
				prinT		(“%d	is	stored	in	loca:on	%u	\n”,		x,		&x)	;	
				prinT		(“%d	is	stored	in	loca:on	%u	\n”,		*&x,		&x)	;	
				prinT		(“%d	is	stored	in	loca:on	%u	\n”,		*ptr,		ptr)	;	
				prinT		(“%d	is	stored	in	loca:on	%u	\n”,		y,		&*ptr)	;	
				prinT		(“%u	is	stored	in	loca:on	%u	\n”,		ptr,	&ptr)	;	
				prinT		(“%d	is	stored	in	loca:on	%u	\n”,		y,		&y)	;	
					
			*ptr	=	25;	
				prinT		(“\nNow	x	=	%d	\n”,	x);	
				return	0;	
}	

*&xóx	

ptr=&x;	
&xó&*ptr	

Output:	

	
10	is	stored	in	loca:on	3599592540		
10	is	stored	in	loca:on	3599592540		
10	is	stored	in	loca:on	3599592540		
10	is	stored	in	loca:on	3599592540		
3599592540	is	stored	in	loca:on	3599592528		
10	is	stored	in	loca:on	3599592536		
	
Now	x	=	25		

Address	of	x:	3599592540	

Address	of	y:	3599592536	

Address	of	ptr:	3599592528	

Example	Output	

Dereferencing	Pointers	

•  Dereferencing	is	an	opera:on	performed	to	access	and	
manipulate	data	contained	in	the	memory	loca:on.	

•  A	pointer	variable	is	said	to	be	dereferenced	when	the	
unary	operator	*,	in	this	case	called	the	indirec:on	
operator,	is	used	like	a	prefix	to	the	pointer	variable	or	
pointer	expression.	

•  An	opera:on	performed	on	the	dereferenced	pointer	
directly	affects	the	value	of	the	variable	it	points	to.	

Example	
#include<stdio.h>
int main()
{
 int *iptr, var1, var2;
 iptr=&var1;
 *iptr=25;
 *iptr += 10;
 printf(“variable var1 contains %d\n”,var1);
 var2=*iptr;
 printf(“variable var2 contains %d\n”,var2);
 iptr=&var2;
 *iptr += 20;
 printff(“variable var2 now has %d\n”,var2);
 return 0;

}

Example	

Thus	the	two	use	of	*	are	to	be	noted.	
	int	*p	for	declaring	a	pointer	variable	
	*p=10	is	for	indirec:on	to	the	value	in	the	address	pointed	
	 	 	by	the	variable	p.	

	
This	power	of	pointers	is	oqen	useful,	where	direct	access	via	
variables	is	not	possible.	

variable	var1	contains	35	
variable	var2	contains	35	
variable	var2	now	has	55	

TypecasJng	

•  Typecas:ng	is	mostly	not	required	in	a	well	
wriren	C	program.	However,	you	can	do	this	as	
follows:	
–  char	c	=	'5‘	
–  char	*d	=	&c;	
–  int	*e	=	(int*)d;	
–  Remember	(sizeof(char)	!=	sizeof(int))	

TypecasJng	

•  void	pointers	
–  Pointers	defined	to	be	of	specific	data	type	cannot	hold	
the	address	of	another	type	of	variable.	

–  It	gives	syntax	error	on	compila:on.	Else	use	a	void	pointer	
(which	is	a	general	purpose	pointer	type),	which	can	point	
to	variables	of	any	data	type.		

–  But	while	dereferencing,	we	need	an	explicit	type	cast.	

Example	
#include<stdio.h>

int main()
{

 float pi=3.14128;

 int num=100;

 void *p;

 p=π
 printf(“First p points to a float variable and

access pi=%.5f\n", *((float *)p));

 p=#

 printf("Then p points to an integer variable and
access num=%d\n",

 *((int *)p));
 return 0;

}

Output	
	
First	p	points	to	a	float	variable	and	access	pi=3.14128	
Then	p	points	to	an	integer	variable	and	access	num=100	
	

Pointers	to	Pointers	

•  Pointer	is	a	type	of	data	in	C	
–  hence	we	can	also	have	pointers	to	pointers	

•  Pointers	to	pointers	offer	flexibility	in	handling	
arrays,	passing	pointer	variables	to	func:ons,	etc.	

•  General	format:	
–  <data_type>	**<ptr_to_ptr>;	

	<ptr_to_ptr>	is	a	pointer	to	a	pointer	poin:ng	to	a	data	object	
of	the	type	<data_type>	
	

•  This	feature	is	oqen	made	use	of	while	passing	two	
or	more	dimensional	arrays	to	and	from	different	
func:ons.	

Example	
#include<stdio.h>

int main()
{

 int *iptr;

 int **ptriptr;

 int data;

 iptr=&data;
 ptriptr=&iptr;

 *iptr=100;

 printf("variable 'data' contains %d\n",data);

 **ptriptr=200;

 printf("variable 'data' contains %d\n",data);
 data=300;

 printf("variable 'data' contains %d\n",**ptriptr);

 return 0;

}

Output	
	
variable	'data'	contains	100	
variable	'data'	contains	200	
variable	'data'	contains	300	
	

Examples	of	pointer	arithmeJc	
int a=10, b=5, *p, *q;

p=&a;
q=&b;

printf("*p=%d,p=%x\n",*p,p);

p=p-b;

printf("*p=%d,p=%x\n",*p,p);

printf("a=%d, address(a)=%x\n",a,&a);
	
	
Output:	
*p=10,	p=24b3f6ac	
*p=4195592,	p=24b3f698	
a=10,	address(a)=24b3f6ac	

Examples	of	pointer	arithmeJc	
#include<stdio.h>
int main()

{

 int a=10, b=5, *p, *q;

 p=&a; q=&b;

 printf("*p=%d,p=%x\n",*p,p);

 p=p-b;

 p=p+a;

 printf("*p=%d,p=%x\n",*p,p);
 p=p-a;

 printf("*p=%d,p=%x\n",*p,p);

 p=p+b;

 printf("*p=%d,p=%x\n",*p,p);

 printf("Size of int: %d\n",sizeof(int));

 return 0;

}

Output	
	

*p=10,p=c9b2bdc	
*p=0,p=c9b2bf0	
*p=4195651,p=c9b2bc8	
*p=10,p=c9b2bdc	
Size	of	int:	4	

If	a	pointer	p	is	to	a	type,	d_type,	
when	incremented	by	i,	the	new	
address	p	points	to	is:	
current_address+i*sizeof(d_type)	
	
Similarly	for	decrementa:on	

SubtracJon	of	Pointers	
#include<stdio.h>

main()
{

 int *p, *q;

 float *f, *g;

 q=p+1;

 g=f+1;
 printf("%d\n",(int *)q -(int *)p);

 printf("%d\n",(float *)g -(float *)f);

}

	
When	two	pointers	are	subtracted,	the	results	are	of	type	size_t	
Both	the	prinT	statement	outputs	1.	

	Even	though	the	numerical	values	of	the	pointers	differ	by	4	in	case	 	of	
integers/float,	this	difference	is	divided	by	the	size	of	the	type	 	being	
pointed	to.	

Invalid	Pointer	ArithmeJc	
•  p=-q;	
•  p<=1;	
•  p=p+q;	
•  p=p+q+a;	
•  p=p*q;	
•  p=p*a;	
•  p=p/q;	
•  p=p/b;	
•  p=a/p;	
•  &235	

Pointers	and	Arrays	

•  When	an	array	is	declared,	
–  The	compiler	allocates	a	base	address	and	sufficient	
amount	of	storage	to	contain	all	the	elements	of	the	array	
in	con:guous	memory	loca:ons.	

–  The	base	address	is	the	loca:on	of	the	first	element	(index	
0)	of	the	array.	

–  The	compiler	also	defines	the	array	name	as	a	constant	
pointer	to	the	first	element.	

Pointers	and	Arrays	
•  The	elements	of	an	array	can	be	efficiently	accessed	by	using	a	

pointer.	

•  Array	elements	are	always	stored	in	con:guous	memory	space.	

•  Consider	an	array	of	integers	and	an	int	pointer:	
–  #define	MAXSIZE	10	
–  int	A[MAXSIZE],	*p;	

•  The	following	are	legal	assignments	for	the	pointer	p:	
–  p	=	A;	/*	Let	p	point	to	the	0-th	loca:on	of	the	array	A	*/	
–  p	=	&A[0];	/*	Let	p	point	to	the	0-th	loca:on	of	the	array	A	*/	
–  p	=	&A[1];	/*	Let	p	point	to	the	1-st	loca:on	of	the	array	A	*/	
–  p	=	&A[i];	/*	Let	p	point	to	the	i-th	loca:on	of	the	array	A	*/	

•  Whenever	p	is	assigned	the	value	&A[i],	the	value	*p	refers	to	the	
array	element	A[i].	

Pointers	and	Arrays	
•  Pointers	can	be	incremented	and	decremented	by	integral	values.	

•  Aqer	the	assignment	p	=	&A[i];	the	increment	p++	(or	++p)	lets	p	one	
element	down	the	array,	whereas	the	decrement	p--	(or	--p)	lets	p	
move	by	one	element	up	the	array.	(Here	"up"	means	one	index	less,	
and	"down"	means	one	index	more.)	

•  Similarly,	incremen:ng	or	decremen:ng	p	by	an	integer	value	n	lets	p	
move	forward	or	backward	in	the	array	by	n	loca:ons.	Consider	the	
following	sequence	of	pointer	arithme:c:	
–  p	=	A;	/*	Let	p	point	to	the	0-th	loca:on	of	the	array	A	*/	
–  p++;	/*	Now	p	points	to	the	1-st	loca:on	of	A	*/	
–  p	=	p	+	6;	/*	Now	p	points	to	the	8-th	loca:on	of	A	*/	
–  p	+=	2;	/*	Now	p	points	to	the	10-th	loca:on	of	A	*/	
–  --p;	/*	Now	p	points	to	the	9-th	loca:on	of	A	*/	
–  p	-=	5;	/*	Now	p	points	to	the	4-rd	loca:on	of	A	*/	
–  p	-=	5;	/*	Now	p	points	to	the	(-1)-nd	loca:on	of	A	*/	

Remember:	
Increment/	
Decrement	is	by	
data	type	not	by	
bytes.	

Pointers	and	Arrays	

•  Oops!	What	is	a	nega:ve	loca:on	in	an	array?	

•  Like	always,	C	is	prery	liberal	in	not	securing	its	array	boundaries.	

•  As	you	may	jump	ahead	of	the	posi:on	with	the	largest	legal	index,	
you	are	also	allowed	to	jump	before	the	opening	index	(0).	

•  Though	C	allows	you	to	do	so,	your	run-:me	memory	management	
system	may	be	unhappy	with	your	unhealthy	intrusion	and	may	cause	
your	program	to	have	a	premature	termina:on	(with	the	error	
message	"Segmenta:on	fault").	

•  It	is	the	programmer's	duty	to	ensure	that	his/her	pointers	do	not	
roam	around	in	prohibited	areas.	

Example	
•  Consider	the	declara:on:	

	int	*p;	
					 	int		x[5]		=		{1,	2,	3,	4,	5}	;	
–  Suppose	that	the	base	address	of	x	is	2500,	and	each	
integer	requires	4	bytes.	

									Element				Value				Address	
													x[0]													1											2500	
													x[1]													2											2504	
													x[2]													3											2508	
													x[3]													4											2512	
													x[4]													5											2516	
–  Rela:onship	between	p	and	x:	

p						=			&x[0]			=			2500	
p+1		=			&x[1]			=			2504	
p+2		=			&x[2]			=			2508	
p+3		=			&x[3]			=			2512	
p+4		=			&x[4]			=			2516	

Accessing	Array	elements	

#include<stdio.h>

int main()
{

 int iarray[5]={1,2,3,4,5};

 int i, *ptr;

 ptr=iarray;

 for(i=0;i<5;i++) {
 printf(“iarray[%d] (%x): %d\n",i,ptr,*ptr);

 ptr++;

 }

 return 0;

}

Output	
	
iarray[0]	(f4c709d0):	1	
iarray[1]	(f4c709d4):	2	
iarray[2]	(f4c709d8):	3	
iarray[3]	(f4c709dc):	4	
iarray[4]	(f4c709e0):	5	

Accessing	Array	elements	

#include<stdio.h>
int main()
{

 int iarray[5]={1,2,3,4,5};
 int i, *ptr;
 ptr=iarray;
 for(i=0;i<5;i++) {
 printf(“iarray[%d] (%x):

%d\n",i,ptr,*ptr);
 ptr++;
 printf(“iarray[%d] (%x): %d\n",i,

(iarray+i),*(iarray+i));
 }
 return 0;

}

NOTE	
	
1.  The	name	of	the	

array	is	the	
star:ng	address	
(base	address)	of	
the	array.	

2.  It	is	the	address	
of	the	first	
element	in	the	
array.	

3.  Thus	it	can	be	
used	as	a	normal	
pointer,	to	access	
the	other	
elements	in	the	
array.	

More	examples	

#include<stdio.h>

int main()
{

 int i;

 int a[5]={1,2,3,4,5}, *p = a;

 for(i=0;i<5;i++,p++) {

 printf("%d %d",a[i],*(a+i));
 printf(" %d %d %d\n",*(i+a),i[a],*p);

 }

 return 0;

}

More	examples	

#include<stdio.h>

int main()
{

 int i;

 int a[5]={1,2,3,4,5}, *p = a;

 for(i=0;i<5;i++,p++) {

 printf("%d %d",a[i],*(a+i));
 printf(" %d %d %d\n",*(i+a),i[a],*p);

 }

 return 0;

}

Output	
	
1	1	1	1	1	
2	2	2	2	2	
3	3	3	3	3	
4	4	4	4	4	
5	5	5	5	5	

Passing	Pointers	to	a	FuncJon	

•  Pointers	are	oqen	passed	to	a	func:on	as	arguments.	
–  Allows	data	items	within	the	calling	program	to	be	accessed	
by	the	func:on,	altered,	and	then	returned	to	the	calling	
program	in	altered	form.	

–  Called	call-by-reference	(or	by	address	or	by	loca:on).	

•  Normally,	arguments	are	passed	to	a	func:on	by	
value.	
–  The	data	items	are	copied	to	the	func:on.	

–  Changes	are	not	reflected	in	the	calling	program.	

Swapping	two	numbers	

void	main()	
{	

int	i,	j;		
scanf(“%d	%d”,	&i,	&j);	
prinT(“Aqer	swap:	%d	%d”,i,j);	
swap(i,j);	
prinT(“Aqer	swap:	%d	%d”,i,j);	

}	

void	swap(int	a,	int	b)	
{	

	int	temp	=	a;	
	a	=	b;	
	b	=	temp;	

}	

void	swap(int	*a,	int	*b)	
{	

	int	temp	=	*a;	
	*a	=	*b;	
	*b	=	temp;	

}	

swap(&i,&j);	

scanf	Revisited	

			int			x,		y	;	
			prinT	(“%d	%d	%d”,		x,	y,	x+y)	;	
	

•  What	about	scanf	?	
				
			scanf	(“%d	%d	%d”,	x,	y,	x+y);	
	
			scanf	(“%d	%d”,	&x,	&y);	

NO	

YES	

Example:	Sort	3	integers	

•  Three-step	algorithm:	
1.  Read	in	three	integers	x,	y	and	z	

2.  Put	smallest	in	x	
•  Swap	x,	y	if	necessary;	then	swap	x,	z	if	necessary.	

3.  Put	second	smallest	in	y	
•  Swap	y,	z	if	necessary.	

Hints	

#include		<stdio.h>	
int	main()	
{	
						int		x,	y,	z	;	
						………..	
						scanf(“%d	%d	%d”,	&x,	&y,	&z)	;	
						if		(x	>	y)			swap	(&x,	&y);	
						if		(x	>	z)			swap	(&x,	&z);	
						if		(y	>	z)			swap	(&y,	&z)	;	
						………..	
}	

Passing	Arrays	to	a	FuncJon	
•  An	array	name	can	be	used	as	an	argument	to	a	
func:on.	
–  Permits	the	en:re	array	to	be	passed	to	the	func:on.	
–  Array	name	is	passed	as	the	parameter,	which	is	effec:vely	the	

address	of	the	first	element.	

•  Rules:	
–  The	array	name	must	appear	by	itself	as	argument,	without	brackets	

or	subscripts.	
–  The	corresponding	formal	argument	is	wriren	in	the	same	manner.	

•  Declared	by	wri:ng	the	array	name	with	a	pair	of	empty	brackets.	
•  Dimension	or	required	number	of	elements	to	be	passed	as		
				a	separate	parameter.	

Example:	funcJon	to	find	average	

#include		<stdio.h>	
int	main()	
{	
						int		x[100],	k,	n	;	
						scanf		(“%d”,	&n)	;	
						for		(k=0;	k<n;	k++)	
										scanf		(“%d”,	&x[k])	;	
						prinT		(“\nAverage	is	%f”,	avg	(x,	n));	
						return	0;	
}	

float		avg		(int	array[],int		size)	
{	
						int		*p,	i	,	sum	=	0;	
	
						p	=	array	;	
	
						for		(i=0;	i<size;	i++)	
											sum	=	sum	+	*(p+i);	
				
						return		((float)	sum	/	size);	
}	

int	*array	

p[i]	

The	Actual	Mechanism	

•  When	an	array	is	passed	to	a	func:on,	the	values	
of	the	array	elements	are	not	passed	to	the	
func:on.	

–  The	array	name	is	interpreted	as	the	address	of	the	first	
array	element.	

–  The	formal	argument	therefore	becomes	a	pointer	to	the	
first	array	element.	

–  When	an	array	element	is	accessed	inside	the	func:on,	the	
address	is	calculated	using	the	formula	stated	before.	

–  Changes	made	inside	the	func:on	are	thus	also	reflected	in	
the	calling	program.	

Structures	Revisited	

•  Recall	that	a	structure	can	be	declared	as:	
struct			stud			{	
																													int				roll;	
																													char		dept_code[25];	
																													float		cgpa;	
																								};	
struct		stud		a,	b,	c;	
	

•  And	the	individual	structure	elements	can	be	
accessed	as:	

a.roll	,		b.roll	,		c.cgpa	,	etc.	

Arrays	of	Structures	

•  We	can	define	an	array	of	structure	records	as	
	 	struct			stud			class[100]	;	

	

•  The	structure	elements	of	the	individual	
records	can	be	accessed	as:	

		
	class[i].roll	

			class[20].dept_code	
			class[k++].cgpa	

Example:	SorJng	by	Roll	Numbers		

#include	<stdio.h>	
struct			stud				
{	
						int				roll;	
						char		dept_code[25];	
						float		cgpa;	
	};	
	
void	main()	
{	
						struct		stud		class[100],	t;	
						int		j,	k,	n;	
							
						scanf		(“%d”,	&n);		
																								/*	no.	of	students	*/	

for		(k=0;	k<n;	k++)	
									scanf	(“%d	%s	%f”,	&class[k].roll,	
															class[k].dept_code,	&class[k].cgpa);	
					for		(j=0;	j<n-1;	j++)	
									for		(k=j+1;	k<n;	k++)	
												{	
																	if		(class[j].roll	>	class[k].roll)	
																						{	
																											t	=	class[j]	;	
																											class[j]	=	class[k]	;	
																											class[k]	=	t;	
																							}	
													}	
				for		(k=0;	k<n;	k++)	
									prinT	("%d	%s	%f",	class[k].roll,	
															class[k].dept_code,	class[k].cgpa);	
}	

Pointers	and	Structures	

•  You	may	recall	that	the	name	of	an	array	stands	
for	the	address	of	its	zero-th	element.	
– Also	true	for	the	names	of	arrays	of	structure	
variables.	

•  Consider	the	declara:on:	
struct			stud			{	
																													int				roll;	
																													char		dept_code[25];	
																													float		cgpa;	
																								};	
struct	stud	class[100],		*ptr;	
	

–  The	name	class	represents	the	address	of	the	zero-th	
element	of	the	structure	array.	

–  ptr	is	a	pointer	to	data	objects	of	the	type	struct	stud.	

•  The	assignment	
ptr		=		class	;	

				will	assign	the	address	of	class[0]	to	ptr.	
	
•  When	the	pointer	ptr	is	incremented	by	one	(ptr++)	
–  The	value	of	ptr	is	actually	increased	by	sizeof(stud).	
–  It	is	made	to	point	to	the	next	record.	

Pointers	and	Structures	

•  Once	ptr	points	to	a	structure	variable,	the	
members	can	be	accessed	as:	
				ptr		–>		roll	;	
				ptr		–>		dept_code	;	
				ptr		–>		cgpa	;	

– The	symbol	“–>”	is	called	the	arrow	operator.	

Pointers	and	Structures	

Example	
#include	<stdio.h>	
	
typedef	struct	{	
																float	real;	
																float	imag;	
															}	COMPLEX;	
	
void	swap_ref(COMPLEX	*a,	COMPLEX	*b)	
{	
		COMPLEX	tmp;	
			tmp=*a;	
			*a=*b;	
			*b=tmp;	
}	

void	print(COMPLEX	*a)	
{	
		prinT("(%f,%f)\n",a->real,a->imag);	
}	

void	main()	
{	
	COMPLEX	x={10.0,3.0},	y={-20.0,4.0};	
	
		print(&x);	print(&y);	
		swap_ref(&x,&y);	
		print(&x);	print(&y);	
}		

Output	
	

(10.000000,3.000000)	
(-20.000000,4.000000)	
(-20.000000,4.000000)	
(10.000000,3.000000)	

A	Warning	
•  When	using	structure	pointers,	we	should	take	care	
of	operator	precedence.	
– Member	operator	“.”	has	higher	precedence	than	“*”.	

•  ptr	–>	roll				and				(*ptr).roll				mean	the	same	thing.	
•  *ptr.roll			will	lead	to	error.	

– The	operator		“–>”		enjoys	the	highest	priority	
among	operators.	
•  ++ptr	–>	roll				will	increment	roll,	not	ptr.	
•  (++ptr)	–>	roll				will	do	the	intended	thing.	

Structures	and	FuncJons	

•  A	structure	can	be	passed	as	argument	to	a	
func:on.	

•  A	func:on	can	also	return	a	structure.	

•  The	process	shall	be	illustrated	with	the	help	
of	an	example.	
– A	func:on	to	add	two	complex	numbers.	

Example:	complex	number	addiJon	
#include		<stdio.h>	
struct		complex		{	
																																	float		re;	
																																	float		im;	
																														};	
struct		complex		add		(struct	complex	x,	struct	complex	y)	
{	
					struct		complex		t;	
					t.re	=	x.re	+	y.re	;	
					t.im	=	x.im	+	y.im	;	
					return	(t)	;	
}	
	
void	main()	
{	
				struct		complex		a,	b,	c;	
				scanf		(“%f	%f”,	&a.re,	&a.im);	
				scanf		(“%f	%f”,	&b.re,	&b.im);	
				c		=		add	(a,	b)	;	
				prinT		(“\n	%f	%f”,	c.re,	c.im);	
}	

Complex	number	addiJon	using	pointers	
#include		<stdio.h>	
struct		complex		{	
																																	float		re;	
																																	float		im;	
																														};	
void		add		(struct	complex		*x,	struct	complex		*y,	struct	complex		*t)	
{	
					t->re	=	x->re	+	y->re	;	
					t->im	=	x->im	+	y->im	;	
}	
void	main()	
{	
				struct		complex		a,	b,	c;	
				scanf		(“%f	%f”,	&a.re,	&a.im);	
				scanf		(“%f	%f”,	&b.re,	&b.im);	
				add	(&a,	&b,	&c)	;	
				prinT		(“\n	%f	%f”,	c,re,	c.im);	
}	

Dynamic	Memory	AllocaJon	

Basic	Idea	

•  Many	a	:me	we	face	situa:ons	where	data	is	dynamic	in	
nature.	
–  Amount	of	data	cannot	be	predicted	beforehand.	
–  Number	of	data	item	keeps	changing	during	program	
execu:on.	

•  Such	situa:ons	can	be	handled	more	easily	and	
effec:vely	using	dynamic	memory	management	
techniques.	

Basic	Idea	

•  C	language	requires	the	number	of	elements	in	an	
array	to	be	specified	at	compile	:me.	
–  Oqen	leads	to	wastage	or	memory	space	or	program	
failure.	

•  Dynamic	Memory	Alloca:on	
– Memory	space	required	can	be	specified	at	the	:me	of	
execu:on.	

–  C	supports	alloca:ng	and	freeing	memory	dynamically	
using	library	rou:nes.	

Memory	AllocaJon	Process		in	C	

Local	variables	

Free	memory	

Global	variables	

Instruc:ons	

Permanent	
storage	area	

Stack	

Heap	

Memory	AllocaJon	Process		in	C	

•  The	program	instruc:ons	and	the	global	variables	are	
stored	in	a	region	known	as	permanent	storage	area.	

•  The	local	variables	are	stored	in	another	area	called	
stack.	

•  The	memory	space	between	these	two	areas	is	
available	for	dynamic	alloca:on	during	execu:on	of	
the	program.	
–  This	free	region	is	called	the	heap.	
–  The	size	of	the	heap	keeps	changing	

Memory	AllocaJon	FuncJons	

•  malloc	
– Allocates	requested	number	of	bytes	and	returns	a	
pointer	to	the	first	byte	of	the	allocated	space.	

•  calloc	
– Allocates	space	for	an	array	of	elements,	ini:alizes	
them	to	zero	and	then	returns	a	pointer	to	the	
memory.	

•  free	
	Frees	previously	allocated	space.	

	
•  realloc	
– Modifies	the	size	of	previously	allocated	space.	

	

malloc()	

•  A	block	of	memory	can	be	allocated	using	the	
func:on	malloc.	
– Reserves	a	block	of	memory	of	specified	size	and	
returns	a	pointer	of	type	void.	

– The	return	pointer	can	be	assigned	to	any	pointer	
type.	

•  General	format:	
				ptr		=		(type	*)		malloc	(byte_size)	;	

malloc()	

•  Examples	
				p		=		(int	*)		malloc	(100	*	sizeof	(int))	;	

•  A	memory	space	equivalent	to	“100		:mes	the	size	of	
an	int”	bytes	is	reserved.	
•  The	address	of	the	first	byte	of	the	allocated	memory	is	
assigned	to	the	pointer	p	of	type	int.	

p	

400	bytes	of	space	

malloc()	
					
cptr		=		(char	*)		malloc	(20)	;	

•  Allocates	10	bytes	of	space	for	the	pointer	cptr	of	type	
char.	

sptr=(struct		stud	*)malloc	(10	*	sizeof	(struct		stud));	

Determines	the	number	of	
bytes	required	to	store	
one	structure	data	type	
viz.,	stud.	

Point	to	Note	

•  malloc	always	allocates	a	block	of	con:guous	
bytes.	

– The	alloca:on	can	fail	if	sufficient	con:guous	
memory	space	is	not	available.	

–  If	it	fails,	malloc	returns	NULL.	

 printf("Input heights for %d students
\n", N);
 for(i=0;i<N;i++)
 scanf("%f",&height[i]);

 for(i=0;i<N;i++)
 sum+=height[i];

 avg=sum/(float) N;

 printf("Average height= %f \n", avg);
}

#include <stdio.h>
#include <stdlib.h>
void main()
{
 int i,N;
 float *height;
 float sum=0,avg;

 printf("Input the number of students. \n");
 scanf("%d",&N);

 height=(float *)malloc(N * sizeof(float));

Output	
	
Input	the	number	of	students.		
5	
Input	heights	for	5	students		
23	24	25	26	27	
Average	height=	25.000000		
	

Example:	malloc()	

calloc()	

The	C	library	func:on		
–  void	*calloc(size_t	nitems,	size_t	size)		

	allocates	the	requested	memory	and	returns	a	
pointer	to	it.	
	
Allocates	a	block	of	memory	for	an	array	of	nitems	
elements,	each	of	them	size	bytes	long,	and	ini:alizes	
all	its	bits	to	zero.	

calloc()	or	malloc()	

•  malloc()	takes	a	single	argument	(memory	required	
in	bytes),	while	calloc()	needs	two	arguments.		

•  malloc()	does	not	ini:alize	the	memory	allocated,	
while	calloc()	ini:alizes	the	allocated	memory	to	
ZERO.		

•  calloc()	allocates	a	memory	area,	the	length	will	be	
the	product	of	its	parameters.	

Output	
	

Amount	of	numbers	to	be	entered:	5	
Enter	number	#1:	23	
Enter	number	#2:	31	
Enter	number	#3:	23	
Enter	number	#4:	45	
Enter	number	#5:	32	
You	have	entered:	23	31	23	45	32		

#include <stdio.h>
#include <stdlib.h>

int main ()
{
 int i,n;
 int * pData;

 printf ("Amount of numbers to be
entered: ");
 scanf ("%d",&i);

 pData = (int*) calloc (i,sizeof(int));
 if (pData==NULL) exit (1);
 for (n=0;n<i;n++) {
 printf ("Enter number #%d: ",n+1);
 scanf ("%d",&pData[n]);
 }
 printf ("You have entered: ");
 for (n=0;n<i;n++)

 printf ("%d ",pData[n]);

 free (pData);
 return 0;
}

Example:	calloc()		

Releasing	the	Used	Space	

•  When	we	no	longer	need	the	data	stored	in	a	block	of	
memory,	we	may	release	the	block	for	future	use.	

•  How?	
–  By	using	the	free()	func:on.	

•  General	format:	
								free	(ptr)	;	

				where	ptr	is	a	pointer	to	a	memory	block	which	has	been	
already	created	using	malloc()	/	calloc()	/	realloc().	

Altering	the	Size	of	a	Block	

•  Some:mes	we	need	to	alter	the	size	of	some	
previously	allocated	memory	block.	
– More	memory	needed.	
– Memory	allocated	is	larger	than	necessary.	

•  How?	
–  By	using	the	realloc()	func:on.	

•  If	the	original	alloca:on	is	done	by	the	statement	
								ptr		=		malloc	(size)	;	
	

				then	realloca:on	of	space	may	be	done	as	
								ptr		=		realloc	(ptr,	newsize)	;	

Altering	the	Size	of	a	Block	

– The	new	memory	block	may	or	may	not	begin	at	
the	same	place	as	the	old	one.	
•  If	it	does	not	find	space,	it	will	create	it	in	an	en:rely	
different	region	and	move	the	contents	of	the	old	block	
into	the	new	block.	

– The	func:on	guarantees	that	the	old	data	remains	
intact.	

–  If	it	is	unable	to	allocate,	it	returns	NULL	.	But,	it	
does	not	free	the	original	block.	

	

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
 int *pa, *pb, n;
/* allocate an array of 10 int */
 pa = (int *)malloc(10 * sizeof *pa);
 if(pa) {
 printf("%zu bytes allocated. Storing ints: ", 10*sizeof(int));
 for(n = 0; n < 10; ++n)
 printf("%d ", pa[n] = n);
 }

 pb = (int *)realloc(pa, 1000000 * sizeof *pb); // reallocate array to a
larger size
 if(pb) {
 printf("\n%zu bytes allocated, first 10 ints are: ",
1000000*sizeof(int));
 for(n = 0; n < 10; ++n)
 printf("%d ", pb[n]); // show the array
 free(pb);
 } else { // if realloc failed, the original pointer needs to be freed
 free(pa);
 }
 return 0;
}

Example:	realloc()	

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
 int *pa, *pb, n;
/* allocate an array of 10 int */
 pa = (int *)malloc(10 * sizeof *pa);
 if(pa) {
 printf("%zu bytes allocated. Storing ints: ", 10*sizeof(int));
 for(n = 0; n < 10; ++n)
 printf("%d ", pa[n] = n);
 }

 pb = (int *)realloc(pa, 1000000 * sizeof *pb); // reallocate array to a
larger size
 if(pb) {
 printf("\n%zu bytes allocated, first 10 ints are: ",
1000000*sizeof(int));
 for(n = 0; n < 10; ++n)
 printf("%d ", pb[n]); // show the array
 free(pb);
 } else { // if realloc failed, the original pointer needs to be freed
 free(pa);
 }
 return 0;
}

Example:	realloc()	
Output	

	
40	bytes	allocated.	Storing	ints:	0	1	2	3	4	5	6	7	8	9		
4000000	bytes	allocated,	first	10	ints	are:	0	1	2	3	4	5	6	7	8	9	

