CS11001/CS11002
Programming and Data Structures
(PDS) (Theory: 3-0-0)

Teacher: Sourangshu Bhattacharya
sourangshu@gmail.com
http://cse.iitkgp.ac.in/~sourangshu/

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

Recursion

* A process by which a function calls itself
repeatedly.
— Either directly.
e X calls X.

— Or cyclically in a chain.
e XcallsY, and Y calls X.

* Used for repetitive computations in which each
action is stated in terms of a previous result.

— fact(n) = n * fact (n-1)

Recursion

* For a problem to be written in recursive form, two
conditions are to be satisfied:

— It should be possible to express the problem in recursive
form - in terms of problems of lower size.

— The problem statement must include a stopping condition

fact (n) = 1, if n =0

Recursion

Examples:

— Factorial:
fact(0) =1
fact(n) = n * fact(n-1),ifn>0

— GCD:
gcd (m, m)=m
gcd (m, n) =gcd (m-n, n), ifm>n
gcd (m, n) =ged (n, n-m), if m<n

— Fibonacci series (1,1,2,3,5,8,13,21,....)
fib (0)=1
fib(1)=1
fib (n) = fib (n-1) + fib (n-2), ifn>1

Facts on fact

_5!=5~k4~k3~k2~k1

— Notice that
e 51 = 5 % 4]
e 41 = 4 % 31 ...

— Can compute factorials recursively

— Solve base case (1! = 0! = 1) then plugin
e 21 =2 %11 =2 % 1=2;
« 31 =3 %21 =3 %2 =6;

Example 1 :: Factorial

#include <stdio.h>

int fact(int n)
{
if (n == 0)
return 1;
else
return (n * fact(n-1));
}
vold main ()
{
int 1=6;
printf (“Factorial of 6 is: %d \n”,
fact (1)) ;
}

Mechanism of Execution

* When a recursive program is executed, the recursive
function calls are not executed immediately.

— They are kept aside (on a stack) until the stopping
condition is encountered.

— The function calls are then executed in reverse order.

Advantage of Recursion :: Calculating fact(5)

— First, the function calls will be processed:
fact(5) =5 * fact(4)
fact(4) = 4 * fact(3)
fact(3) = 3 * fact(2)
fact(2) = 2 * fact(1)
fact(1) =1 * fact(0)

— The actual values return in the reverse order:
fact(0) =1
fact(1)=1*1=1
fact(2)=2*1=2
fact(3)=3*2=6
fact(4)=4*6=24
Fact(5)=5 *24=120

Example 2 :: Fibonacci series

#include <stdio.h>

int £ib(int n)
{
1f (n < 2)
return n;
else
return (fib(n-1) + £ib (n-2));
}

vold main ()

{
int i1=4;
printf (“%d \n”, £ib(i));

Execution of Fibonacci number

* Fibonacci number fib(n) can be defined as:

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), if n>1
— The successive Fibonacci numbers are:
0,11,23,5,8, 13, 21, f(4)
// AN
int fib(int n)
: f(3) ‘f(Z)
if (n <2) \
return (n); f(2) | | f(1)|f(1) | f(0)

else

return (fib(n-1) + fib(n-2)); / }7
} f(1) f(0)

Inefficiency of Recursion

* How many times the
function is called when
evaluating f(4) ?

 Same thingis
computed several
times.

=

f(4)

/

f(3)

}f(Z)

_/

f(2)

\

/

f(1) | | 1d)

1(0)

/

f(1)

1(0)

N

Performance Tip

* Avoid Fibonacci-style recursive programs
which result in an exponential “explosion”
of calls.

Example 3: Towers of Hanoi Problem

LEFT CENTER RIGHT

* The problem statement:
— Initially all the disks are stacked on the LEFT pole.

— Required to transfer all the disks to the RIGHT
pole.
* Only one disk can be moved at a time.
* A larger disk cannot be placed on a smaller disk.

Recursion is implicit

* General problem of n disks.
— Step 1:
 Move the top (n-1) disks from LEFT to CENTER.
— Step 2:
* Move the largest disk from LEFT to RIGHT.
— Step 3:
* Move the (n-1) disks from CENTER to RIGHT.

Recursive C code: Towers of Hanoi

#include <stdio.h>
vold transfer (int n, char from, char to, char temp);

int main ()

{
int n; /* Number of disks */
scanft (“%d”, &n);
transfer (n, ‘L’, ‘R’, ‘C’);
return 0;

vold transfer (int n, char from, char to, char temp)
{
if (n > 0) {
transfer (n-1, from, temp, to);
printf (“Move disk %d from %c to %c \n”, n, from, to);
transfer (n-1, temp, to, from);

}

return;

Towers of Hanoi: Example Run

3

Move disk 1 from Lto R
Move disk 2 from Lto C
Move disk 1 from Rto C
Move disk 3 from Lto R
Move disk 1 from Cto L
Move disk 2 from Cto R
Move disk 1 from Lto R

4

Move disk 1 from Lto C
Move disk 2 from L to R
Move disk 1 from Cto R
Move disk 3 from Lto C
Move disk 1 from Rto L
Move disk 2 from Rto C
Move disk 1 from Lto C
Move disk 4 from L to R
Move disk 1 from Cto R
Move disk 2 from Cto L
Move disk 1 from Rto L
Move disk 3 from Cto R
Move disk 1 from Lto C
Move disk 2 from Lto R
Move disk 1 from Cto R

5

Move disk 1 from Lto R
Move disk 2 from Lto C
Move disk 1 from Rto C
Move disk 3 from Lto R
Move disk 1 from Cto L
Move disk 2 from Cto R
Move disk 1 from Lto R
Move disk 4 from Lto C
Move disk 1 from Rto C
Move disk 2 from R to L
Move disk 1 from Cto L
Move disk 3 from Rto C
Move disk 1 from Lto R
Move disk 2 from Lto C
Move disk 1 from Rto C
Move disk 5 from Lto R
Move disk 1 from Cto L
Move disk 2 from Cto R
Move disk 1 from Lto R
Move disk 3 from Cto L
Move disk 1 from Rto C
Move disk 2 from Rto L
Move disk 1 from Cto L
Move disk 4 from Cto R
Move disk 1 from Lto R
Move disk 2 from Lto C
Move disk 1 from Rto C
Move disk 3 from Lto R
Move disk 1 from Cto L
Move disk 2 from Cto R
Move disk 1 from Lto R

Recursion vs. Iteration

— |lteration: explicit loop
— Recursion: repeated function calls

— |teration: loop condition fails
— Recursion: base case recognized

— Choice between performance (iteration) and good
software engineering (recursion)

Performance Tip

* Avoid using recursion in performance
situations. Recursive calls take time and
consume additional memory.

How are function calls implemented?

* In general, during program execution

— The system maintains a stack in memory.
» Stack is a last-in first-out structure.
* Two operations on stack, push and pop.

— Whenever there is a function call, the activation
record gets pushed into the stack.
e Activation record consists of the return address in the

calling program, the return value from the function,
and the local variables inside the function.

— At the end of function call, the corresponding
activation record gets popped out of the stack.

STACK

\.

At the system

Before call

= return (result);

}

Local
Variables

Return Value

Return Addr

After call

After return

........ —» int ner (int n, int r)

{ : :
........ — return (fact(n)l _/’l int fact (Int n)

J fact(r)/fact(n-r)); | 3times {

} D ~— return (result);
}

LV2, RV2, RA2

LV1, Rv1, RA1| |LV1, RV1, RA1| [Lv1, RV1, RA1

Before call Call ncr Call fact fact returns ncr returns

Example:: main() calls fact(3)

void main ()
{

int n;

n=24;

printf (“%d \n”, fact(n));
}

int fact (int n)
{
if (n = = 0)
return (1)
else
return (n * fact(n-1));

TRACE OF THE STACK DURING EXECUTION

>
n=0
1
RA .. fact
main . — o fact
calls X - 1™ =1 returns
RA .. fact| [RA .. fact| |RA .. fact to main
fact n=2 n=2 n=2 n=2 n=2
1 . -] ; 21 =2 ‘
RA .. fact| |RA .. fact||RA .. fact| |RA .. fact| |RA .. fact
n=3 n=3 n=3 n=3 n=3 n=3 n=3
- -]]] ; 3*2=6
RA .. mainf RA .. main| RA .. main| |RA .. main| RA .. main| RA .. main| RA .. main

Homework

Trace of Execution for Fibonacci Series

