
CS11001/CS11002	
Programming	and	Data	Structures	

(PDS)	(Theory:	3-0-0)	

Teacher:	Sourangshu	Bha@acharya	
sourangshu@gmail.com	

h@p://cse.iitkgp.ac.in/~sourangshu/	
	

Department	of	Computer	Science	and	Engineering	
Indian	InsJtute	of	Technology	Kharagpur	

Recursion	

•  A	process	by	which	a	func2on	calls	itself	
repeatedly.	
–  Either	directly.	

•  X	calls	X.	
–  Or	cyclically	in	a	chain.	

•  X	calls	Y,	and	Y	calls	X.	

•  Used	for	repe22ve	computa2ons	in	which	each	
ac2on	is	stated	in	terms	of	a	previous	result.	
–  fact(n)	=	n	*	fact	(n-1)	

Recursion	

•  For	a	problem	to	be	wriFen	in	recursive	form,	two	
condi2ons	are	to	be	sa2sfied:	
–  It	should	be	possible	to	express	the	problem	in	recursive	
form	–	in	terms	of	problems	of	lower	size.	
	

–  The	problem	statement	must	include	a	stopping	condi2on	
	
fact(n) = 1, if n = 0

 = n * fact(n-1), if n > 0

	

Recursion	

•  Examples:	
–  Factorial:	

fact(0)	=	1	
fact(n)	=	n	*	fact(n-1),	if	n	>	0	
	

– GCD:	
gcd	(m,	m)	=	m	
gcd	(m,	n)	=	gcd	(m-n,	n),	if	m	>	n	
gcd	(m,	n)	=	gcd	(n,	n-m),	if	m	<	n	
	

–  Fibonacci	series	(1,1,2,3,5,8,13,21,….)	
fib	(0)	=	1	
fib	(1)	=	1	
fib	(n)	=	fib	(n-1)	+	fib	(n-2),	if	n	>	1	

Facts	on	fact	

–  5! = 5 * 4 * 3 * 2 * 1
– No2ce	that	

•  5! = 5 * 4!
•  4! = 4 * 3! ...

– Can	compute	factorials	recursively		
– Solve	base	case	(1! = 0! = 1)	then	plug	in	

•  2! = 2 * 1! = 2 * 1 = 2;
•  3! = 3 * 2! = 3 * 2 = 6;	

Example	1	::	Factorial	
#include <stdio.h>

int fact(int n)
{
 if (n == 0)
 return 1;

 else
 return (n * fact(n-1));

}
void main()
{
 int i=6;
 printf (“Factorial of 6 is: %d \n”,

fact(i));
}

Mechanism	of	ExecuJon	

•  When	a	recursive	program	is	executed,	the	recursive	
func2on	calls	are	not	executed	immediately.	

–  They	are	kept	aside	(on	a	stack)	un2l	the	stopping	
condi2on	is	encountered.	

–  The	func2on	calls	are	then	executed	in	reverse	order.	

Advantage	of	Recursion	::	CalculaJng	fact(5)	

– First,	the	func2on	calls	will	be	processed:	
fact(5)	=	5	*	fact(4)	
fact(4)	=	4	*	fact(3)	
fact(3)	=	3	*	fact(2)	
fact(2)	=	2	*	fact(1)	
fact(1)	=	1	*	fact(0)	

– The	actual	values	return	in	the	reverse	order:	
fact(0)	=	1	
fact(1)	=	1	*	1	=	1	
fact(2)	=	2	*	1	=	2	
fact(3)	=	3	*	2	=	6	
fact(4)	=	4	*	6	=	24	
Fact(5)	=	5	*	24	=	120	

Example	2	::	Fibonacci	series		
#include <stdio.h>

int fib(int n)
{

 if (n < 2)
 return n;

 else

 return (fib(n-1) + fib(n-2));
}
void main()
{
 int i=4;
 printf (“%d \n”, fib(i));

}

ExecuJon	of	Fibonacci	number	
•  Fibonacci	number	fib(n)	can	be	defined	as:	

								fib(0)		=		0	
								fib(1)		=		1	
								fib(n)		=		fib(n-1)	+	fib(n-2),			if		n	>	1	
–  The	successive	Fibonacci	numbers	are:	

0,	1,	1,	2,	3,	5,	8,	13,	21,	…..	

int fib(int n)
{
 if (n < 2)

 return (n);
 else

 return (fib(n-1) + fib(n-2));
}

f(4)

f(3) f(2)

f(1) f(2) f(0) f(1)

f(1) f(0)

Inefficiency	of	Recursion	

•  How	many	2mes	the	
func2on	is	called	when	
evalua2ng	f(4)	?	

•  Same	thing	is	
computed	several	
2mes.	

f(4)

f(3) f(2)

f(1) f(2) f(0) f(1)

f(1) f(0)

Performance	Tip		

•  Avoid	Fibonacci-style	recursive	programs	
which	result	in	an	exponen2al	“explosion”	
of	calls.	

Example	3:	Towers	of	Hanoi	Problem	

5
4
3 2 1

LEFT CENTER RIGHT

•  The	problem	statement:	
–  Ini2ally	all	the	disks	are	stacked	on	the	LEFT	pole.	
– Required	to	transfer	all	the	disks	to	the	RIGHT	
pole.	

•  Only	one	disk	can	be	moved	at	a	2me.	
•  A	larger	disk	cannot	be	placed	on	a	smaller	disk.	

Recursion	is	implicit	

•  General	problem	of	n	disks.	
– Step	1:		

•  Move	the	top	(n-1)	disks	from	LEFT	to	CENTER.	

– Step	2:		
•  Move	the	largest	disk	from	LEFT	to	RIGHT.	

– Step	3:		
•  Move	the	(n-1)	disks	from	CENTER	to	RIGHT.	

Recursive	C	code:	Towers	of	Hanoi	
#include <stdio.h>

void transfer (int n, char from, char to, char temp);

int main()
{
 int n; /* Number of disks */
 scanf (“%d”, &n);
 transfer (n, ‘L’, ‘R’, ‘C’);
 return 0;

}

void transfer (int n, char from, char to, char temp)
{
 if (n > 0) {
 transfer (n-1, from, temp,to);
 printf (“Move disk %d from %c to %c \n”, n, from, to);
 transfer (n-1, temp, to, from);
 }
 return;

}

Towers	of	Hanoi:	Example	Run	
3	
Move	disk	1	from	L	to	R		
Move	disk	2	from	L	to	C		
Move	disk	1	from	R	to	C		
Move	disk	3	from	L	to	R		
Move	disk	1	from	C	to	L		
Move	disk	2	from	C	to	R		
Move	disk	1	from	L	to	R	

4	
Move	disk	1	from	L	to	C		
Move	disk	2	from	L	to	R		
Move	disk	1	from	C	to	R		
Move	disk	3	from	L	to	C		
Move	disk	1	from	R	to	L		
Move	disk	2	from	R	to	C		
Move	disk	1	from	L	to	C		
Move	disk	4	from	L	to	R		
Move	disk	1	from	C	to	R		
Move	disk	2	from	C	to	L		
Move	disk	1	from	R	to	L		
Move	disk	3	from	C	to	R		
Move	disk	1	from	L	to	C		
Move	disk	2	from	L	to	R		
Move	disk	1	from	C	to	R	

5	
Move	disk	1	from	L	to	R		
Move	disk	2	from	L	to	C		
Move	disk	1	from	R	to	C		
Move	disk	3	from	L	to	R		
Move	disk	1	from	C	to	L		
Move	disk	2	from	C	to	R		
Move	disk	1	from	L	to	R		
Move	disk	4	from	L	to	C		
Move	disk	1	from	R	to	C		
Move	disk	2	from	R	to	L		
Move	disk	1	from	C	to	L		
Move	disk	3	from	R	to	C		
Move	disk	1	from	L	to	R		
Move	disk	2	from	L	to	C		
Move	disk	1	from	R	to	C		
Move	disk	5	from	L	to	R		
Move	disk	1	from	C	to	L		
Move	disk	2	from	C	to	R		
Move	disk	1	from	L	to	R		
Move	disk	3	from	C	to	L		
Move	disk	1	from	R	to	C		
Move	disk	2	from	R	to	L		
Move	disk	1	from	C	to	L		
Move	disk	4	from	C	to	R		
Move	disk	1	from	L	to	R		
Move	disk	2	from	L	to	C		
Move	disk	1	from	R	to	C		
Move	disk	3	from	L	to	R		
Move	disk	1	from	C	to	L		
Move	disk	2	from	C	to	R		
Move	disk	1	from	L	to	R	

Recursion	vs.	IteraJon	

•  Repe22on	
–  Itera2on:		explicit	loop	
–  Recursion:		repeated	func2on	calls	

•  Termina2on	
–  Itera2on:	loop	condi2on	fails	
–  Recursion:	base	case	recognized	

•  Both	can	have	infinite	loops	

•  Balance		
–  Choice	between	performance	(itera2on)	and	good	
soiware	engineering	(recursion)	

Performance	Tip		

•  Avoid	using	recursion	in	performance	
situa2ons.	Recursive	calls	take	2me	and	
consume	addi2onal	memory.	

How	are	funcJon	calls	implemented?	

•  In	general,	during	program	execu2on	
– The	system	maintains	a	stack	in	memory.	

•  Stack	is	a	last-in	first-out	structure.	
•  Two	opera2ons	on	stack,	push	and	pop.	

– Whenever	there	is	a	func2on	call,	the	ac2va2on	
record	gets	pushed	into	the	stack.	

•  Ac2va2on	record	consists	of	the	return	address	in	the	
calling	program,	the	return	value	from	the	func2on,	
and	the	local	variables	inside	the	func2on.	

– At	the	end	of		func2on	call,	the	corresponding	
ac2va2on	record	gets	popped	out	of	the	stack.	

	
	

At	the	system	
main()
{
 ……..
 x = gcd (a, b);
 ……..
}

int gcd (int x, int y)
{
 ……..
 ……..
 return (result);
}

Return Addr
Return Value

Local
Variables

Before call After call After return

S
TA

C
K

main()
{
 ……..
 x = ncr (a, b);
 ……..
}

int ncr (int n, int r)
{
 return (fact(n)/
 fact(r)/fact(n-r));
}

LV1, RV1, RA1

Before call Call fact ncr returns

int fact (int n)
{
 ………
 return (result);
}

3 times

LV1, RV1, RA1

fact returns

LV1, RV1, RA1

LV2, RV2, RA2

Call ncr

Example::	main()	calls	fact(3)	

int fact (int n)
{
 if (n = = 0)
 return (1);
 else
 return (n * fact(n-1));
}

void main()
{
 int n;
 n = 4;
 printf (“%d \n”, fact(n));
}

RA .. main
-

n = 3

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
-

n = 1

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
-

n = 1
RA .. fact

1
n = 0

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
1*1 = 1
n = 1

RA .. main
-

n = 3
RA .. fact
2*1 = 2
n = 2

RA .. main
3*2 = 6
n = 3

TRACE OF THE STACK DURING EXECUTION

main
calls
fact

fact
returns
to main

Homework	

Trace	of	ExecuJon	for	Fibonacci	Series	

