CS11001/CS11002
Programming and Data Structures
(PDS) (Theory: 3-0-0)

Teacher: Sourangshu Bhattacharya
sourangshu@gmail.com
http://cse.iitkgp.ac.in/~sourangshu/

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur



Example 1: sum=12+22+32+ N2

SUM =0
COUNT =1

SUM = SUM + COUNT*COUNT

COUNT =COUNT +1

']LO_%{)UTPUT sum/”




Example 1: sum=12+22+32+ N2

#include <stdio.h>

int main ()

{

int sum, count, N;

printf ("Enter the value of N: ");
scanft ("sd", &N) ;

sum=0;

count=1;

while (count<=N) {
sum+=count*count;
count++;

}

printf ("Sum is: %d\n",sum);
return O;




Example 2: SUM = 1*2 + 2*3 + 3*4 + to N terms

SUM =0
COUNT =1

SUM = SUM + COUNT * (COUNT+1)

COUNT =COUNT +1

']LO_%{)UTPUT sum/”




Example 2: SUM = 1*2 + 2*3 + 3*4 + to N terms

#include <stdio.h>

int main ()
{
int sum, count, N;
printf ("Enter the value of N: ");
scanf ("sd", &N) ;
sum=0;
for (count=1; count<=N;count++) {
sumt+=count* (count+1) ;
}
printf ("Sum is: %d\n",sum) ;
return 0;




Exam ple 3: Computing e* series up to N terms

oo
" READ X,N ~ x
x 2 :
‘ e = —
TERM = 1 !
SUM =0 n=0 n.
COUNT=1

n

\ 4

SUM =SUM + TERM
TERM =TERM * X/ COUNT

COUNT =COUNT +1

NO YES
— /=/ OUTPUT SUM /

\ 4

STOP




Example 3: Computing e* series up to N terms

#include <stdio.h>

int main ()
{
int count, N;
float x, term, sum;

printf ("Enter the number of terms: ");
scanf ("3sd", &N) ;

printf ("Enter the value of x: ");
scanf ("%f", &x) ;

term=1.0;

sum=0.0;

count=1;

while (count<=N) {
sum+=term;
term*=x/count;
count++;

}

printf ("e"x series upto %d terms 1is:
return O;

%$10.6f\n",N, sum) ;




Exam ple 4. Computing e* series up to 4 decimal places

/" READ X X xn
X
TERM= ] € = 2—
SUM =0 proy n!
COUNT = 1

n
>

\ 4

SUM = SUM + TERM
TERM =TERM * X/ COUNT

\ 4

COUNT =COUNT +1

NO

IS
TERM < 0.0001?

%/ OUTPUT SUM /

\ 4




Example 3: Computing e* series up to N terms

#include <stdio.h>

int main ()
{
int count;
float x, term, sum;

printf ("Enter the value of x: ");
scanf ("%f", &x) ;
term=1.0;
sum=0.0;
count=1;
while (term>0.0001) {
sum+=term;
term*=x/count;
count++;

}

printf ("e”x series upto 4 decimal places: %10.6f\n",sum);
return 0;




Example 5: computing standard

deviation
] & 2
The Steps o=% 2 (Xi— 1)
1. Read N i<
2. ReadX; 1 N
3. Compute Mean u= X
4. Compute Standard Deviation N =
S
@
Suppose we have 10 numbers to handle. \\ (\\) o
Or 20. AT xl®
X
o(\ 63
Or 100. Q’C\
5\)((\ o
PO @\’ﬁ‘“

How to tackle this problem? 2%
Solution: Use arrays.



Arrays



Basic Concept

 Many applications require multiple data items that
have common characteristics.

— In mathematics, we often express such groups of data
items in indexed form:

® X1, X9, X3, ey X,

* Why are arrays essential for some applications?
— Take an example.
— Finding the minimum of a set of numbers.



Arrays

 Homogenous data types

e All the data items constituting the group share
the same name.
int x[10];

* Individual elements are accessed by specifying
the index.

x[0] x[1] x]|2] x[9]

HE |
~

x is a 10-element one
dimensional array




Declaring Arrays

* Like variables, the arrays that are used in a
program must be declared before they are used.

* General syntax:
* type array-name [size];

* type specifies the type of element that will be contained in
the array (int, float, char, etc.)

* sizeis an integer constant which indicates the maximum
number of elements that can be stored inside the array.

int marks[5]; /* marks is an array containing a maximum of 5 integers. */



More examples

This is not allowed
* Examples:
Int X[lO], int n;
char line[80]; int marks[n];

float points[150];
char name[35];

* |f we are not sure of the exact size of the array, we can
define an array of a large size.

int marks[50];

though in a particular run we may only be using, say, 10 elements.



How an array is stored in memory?

e Starting from a given memory location, the successive array
elements are allocated space in consecutive memory locations.

Array

d

X xt+k x+2k
e |let

X: starting address of the array in memory
k: number of bytes allocated per array element

— Element a[i] :: allocated memory location at address x + i*k
* First array index assumed to start at zero.



Accessing Array Elements

A particular element of the array can be accessed by
specifying two things:

— Name of the array.

— Index (relative position) of the element in the array.

In C, the index of an array starts from zero.

Example:
— An array is defined as int x[10];

— The first element of the array x can be accessed as x[0], fourth
element as x[3], tenth element as x[9], etc.

The array index must evaluate to an integer between 0
and n-1 where n is the number of elements in the array.
a[x+2] = 25;
b[3*x-y] = a[10-x] + 5;



A Warning

* In C, while accessing array elements, array bounds
are not checked.

 Example:

int marks|[b];

marks[8] = 75;

— The above assignment would not necessarily cause an
error.

— Rather, it MAY result in unpredictable program results.



Initialization of Arrays

e General form:

type array name[size] = { list of values };

 Examples:

int marks[5] = {72, 83, 65, 80, 76};

char namel[4] = {‘A’, ‘m’, ‘i’, ‘t’};

* Some special cases:
— If the number of values in the list is less than the number of elements,
the remaining elements are automatically set to zero.
float totall[b] = {24.2, -12.5, 35.1};

= total[0]=24.2, totall[l]=-12.5,
total[2]=35.1, total[3]=0, totall[4]=0



Initialization of Arrays

— The size may be omitted. In such cases the
compiler automatically allocates enough space for
all initialized elements.

int flag[]={1, 1, 1, 0};
char namel[] = {‘A’, ‘m’, ‘', ‘t'};



Example 6: Find the minimum of a set of 10 numbers

Array

declaration

{

}

#include <stdio.h>
main ()

———int a[l0], i, min;

min) ;

printf (“Give 10 values \n”);
for (1i=0; i<10; i++)
scanf (“%d”, &al[il);

Reading

min = 99999,
for (1=0,; 1<10; 1i++)

{
1f (al[i] < min)

min = aLELL--§---
}

printf ("\n Minimum is %d”,

Array Element

Accessing
Array Element




Alternate
Version 1

Change only one
line to change the
problem size

<stdio.h>
SI1ZE 10

#include
#define

int main ()

{

int a[SIZE], 1, min;

printf (“Give 10 values \n”);

for (1=0;

scanf

i<size; 1i++)
(“sd”, &alil):;

99999;
(1=0; i<size;

min =
for

{

1++)

if (a[l]
min =

< min)

alil;

}

printf (“\n Minimum is %d”,
return O;

min) ;




Alternate
Version 2

Define an array of
large size and use
only the required
number of elements

#include

<stdio.h>

int main ()

{

*/

int af(l00], i, min, n;

printf (“Give number of elements (n) \n”);
scanft (“%d”, &n); /* Number of elements

1f(n>100) printf (“Array size error!!!”);
printf (“Input all n integers \n”);
for (i=0; i<n; i++)

scanf (“%d”, &ali]):;

min = 99999;
for (1=0; i<n; 1i++)
{

if (al[i] < min)

min = afl[i];

}
printf (M“\n Minimum is %d”, min);
return O;




Example 7:
Computing
GPA

Handling two arrays
at the same time

<stdio.h>
nsub ©

#include
#define

main ()
{
int grade pt[nsub], cred[nsub], I,
gp_sum=0, cred sum=0, gpa;

printf (“Input gr.
subjects \n”);

points and credits for six

for (1=0; i<nsub; 1i++)
scanf (“%d %d”, &grade pt[i],
&cred[1i]);
for (i=0; i<nsub; 1i++)

{

gp_sum += grade pt[i1] * cred[1];

cred sum += cred[1];

}

gpa =

printf
gpa) ;
}

gp_sum / cred sum;
(“\\n Grade point average: 1is

54",




Things you cannot do
int a[l0], b[10];

You cannot
e use =to assign one array variable to another
a=b; /*aandb arearrays */
* use == to directly compare array variables
if (a==Db) .........
* directly scanf or printf arrays

o n

printf (“...... ,a);

Array in
memory




Accessing Array
int al[25],b[25];

* How to copy the elements of one array to another?
— By copying individual elements
for(j3 = 0; 7 < 25; j++)
alj] = blgl;

By reading them one element at a time
for(yJ = 0;, 7 < 25; j++)
scanf (“s£”, &alj]);

— The ampersand (&) is necessary.
— The elements can be entered all in one line or in different lines.



Accessing Array

int al[25];
* Printing array elements one at a time.
for (3J=0; J<25; J++)
printf (M\n %£7, alj]);
— The elements are printed one per line.

printf (M“\n”);
for (1=0,; 3<25; J++)
printf (Y %£”, aljl);

— The elements are printed all in one line (starting with a
new line).



Example 5: computing standard

deviation
ol & 2
The Steps o =N2(xi—‘u)
1. Read N =
2. ReadX; 1 &
3. Compute Mean u= —2 X
4. Compute Standard Deviation N &



Exercise Problem

* A shop stores n different types of items. Given
the number of items of each type sold during
a given month, and the corresponding unit
prices, compute the total monthly sales.



STRING



STRINGS

Array of characters

The size of array must be fixed and greater than 1 +
length of string.

One extra character is required to store the null
character.

The null character (‘\0’) indicates the end of string.



STRINGS Library Functions

* Header file is string.h

* Syntax
— #include <string.h>

* Most frequently used library function:
— strcmp (to compare between two strings)
— strcat (to concatenate one string after another)
— strcpy (to copy one string to another)
— strlen (determines the length of a string)



strcmp

#include <string.h>

int strcmp (const char *sl, const char *s2);

— The strcmp() function compares the two strings s1 and s2.
It returns an integer less than, equal to, or greater than
zero if s1is found, respectively, to be less than, to match,
or be greater than s2.

int strncmp (const char *sl, const char *s2Z2, size t
n);



strcat

#include <string.h>

char *strcat (char *dest, const char *src);

— The strcat() function appends the src string to the dest
string, overwriting the null byte (\0') at the end of dest,
and then adds a terminating null byte. The strings may not
overlap, and the dest string must have enough space for
the result.

char *strncat (char *dest, const char *src, size t
n);



strcpy

e #include <string.h>

* char *strcpy(char *dest, const char *src);

The strcpy() function copies the string pointed to by src,
including the terminating null byte ('\0'), to the buffer
pointed to by dest. The strings may not overlap, and

the destination string dest must be large enough to
receive the copy.

* char *strncpy(char *dest, const char *src, size t
n);



Example 8: Check whether a text is a palindrome or not

R O T A T O|R

+ WOW ; ;
e MOM R OT A T O R
* NOON e <

* LEVEL R O T A T|0|R
* ANNA - B

* ROTOR R OT A T O R
* ROTATOR



Example 8: Check whether a text is a palindrome or not

#include <stdio.h>
#define MAXLEN 100
main ()
{

char text [MAXLEN];

int 1=0,73, len;

scanf ("%s", text) ;
while (text[i++]!="\0"); /* count the length of the text */
len=1-1; /* length is excluding null character */
printf ("Length of the text is %d\n",len);

1=0;
J=len-1;
while (text[1i] == text[]]) {
i++;
J—=7
if(1i>73) break;
}
(i>3)? printf ("%$s is a palindrome.\n",text) : printf("%s is

NOT a palindrome.\n", text);
}



Example 9: palindrome testing for case sensitive cases

* Wow
* Mom
* Noon
e Level
* Anna
* Rotor
* Rotator

N

Check is it a lower case character?
If yes convert to upper case.
How?

1. If character is between 65 and
90 (including) then it is in upper
case.

2. If character is between 97 and
122 (including) then itis in
lower case.

3. Subtract 97-65=32

Check for palindrome or execute the
same code.



Homework: Multiple Word Palindromes

e Wasitacatl|saw?
* No lemon, no melon
 Borrow or rob?



