CS11001/CS11002
Programming and Data Structures
(PDS) (Theory: 3-0-0)

Teacher: Sourangshu Bhattacharya
sourangshu@gmail.com
http://cse.iitkgp.ac.in/~sourangshu/

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

Relational Operators

* Used to compare two quantities.

< Is less than

> |s greater than

<=is less than or equal to
>=|s greater than or equal to
==|s equal to

I=Is not equal to

Relational Operators

int x = 20;
int y = 3;
float a=20.3;

if (x>vy) /* 20 > 3 =» True */

printf (“%d is larger\n”, x);

if (x+ x>y * 6) /* 20420 > 3*6 =» (20+20)>(3*6) =» True
*/
printf (“Double of %d i1s larger than 6 times %d”,x,Vy);

if (x> a) /* Type cast??? */
printf (“*%d is larger than %f”,x, a);
else

printf (“%d i1s smaller than $f”,x, a);

Logical Operators

 Unary and Binary Operators

=>» Logical NOT, logical negation (True if the operand is False.)
&& =» Logical AND (True if both the operands are True.)
=» Logical OR (True if either one of the operands is True.)

FALSE | TRUE

TRUE FALSE

X Y X&&Y X ||V
FALSE | FALSE | FALSE | FALSE
FALSE | TRUE | FALSE | TRUE
TRUE | FALSE | FALSE | TRUE
TRUE | TRUE | TRUE | TRUE

int x =
a=20.3;

1f ((x>y) && (x>a))

20;

int y=3;float

/* FALSE */

printf (*X 1is largest.”);

if((x>y) |1
printf (“X 1is

if (M (x==y)) /*
printf ("X is

if (x'=y) /*
printf ("X is

(x>a))

/* TRUE */
not smallest.”);

TRUE */
not same as Y.”);

TRUE */
not same as Y.”);

Control Statements

Control Statements

Statement takes more than one
branches based upon a
condition test comprising of
relational and/or logical (may be
arithmetic) operators.

Some set of statements are
being executed iteratively until
a condition test comprising of
relational and/or logical (may
be arithmetic) operators are
not being satisfied.

Conditions

* Using relational operators.
— Four relation operators: <, <=, >, >=
— Two equality operations: ==, |=

» Using logical operators / connectives.
— Two logical connectives: &&, | |
— Unary negation operator: !

Condition Tests

count <= 100) /* Relational */

(math+phys+chem) /3 >= 60) /* Arithmetic, Relational
(sex=='M') && (age>=21)) /* Relational, Logical */
(marks>=80) && (marks<90)) /* Relational, Logical
(balance>5000) | | (no of trans>25)) /* Relational,

' (grade==‘A’")) /* Relational,

Logical */

*/

*/

Operator confusion

Equality (==) and Assignment (=) Operators

 What is expected in condition?
— Nonzero values are true, zero values are false
— Any expression that produces a value can be used in control structures

int age=20;

if (age > 18) /* Logical Operator; Evaluated as TRUE */
printf ("You are not a minor!\n");

if (age >= 18) /* Logical Operator; Evaluated as TRUE */

printf ("You are not a minor!\n");
if (age == 20) /* Logical Operator; Evaluated as TRUE */
printf ("You are not a minor!\n");

if (age = 18) /* Arithmetic Operator; Evaluated as TRUE */
printf("You are not a minor!'\n");

if (age = 17) /* Arithmetic Operator; Evaluated as TRUE */
printf("You are a minor!'\n");

Operator confusion

Equality (==) and Assignment (=) Operators . .
auality (== and Assienment () 0p

if (age > 18) /* Logical Operator; Evaluated as TRUE */
printf ("You are not a minor!\n");

int age=20;

if (age >= 18) /* Logical Operator; Evaluated as TRUE */

printf ("You are not a minor!\n");
if (age == 20) /* Logical Operator; Evaluated as TRUE */
printf ("You are not a minor!\n");

if (age = 18') /* Arithmetic Operator; Evaluated as TRUE */
printf("You 'are not a minor'\n"); .
Value of age will be 18

if (age = 17) /*“Arithmetic Operator; Evaluated as TRUE */
printf("You are a'minor!'\n");
Value of age will be 17

"There will be no
syntax error.

Operator confusion

Equality (==) and Assignment (=) Operators

#include <stdio.h>
int main ()

{

int x,y;

scanf (“%d”, &x) ;

V=X%2; /* v will be 1 or zero based on value entered
and stored as x */

if(y=1) { /* y will be assigned with 1, condition will be
evaluated as TRUE */

printf (“Entered number is odd.”);

} else {
printf (“Entered number is even.”);

return 0;

Unary Operator

Increment (++) Operation meansi =i+ 1;

— Prefix operation (++i) or Postfix operation (i++)

Decrement (--) Operation meansi=i- 1;

— Prefix operation (--i) or Postfix operation (i--)

Precedence

— Prefix operation : First increment / decrement and then used in
evaluation

— Postfix operation : Increment / decrement operation after being used

in evaluation
Example
int t, m=1;, int t,m=1;
t=++m;, t=m++,;
m=2 m=2

More Examples on Unary Operator

Initial values :: a=10; b=20
x = 50 + ++a;
a=11,x=61
Initial values :: a=10; b =20;
X = 50 + a++;
x=60,a=11
Initial values :: a=10; b =20;
X = at+ + —--b;
b=19,x=29,a=11
Initial values :: a=10; b= 20;
X = at++ — ++a;

Undefined value (implementation dependent)

Shortcuts in Assighment Statements

* A+=C 2 A=A+C
* A-=B—> A=A-B
* A*=D—> A=A*D
* A/=E—2A=A/E

Input

scanft (“control string”,argl,arg?2, .., argn);

Performs input from the standard input device, which is the keyboard by
default.

It requires a control string refers to a string typically containing data types of
the arguments to be read in.

And the (arguments) address or pointers of the list of variables into which
the value received from the input device will be stored.

The address of the variables in memory are required to mention (& before
the variable name) to store the data.

The control string consists of individual Frou s of characterséone character
group for each input data item). Typically, a ‘%’ sign, followed by a
conversion character.

int size,a,b;

float length;

scanft ("%d", &size) ;
scanft ("%f", &length) ;
scant (“%sd %d”, &a, &b);

Input

C Single charcater
d Decimal integer
e Floating point value
f Floating point value
g Floating point value
h Short int
i Decimal/hexadecimal/octal integer
0 Octal integer
S String
Unsigned decimal integer
X Hexadecimal integer

We can also specify the maximum field-width of a data item, by specifying a number indicating
the field width before the conversion character.

Example: scanf (“%3d %5d”, &a, &b);

Output

printf (“control string”,argl,arg?2, .., argn);

Performs output to the standard output device (typically defined to be the
screen).

Control string refers to a string containing formatting information and data
types of the arguments to be output;

The arguments argl, arg2, ... represent the individual output data items.
The conversion characters are the same as in scanf.

int size,a,b;

float length;

scanft ("%d", &size) ; printf (“%d”, size) ;
scanf ("%f", &length) ; printf (“sf£”, length) ;
scanf (“%d %d”, &a, &b); printf (“%d %d”,a,b);

float a=3.0,
printf (“"sf %

Total Space ?

b=7.0;
sf”,a,b,atb,sqgrt (a+tb)) ;
3.000000 7.000000 10.000000

[¢)

=

(¢}

Formatted Output

3.162278

3

=

$5.1f\na+tb=%3.2f\tSquare

4
Root=%-6.31",a,b,a+tb, sqrt (a+b)) ;
0

a+b=10.0

After decimal
place

\

Square Root=3.162

Tab

Will be written
exactly.

Left Align

For integer, character and string, no

decimal point.

Character 1/0

char chil;

scanf (“%c”, &chl) ; /* Reads a character */
printf (“%c”,chl); /* Prints a character */
chl=getchar(); /* Reads a character */
putchar (chl) ; /* Prints a character */

char name[20];

scanf (“%s”,name) ; /* Reads a string */
printf (Y“%$s”, name) ; /* Prints a string */
gets (name) ; /* Reads a string */
puts (name) ; /* Prints a string */

Help for any command:
S man gets

Problem solving

Step 1:

— Clearly specify the problem to be solved.

Step 2:

— Draw flowchart or write algorithm.

Step 3:

— Convert flowchart (algorithm) into program code.
Step 4.

— Compile the program into executable file.

Step 5:

— For any compilation error, go back to step 3 for debugging.
Step 6:

— Execute the executable file (program).

Flowchart: basic symbols

rocess
Process

"IHEIHHHHII)
@ /O Data /4

Flow Line > ‘ Connector
__4

Example 2: find the largest among three numbers

LARGE =X LARGE =Y
[|

>

/)UTPUT LARGI/ / OUTPUT Z /

Branching: if Statement

* General syntax:
if (condition) { }

* Test the condition, and follow appropriate True
path.

Statement

* Contains an expression that can be TRUE or
FALSE.

* Single-entry / single-exit structure.

* If there is a single statement in the block, the
braces can be omitted.

False

if (basicPay<18000) if (basicPay<18000)
printf(“Bonus Applicable”); {

int bonus;
bonus=basicPay*0.30;

printf(“Bonus is %d”,bonus);

Branching: if-else Statement

General syntax:
if (condition) { ... block 1}

else { block 2 }

Also a single-entry / single-exit structure.

Allows us to specify two alternate blocks of statements, one of which is executed
depending on the outcome of the condition.

If a block contains a single statement, the braces can be omitted.

if(age<60) {
printf(“General Quota”);

} else {
printf(“Senior Citizen”);

}

True False

Print “General
Quota”

w

Print “Senior
Citizen”

VaV

Example 2: find the largest among three numbers

START
#include <stdio.h>
- int main ()
/IEAD X,Y, Z/ (

int X,Y,Z,Large;
scanft (“%d %$d %d”, &X, &Y, &7);

__i if (X>Y) i

Large=X;

LARGE = X |LARGE - Y| } 1o |

1]
Large=Y;
YES IS NO J
l ARGE > 72 __1 if (Large>Z7)
)WGTPUTjLARgg/ //GJUTPUT‘Z//' . printf (“\nThe largest number

/ is: %d”,Large);

printf (“\n The largest

number 1is: %d”,7Z);

return 0;

Nested branching

It is possible to nest if-else statements, one within another.

All if statements may not be having the “else” part.
— Confusion??
Rule to be remembered:
— An “else” clause is associated with the closest preceding unmatched “if”.

Example:
if (age<60) {
1f (age<b) {
printf (YKid Quota”);
} else if (age<10) {
printf (“Child Quota”);
} else {
printf (Y"General Quota”);
}
} else {
printf (“*Senior Citizen”);

}

Desirable Programming Style

Clarity
— The program should be clearly written.
— It should be easy to follow the program logic.

Meaningful variable names

— Make variable/constant names meaningful to enhance program clarity.
e ‘area’ instead of ‘@’
* ‘radius’ instead of ‘r’

Program documentation

— Insert comments in the program to make it easy to understand.
— Never use too many comments.

Program indentation
— Use proper indentation.
— Structure of the program should be immediately visible.

Indentation Example :: Good Style

/* A program to check the age based quota in Indian Railway ticketing system */

#include <stdio.h>
#define SENIOR 60 /* Declare the age of Senior Citizen */

int main()
{
int age;
scanf(“%d”,&age);
if(age< SENIOR) {
if(age<5) {
printf(“Kid Quota”);
} else if (age<10) {
printf(“Child Quota”);
} else {
printf(“General Quota”);
}
} else {
printf(“Senior Citizen”);
}

return O;

Indentation Example :: Bad Style

#include <stdio.h>
#define SENIOR 60
int main()

{

int age;
scanf(“%d”,&age);
if(age< SENIOR) {
if(age<5) {

printf(“Kid Quota”);

} else if (age<10) {
printf(“Child Quota”);

} else {

printf(“General Quota”);
}

} else {

printf(“Senior Citizen”);
}

return O;

}

#include <stdio.h>

#define SENIOR 60

int main()

{

int age;

scanf(“%d”,&age);

if(age< SENIOR) {

if(age<5) { printf(“Kid Quota”); }
else if (age<10) { printf(“Child Quota”);
} else { printf(“General Quota”); }
} else { printf(“Senior Citizen”); }
return O;

}

MARKS = 90

89 = MARKS = 80
79 = MARKS =70
69 = MARKS = 60

<> 59 = MARKS = 50

49 = MARKS = 35

/ READ D;ARKS/ 35 < MARKS

NO
MARKS =90? MARKS = 80? _’@
%UTPUT “EX/ /)UTPUT “ / OUTPUT “B”

Example 3:
Grade computation

7B L

MARKS =90

89 = MARKS = 80
79 = MARKS = 70
69 = MARKS = 60
Homework: 59 = MARKS = 50
Convert to a C program 49 > MARKS > 35

35 < MARKS

Example 3:
Grade computation

7B L

MARKS = 60?

/)UTPUT i / OUTPUT “D” /)UTPUT “ / /)UTPUT « /
STOP STOP STOP STOP

Ternary conditional operator (?:

— Takes three arguments (condition, value if true, value if false).
— Returns the evaluated value accordingly.

(conditionl)? (exprl): (expr2);

age >= 60 ? printf (“Senior Citizen\n”) : printf (“General Quota\n”).

Example:
bonus = (basicPay<18000) ? basicPay*0.30 : basicPay*0.05;

Returns a value

switch Statement

* This causes a particular group of statements to be
chosen from several available groups.

— Uses “switch” statement and “case” labels.
— Syntax of the “switch” statement:

switch (expression) {
case expressionl: { }
case expressionz2: { ... }
case expressionm: { ... }

default: { }
}

switch example

switch (letter) {
case 'A':
printf ("First letter\n");
break;
case 'Z':
printf ("Last letter\n");
break;
default
printf ("Middle letter\n");

break;

“break” statement is used to break the order of execution.

The break Statement

Used to exit from a switch or terminate from a loop.

With respect to “switch”, the “break” statement causes a
transfer of control out of the entire “switch” statement, to
the first statement following the “switch” statement.

Flowchart for switch statement

®,

@ case a] break

false action (s)

@) case b " break

false action(s)

@ default ; break

action(s)

Example: switch break

switch (primaryColor = getchar()) {

case ‘R’ : printf (“RED \n”);
break;

case ‘G’ : printf (“GREEN \n”);
break;

case ‘B’ : printf (“BLUE \n”);

break;
default: printf (“Invalid Color \n”);
break; /* break i1s not mandatory here

*/

Example 5: Sum of first N natural numbers

SUM =0
COUNT =1

SUM = SUM + COUNT

COUNT =COUNT +1

Example 6: Computing Factorial

FACT =1
COUNT =1

FACT = FACT * COUNT

COUNT =COUNT +1

Exercise 1: Find the Roots of a quadratic
equation

ax2+bx+c=0

Coefficients (a,b,c) are your input.

The Essentials of Repetition

* Loop

— Group of instructions computer executes repeatedly while some
condition remains true

* Counter-controlled repetition
— Definite repetition - know how many times loop will execute
— Control variable used to count repetitions

* Sentinel-controlled repetition
— Indefinite repetition
— Used when number of repetitions not known
— Sentinel value indicates "end of data"

Counter-Controlled Repetition

* Counter-controlled repetition requires
— name of a control variable (or loop counter).
— initial value of the control variable.

— condition that tests for the final value of the control variable (i.e.,
whether looping should continue).

— increment (or decrement) by which the control variable is
modified each time through the loop.

int counter =1; /* initialization */
while (counter <= 10) { /* repetition condition */
printf ("%d\n", counter);

++counter; //increment

Repetition: Flowchart

Single-entry / single-exit structure

>

@ false

true

Statement(s)

int counter =1;

while (counter <= 10) {
printf("%d\n", counter);
++counter;

}

May not execute at all based on
condition.

statement(s)

false

true

int counter =1;

do {
printf("%d\n", counter);
++counter;

} while (counter <= 10) ;

Will be executed at least once,
whatever be the condition.

while, do-while Statement

int digit =0;
while (condition) while (digit <=9)
statement to repeat; printf (“%d \n”, digit++);

int weight=75;

while (weight > 65) {
printf("Go, exercise, ");
printf("then come back. \n");
printf("Enter your weight: ");

while (condition) {

statement_l;

sta tement_N ;

} scanf("%d", &weight);
}
weight=75; do {
do { statement-1;,
printf("Go, exercise, "); statement-2;,
printf("then come back. \n");
printf("Enter your weight: "); statement-n;
scanf("%d", &weight); } while (condition) ;

} while (weight >65) ; .
At least one round of exercise is ensured.

Example 5: Sum of first N natural numbers

COUNT =1

o

\ 4

SUM = SUM + COUNT

\ 4

COUNT =COUNT +1

} YES
— w —outeut sum,/
NO '

Hinclude <stdio.h>

int main()

{

int n, sum, count;

printf(“Enter a natural number: ”);

scanf(“%d”,&n);

count=0;

sum=0;

while(count<=n) {
sum+=count; //sum=sum+count
count++;

}

printf(“The sum of first %d natural numbers is: %d”,

n,sum);
return O;

Line break in a /
statement is allowed
after a comma.

STOP

Example 6: Computing Factorial

A\ 4

FACT =1
COUNT =1

[

»

A\ 4

FACT = FACT * COUNT

A\ 4

COUNT =COUNT +1

Hinclude <stdio.h>

int main()
{
int n, fact, count;
printf(“Enter a number: ”);
scanf(“%d”,&n);
count=1;
fact=1;
while(count<=n) {
fact=fact*count;
count++;
}
printf(“The factorial of %d is: %d”,n,fact);
return O;

}

YE : :
factorial value, you may

\ 4

@ declare fact as float.

Example 7: Computing Factorial

H#include <stdio.h>

int main()
{
int n, fact, count;
printf(“Enter a number: ”);
scanf(“%d”,&n);
count=1;
fact=1;
while(count<=n) {
fact=fact*count;
count++;
}
printf(“%d”,fact);
return O;

Hinclude <stdio.h>

int main()
{
int n, fact, count;
printf(“Enter a number: ”);
scanf(“%d”,&n);
count=n;
fact=1;
while(count>=1) {
fact=fact*count;
count--;
}
printf(“%d”,fact);
return O;

count may increment.

count may decrement.

Loop variable may decrement

Counter-Controlled Repetition

— name of a control variable (or loop counter).
— initial value of the control variable.

— condition that tests for the final value of the control variable (i.e.,
whether looping should continue).

— increment (or decrement) by which the control variable is
modified each time through the loop.

for (initial; condition; iteration)

All are expressions.
statement_to _repeat;

initial 2 exprl
condition =2 expr2
for (initial; condition; iteration) { iteration 2expr3
statement_to_repeat;
statement_to_repeat; fact = 1; /* Calculate 10! */
} for (1 =1; 1 < =10; i++)

fact = fact * 1;

Single-entry / single-exit structure

1

expression

expression2

True

statement(s)

!

expression3

for loop

False

for (initial; condition;
iteration) {

statement 1;

statement_n;

e How it works?

— “expressionl” is used to initialize
some variable (called index) that
controls the looping action.

— “expression2” represents a
condition that must be true for the
loop to continue.

— “expression3” is used to alter the
value of the index initially assigned
by “expressionl”.

Example 8

: Computing Factorial

H#include <stdio.h>

int main()

{

int n, fact, count;

printf(“Enter a number: ”);

scanf(“%d”,&n);

count=1;

fact=1;

while(count<=n) {
fact=fact*count;

count++;

}

printf(“%d”,fact);

return O;

{

Hinclude <stdio.h>

int main()

int n, fact, count;

printf(“Enter a number: ”);

scanf(“%d”,&n);

fact=1;

for(count=1;count<=n;count++) {
fact=fact*count;

}

printf(“%d”,fact);

return O;

while loop

for loop

Example 9: Computing Factorial

#include <stdio.h> #include <stdio.h>
int main() int main()
{ {
int n, fact, count; int n, fact, count;
printf(“Enter a number: ”); printf(“Enter a number: ”);
scanf(“%d”,&n); scanf(“%d”,&n);
count=1; fact=1;
fact=1; for(count=1;count<=N;count++) {
for(;count<=n;) { fact=fact*colnt;
fact=fact*count; }
count++; printf(“%d”,fact);
} return O;
printf(“%d”,fact); }
return O;
}
Homework:

Rewrite the factorial using for loop and by
decrementing count.

Example 10: Computing Factorial

Hinclude <stdio.h>

int main()
{
int n, fact, count;
printf(“Enter a number: ”);
scanf(“%d”,&n);
fact=1;
for(count=1;count<=n;count++) {
fact=fact*count;
}
printf(“%d”,fact);
return O;

#include <stdio.h>

int main()
{
int n, fact, count;
printf(“Enter a number: ”);
scanf(“%d”,&n);
for(fact=1,count=1;count<=n;count++) {
fact=fact*count;
}
printf(“%d”,fact);
return O;

The comma operator:
We can give several statements separated by
commas in place of “expressionl”, “expression2”,
and “expression3”.

Advanced expression in for structure

* Arithmetic expressions
— Initialization, loop-continuation, and increment can contain arithmetic
expressions.

— eg let x = 2andy = 10

for (j=x; <=4 *x *y;j +— / X)
is equivalent to / /
for (J = 2; j <= J += 5)

"Increment"” may be negative (decrement)

If loop continuation condition initially false
Body of for structure not performed
Control proceeds with statement after foxr structure

Specifying “Infinite Loop”

count=1; count=1;

while(1) { do {
printf(“Count=%d”,count); printf(“Count=%d”,count);
count++; count++;

} } while(1);

count=1;

for(;;) { for(count=1;;count++) {
printf(“Count=%d” count); printf(“Count=%d”,count);
count++; }

break Statement

Break out of the loop { }
— can use with

* while

* do while

e for

* switch
— does not work with

« if{}
e else{}

Causes immediate exit from a while, for, do/while or switch
structure

Program execution continues with the first statement after the
structure

Common uses of the break statement
— Escape early from a loop
— Skip the remainder of a switch structure

Break from “Infinite Loop”

count=1,;
while(1) {
printf(“Count=%d"”,count);
count++;
if(count>100)
break;
}
count=1;
for(;;) {
printf(“Count=%d"”,count);
count++;
if(count>100)
break;

count=1;
do {
printf(“Count=%d"”,count);
count++;
if(count>100)
break;
} while(1);

for(count=1;;count++) {
printf(“Count=%d"”,count);
if(count>100)
break;

continue Statement

* continue
— Skips the remaining statements in the body of a while, for
or do/while structure
* Proceeds with the next iteration of the loop

— while and do/while

* Loop-continuation test is evaluated immediately after the
continue statement is executed

— for structure

* Increment expression is executed, then the loop-
continuation test is evaluated.

* expression3 is evaluated, then expression2 is evaluated.

An Example with break and continue

fact = 1; /* a program to calculate 10 ! */
i = 1;
while (1) {

fact = fact * 1;

i++ ;

1f(1i<10) {

continue; /* not done yet! Go to next

iteration*/

}

break;

Example 11: Primality testing

#include <stdio.h>
int main ()
{
int n, 1=2;
scanf (“%d”, &n);
while (i1 < n) {
if (n $ 1 == 0) {
printf (“%d is not a prime \n”, n);
break;
}
i++;
}
if (i>=n)
printf (“%d is a prime \n”, n);
return 0;

#include

Example 12: Compute GCD of two numbers

<stdio.h>

int main ()

{

int A, B,
scanft (3d %sd”, &A, &B);
if (A > B)

temp;

temp = A;

A = B;

B = temp;

}

while ((B % A) != 0) {
temp = B $ A;

B = A;

A = temp;

}

printf (“The GCD is %d”,

return 0;

A);

12) 45 (3
36

9) 12 (1
9

9 (3

9
0

Initial: A=12, B=45

Iteration 1: temp=9, B=12,A=9

Iteration 2: temp=3, B=9, A=3
B%A=0 = GCDis3

Example 13: Find the sum of digits of a number

N=56342;

56342 % 10=2;

#include <stdio.h> 56342 / 10 = 5634;

int main () 5634 % 10 = 4;

{ 5634 / 10 = 563;
int n, sum=0; 563 % 10 = 3;
scanf (“%d”, &n); 563 /10 = 56;
e — 0 56 % 10 = 6;
white (n == 0o 56 /10 = 5;
sum = sum + (n % 10); 5% 10 = 5;
n=n/ 10; 5/10=0;
} N=0;

printf (“"The sum of digits of the number 1i1s %d
\n”, sum);

return 0;

Exercise 2:

Write a C program that will read a
decimal integer and will convert
to equivalent to binary number.

