
CS11001/CS11002	
Programming	and	Data	Structures	

(PDS)	(Theory:	3-0-0)	

Teacher:	Sourangshu	Bha@acharya	
sourangshu@gmail.com	

h@p://cse.iitkgp.ac.in/~sourangshu/	
	

Department	of	Computer	Science	and	Engineering	
Indian	InsJtute	of	Technology	Kharagpur	

TentaJve	Syllabus	
IntroducJon	to	digital	computers	
	
Basic	programming	constructs	

	Variables	and	simple	data	types	
	Assignments	
	Input/output	
	Condi7ons	and	branching	
	Loops	and	itera7on		
	Itera7ve	searching	and	sor7ng	algorithms	
	Programming	Examples:	Sor7ng	…	etc 		

	
Advanced	programming	constructs	

	Func7ons	and	recursion	
	Recursive	sor7ng	algorithms	
	Arrays	and	strings 		
	Structures	
	Pointers	and	dynamic	memory	alloca7on	

File	Handling	

TentaJve	Syllabus	

Performance	analysis	of	programs	
	
Data	structures	

	Abstract	data	types	
	Ordered	lists	
	Stacks	and	queues	

	
	
	
	

Programming	Language:	C	

Course	Materials	

Do	not	use	books	wri@en	on	specific	C	compilers	like	Turbo	C,	gcc	
Use	any	standard	textbook	on	ANSI	C	
	
Some	useful	text	books:	
ü  Brian	W.	Kernighan	and	Dennis	M.	Ritchie	

	The	C	Programming	Language,	Pren7ce	Hall	of	India.	
ü  E.	Balaguruswamy	

	Programming	in	ANSI	C,	Tata	McGraw-Hill	
ü  Byron	GoTried	

	Schaum’s	Outline	of	Programming	with	C,	McGraw-Hill	
ü  Seymour	Lipschutz,		

	Data	Structures,	Schaum’s	Outline	Series,	Tata	McGraw-Hill	
ü  Ellis	Horowitz,	Satraj	Sahni	and	Susan	Anderson-Freed,		

	Fundamentals	of	Data	Strcutures	in	C,	W.	H.	Freemn	and	Company	
	

Course	Materials	

	
Web	references:		

hWp://cse.iitkgp.ac.in/~pds/	
	

Some	useful	soYware:	hWp://cse.iitkgp.ac.in/~pds/
soYware/	

	
Notes:		

hWp://cse.iitkgp.ac.in/~pds/notes/	
	

Course	related	informa7on	and	announcements:	
hWp://cse.iitkgp.ac.in/~pds/current/	

A@endance	in	the	classes	is	MANDATORY	
	

Students	having	poor	aWendance	will	be	penalized	in	terms	of	
the	final	grade	/	deregistra7on.	

	
	
Proxy	in	the	aWendance	will	be	heavily	penalized.	Each	proxy	in	

the	class	will	result	in	the	deduc7on	of	5	marks	from	total	
marks	you	obtained.		

	
It	is	your	responsibility	to	check	no	such	aWendance	marked	

against	you.	
	

Course	Facts	for	secJon	1,	2,	3	

Ø SecJons:		1,	2,	3	
	
Ø Class	Room:	V2	

Ø Time	Schedule:	
	Monday	8:00	–	09:55	am,	Wednesday	12:00	–	12:55	pm	

Ø Class	Teacher:		
Sudeshna	Sarkar	
	

Ø Teaching	Assistant	(TA):	
										Abhijit	Mondal	

																		Ananda	Das	
																		Madhumita	Mallick	
																		Saptarshi	Misra	

Course	Facts	for	secJons	4,	5	
Ø SecJons:		4,	5	
	
Ø Class	Room:	NR121	

Ø Time	Schedule:	
				Wednesday	12:00	–	12:55	pm,	Thursday	11:00	–	11:55,	Friday	9:00	–	09:55	

Ø Class	Teacher:		
Debasis	Samanta	
	

Ø Teaching	Assistant	(TA):	
	Cheema	Baljeet	Singh	

								Sreeja	S	R	
								Anushri	Saha	
								Anoop	A	

Course	Facts	for	secJons	6,	7	
Ø SecJons:		6,	7	
	
Ø Class	Room:	NR222	

Ø Time	Schedule:	
	Monday	(10:00-10:55);	Wednesday	(9:00-9:55);	Thursday	(10:00-10:55)	

Ø Class	Teacher:		
Sourangshu	BhaWacharya	
	

Ø Teaching	Assistant	(TA):	
	Rijula	Kar,	

								Abir	Dey,	
								Sanga	Chaki,	
								Sankarshan	Mridha	

Course	Facts	
DistribuJon	of	Marks:	

Class	Test	1:		 									10	
Mid	Semester	Exam:	 	30	
Class	Test	2:		 									10	
End	Semester	Exam:	 	50	

	
Important	Dates:	

Class	Test	1:										Thursday,	February	2,	2017,	7:00	-	8:00	pm	
Class	Test	2:		 	Wednesday	March	15,	2017	7:00	-	8:00	pm		
Mid-Semester	:	 	February	12	-	21,	2017		(as	per	ins7tute	schedule)	
End-Semester	:	 	April	20	–	April	28,	2017	(as	per	ins7tute	schedule)	

	
TentaJve	syllabus	of	tests:	

	CT1	syllabus:	 	Un7l	Arrays	and	Strings		
	Mid	Sem:	 									Un7l	Func7ons,	including	recursion	
	CT2:	 	 									Un7l	Arrays	(2D)	
	End	Sem:	 									Everything 		

Let us see

What	is	a	Computer?	

Central
Processing

Unit
(CPU)‏

Input
Device

Output
Device

Main Memory

Storage (Hard disk)

It is a machine which can accept data, process them,
and output results.

The Box

Central	Processing	Unit	(CPU)	

– All	computa7ons	take	place	here	in	order	for	the	
computer	to	perform	a	designated	task.	

–  It	has	a	large	number	of	registers	which	temporarily	store	
data	and	programs	(instruc7ons).	

–  It	has	circuitry	to	carry	out	arithme7c	and	logic	opera7ons,	
take	decisions,	etc.	

–  It	retrieves	instruc7ons	from	the	memory,	interprets	
(decodes)	them,	and	perform	the	requested	opera7on.	

while	<power	is	on>	
	1.	fetch	the	instruc@on	
	 	<decode	it>	
	2.	execute	the	instruc@on	

• Uses	semiconductor	technology	
• Allows	direct	access	
• RAM	–	Random	Access	Memory	

– Some	measures	to	be	remembered	
• 1	K	=	210	(=	1024)‏	
• 1	M	=	220	(=	one	million	approx.)‏	
• 1	G	=	230	(=	one	billion	approx.)‏	

Main	Memory	

Input	Output	(I/O)	
•  Input	Device	

–  Keyboard,	Mouse,	Scanner,	Digital	Camera	
•  Output	Device	

– Monitor,	Printer	
•  Storage	Peripherals	

– Magne7c	Disks:	hard	disk,	floppy	disk	
•  Allows	direct	access	

– Op7cal	Disks:	CDROM,	CD-RW,	DVD	
•  Allows	direct	access	

–  Flash	Memory:	pen	drives	
•  Allows	direct	access	

– Magne7c	Tape:	DAT	
•  Only	sequen7al	access	

Typical	ConfiguraJon	of	a	PC	

•  CPU: 	 	 	Intel(R)	Core(TM)		
	 	 	 	 	i5-4570	CPU,	3.2	GHz		

•  Main	Memory:					 	4	GB	
•  Hard	Disk: 							 	500	GB	
•  Floppy	Disk: 	 	Not	present	
•  CDROM:	 	 	DVD	RW	combo-drive	
•  Input	Device:	 	Keyboard,	Mouse	
•  Output	Device: 	Monitor	
•  Ports: 	 	 	USB,	Firewire,	Infrared	

Number	System	
•  Decimal	number	system	

–  Ten	digits	:		0,	1,	2,	3,	4,	5,	6,	7,	8,	9	
–  Every	digit	posi7on	has	a	weight	:	power	of	10.	
	

•  Example:	
234 	=		2	x	102		+		3	x	101		+		4	x	100	
	

250.67	=		2	x	102		+		5	x	101		+		0	x	100			
	 	 	+		6	x	10-1			+		7	x	10-2	

Number	system	in	digital	computer	

•  A	digital	computer	is	built	out	of	7ny	electronic	
switches.	
–  From	the	viewpoint	of	ease	of	manufacturing	and	reliability,	
such	switches	can	be	in	one	of	two	states,	ON	or	OFF.	

–  This	can	be	represented	by	0	(OFF)	and	1	(ON).	
	

•  This	suggests	for	a	binary	number	system	for	a	
digital	computer.	

Concept	of	Bits	and	Bytes	
•  Bit	

– A	single	binary	digit	(0	or	1).	
•  Nibble	

– A	collec7on	of	four	bits	(say,	0110).	
•  Byte	

– A	collec7on	of	eight	bits	(say,	01000111).	
•  Kilobyte	(KB),	MB,	GB	

–  ?????	
•  Word	

– Depends	on	the	computer.	
–  Typically	4	or	8	bytes	(that	is,	32	or	64	bits).	

Decimal	and	Binary	

•  A	k-bit	decimal	number	
–  Can	express	unsigned	integers	in	the	range	
								0		to		10k	–	1	

•  For	k=3,	from	0	to	999.	

•  A	k-bit	binary	number	
–  Can	express	unsigned	integers	in	the	range	
								0		to		2k	–	1	

•  For	k=8,	from	0	to	255.	
•  For	k=10,	from	0	to	1023.	

Computer	Languages	

•  Machine	Level	Language	(MLL)	
– Expressed	in	binary.	
– Directly	understood	by	the	computer.	
– Not	portable;	varies	from	one	machine	type	to	
another.	

•  Program	wriWen	for	one	type	of	machine	will	not	run	
on	another	type	of	machine.	

– Difficult	to	use	in	wri7ng	programs.	

Example:	Machine	Level	Language	

Binary	 Hexadecimal	

Computer	Languages	
•  Assembly	Level	Language	(ALL)	

– Mnemonic	form	of	machine	language.	
– Easier	to	use	as	compared	to	machine	language.	

•  For	example,	use	“ADD”	instead	of	“10110100”.	

– Not	portable	(like	machine	language).	
– Requires	a	translator	program	called	assembler.	

Assembler
Assembly
language
program

Machine
language
program

Example:	Assembly	Level	Language	

•  Assembly	language	is	also	difficult	to	use	in	
wri7ng	programs.	
– Requires	many	instruc7ons	to	solve	a	problem.	

•  Example:		Find	the	average	of	three	numbers.	
MOV A,X ; A = X
ADD A,Y ; A = A + Y

ADD A,Z ; A = A + Z
DIV A,3 ; A = A / 3

MOV RES,A ; RES = A

RES = (X + Y + Z) / 3

High-Level	Language	
•  Machine	language	and	assembly	language	are	
called	low-level	languages.	
–  They	are	closer	to	the	machine.	
– Difficult	to	use.	

•  High-level	languages	are	easier	to	use.	
–  They	are	closer	to	the	programmer.	
–  Examples:	

•  Fortran,	Cobol,	C,	C++,	Java.	
–  Requires	an	elaborate	process	of	transla7on.	

•  Using	a	soYware	called	compiler.	
–  They	are	portable	across	plavorms.	

Example:	High	Level	Language	

•  Example:		Find	the	average	of	three	numbers.	

RES = (X + Y + Z) / 3

The	relaJonship	

High	Level	
Language	

Assembly	Level	
Language	

Machine	Level	
Language	

Assembler	

Compiler	

ClassificaJon	of	Soeware	

1.  Applica7on	SoYware	
•  Used	to	solve	a	par7cular	problem.	
•  Editor,	financial	accoun7ng,	weather	forecas7ng,	etc.	
	

2.  System	SoYware	
•  Helps	in	running	other	programs.	
•  Compiler,	opera7ng	system,	etc.	

OperaJng	Systems	

•  A	 system	 soYware	 to	 interface	 between	 computer	
hardware	 and	 soYware	 resources	 including	
applica7on	programs.	

•  Categories	of	opera7ng	systems:	
– Single	user	
– Mul7	user	

•  Time	sharing	
•  Mul7tasking	
•  Real	7me	

OperaJng	Systems	
•  Popular	opera7ng	systems:	

– DOS:			 	 	 		single-user	
– Windows:			 	 		single-user	mul7tasking		
– Unix:		 	 	 		mul7-user	
– Linux:	 	 	 		a	free	version	of	Unix		
	

•  The	laboratory	class	will	be	based	on	Unix.	

Programming in C

Universal	starJng	point		

#include <stdio.h>

int main()
 {
 printf (“Hello World\n”);
 return 0;

 }

Header file includes functions
for input/output

Main function is executed when
you run the program. (Later we will
see how to pass its parameters)

Curly braces within which
statements are executed one
after another.

Statement for
printing the sentence
within double quotes
(“..”). ‘\n’ denotes end
of line.

Return	value	
to	func7on	

1.   Write	a	program	and	save	it.	
2.   Compile	the	program	using	the	correct	compiler.	
3.   Execute	the	program	

Three	steps	to	follow		

1.	vi		hello.c	
#include	<stdio.h>	
	
int	main()	
{	
								prini("Hello	World\n");	
								return	0;	
}	
	
2.	$	cc	hello.c	
$	
	
3.	$./a.out	
Hello	World		

IntroducJon	to	C	
•  C	is	a	general-purpose,	structured	programming	language.	

–  Resembles	other	high-level	structured	programming	languages,	such	as	Pascal	
and	Fortran-77.	

–  Also	contains	addi7onal	features	which	allow	it	to	be	used	at	a	lower	level.	

•  C	can	be	used	for	applica7ons	programming	as	well	as	for	
systems	programming.	

•  There	are	only	32	keywords	and	its	strength	lies	in	its	built-
in	func7ons.	

•  C	is	highly	portable,	since	it	relegated	much	computer-
dependent	features	to	its	library	func7ons.	

History	of	C	
•  Originally	developed	in	the	1970’s	by	Dennis	Ritchie	
at	AT&T	Bell	Laboratories.	
–  Outgrowth	of	two	earlier	languages	BCPL	and	B.	

•  Popularity	became	widespread	by	the	mid	1980’s,	
with	the	availability	of	compilers	for	various	
plavorms.	

•  Standardiza7on	has	been	carried	out	to	make	the	
various	C	implementa7ons	compa7ble.	
–  American	Na7onal	Standards	Ins7tute	(ANSI)	

Structure	of	a	C	program	
•  Every	C	program	consists	of	one	or	more	func7ons.	

–  One	of	the	func7ons	must	be	called	main.	

–  The	program	will	always	begin	by	execu7ng	the	main	func7on.	
	

•  Each	func7on	must	contain:	
–  A	func7on	heading,	which	consists	of	the	func@on	name,	
followed	by	an	op7onal	list	of	arguments	enclosed	in	
parentheses.	

–  A	list	of	argument	declara@ons.	

–  A	compound	statement,	which	comprises	the	remainder	of	the	
func7on.	

Structure	of	a	C	program	

•  Each	compound	statement	is	enclosed	within	a	pair	
of	braces:		‘{‘	and	‘}’	
–  The	braces	may	contain	combina7ons	of	elementary	
statements	and	other	compound	statements.	

	

•  Comments	may	appear	anywhere	in	a	program,	
enclosed	within	delimiters	‘/*’	and	‘*/’.	
–  Example:			

a	=	b	+	c;				/*	ADD	TWO	NUMBERS	*/	

#include <stdio.h>

int main()
{

 int n;
 scanf(“%d”,&n);
 printf(“%d”,n);
 return 0;

}

In	and	Out	only		
#include <stdio.h>

int main()
{

 int n;
 scanf(“%d”,&n);
 printf(“%d”,n+n);
 return 0;

}

#include <stdio.h>

int main()
{

 int n,m;
 scanf(“%d”,&n);/* Read the value of n */
 m=n+n;
 printf(“%d”,m);
 return 0;

}

In	and	Out	only		

#include <stdio.h>

int main()
{

 int n,m;
 scanf(“%d”,&n);/* Read the value of n */
 m=n+n;
 printf(“%d”,m);
 return 0;

}

Control character for printing
value of m in decimal digits.

Integers variables declared
before their usage.

Comments within /* .. */

Input statement for reading
variable from the keyboard

#include <stdio.h>

#define PI 3.1416

double area_of_circle(float);

double area_of_circle (float radius)
{

 return PI*radius*radius;
}

int main()
{

 int squareSide;
 double area;
 scanf(“%d”, &squareSide);
 area= area_of_circle(squareSide/2);
 printf(“Area of the circle enclosing the square of side %d

is: %f\n”, squareSide, area);
 return 0;

}

A	complete	C	program	
Include	header	files	

Declare	global	variables,	
constants	and	func7on	

prototypes	

Func7on	bodies	

There	must	be	a	main	func7on	in	
any	C	program.	

#include <stdio.h>

#define PI 3.1416

double area_of_circle(float);

double area_of_circle (float radius)
{

 return PI*radius*radius;
}

int main()
{

 int squareSide;
 double area;
 scanf(“%d”, &squareSide);
 area= area_of_circle(squareSide/2);
 printf(“Area of the circle enclosing the square of side %d

is: %f\n”, squareSide, area);
 return 0;

}

A	complete	C	program	
Preprocessor statement.
Replace PI by 3.1416
before compilation.

Function called

Example of a function
called as per need from
main program.

main()	funcJon:	start	of	execuJon	

The	C	Character	Set	

•  The	C	language	alphabet:	
–  Uppercase	leWers	‘A’	to	‘Z’	
–  Lowercase	leWers	‘a’	to	‘z’	
–  Digits	‘0’	to	‘9’	
–  Certain	special	characters:	

! # % ^ & * ()

-  _ + = ~ [] \

 | ; : ‘ “ { } ,

. < > / ? blank

IdenJfiers	
•  Iden7fiers	

–  Names	given	to	various	program	elements	(variables,	
constants,	func7ons,	etc.)	

– May	consist	of	leIers,	digits	and	the	underscore	(‘_’)	
character,	with	no	space	between.	

–  First	character	must	be	a	leWer.	

–  An	iden7fier	can	be	arbitrary	long.	
•  Some	C	compilers	recognize	only	the	first	few	characters	
of	the	name	(16	or	31).	

–  Case	sensi7ve	
•  ‘area’,	‘AREA’	and	‘Area’	are	all	different.	

Keywords	
•  Keywords	

–  Reserved	words	that	have	standard,	predefined	meanings	
in	C.	
	

–  Cannot	be	used	as	iden7fiers.	
	

–  OK	within	comments.	
	

–  Standard	C	keywords:	

auto break case char const continue default do

double else enum extern float for goto if

int long register return short signed sizeof static

struct switch typedef union unsigned void volatile while

Valid	and	Invalid	IdenJfiers	
•  Valid	idenJfiers	

X	
abc	
simple_interest	
a123	
LIST	
stud_name	
Empl_1	
Empl_2	
avg_empl_salary	

•  Invalid	idenJfiers	
10abc	
“hello”	
simple	interest	
(area)	
%rate	

int		::		integer	quan7ty	
						Typically	occupies	4	bytes	(32	bits)	in	memory.	

	

char		::		single	character	
						Typically	occupies	1	byte	(8	bits)	in	memory.	

	

float		::		floa7ng-point	number	(a	number	with	a	decimal	point)	
						Typically	occupies	4	bytes	(32	bits)	in	memory.	

	

double	::		double-precision	floa7ng-point		number	

Basic	Data	Types	in	C	

Precision	refers	to	the	number	of	significant	digits	a6er	the	decimal	point.	

Augmented	Data	Type	

•  Some	of	the	basic	data	types	can	be	augmented	
by	using	certain	data	type	qualifiers:	
–  short	
–  long	
–  signed	
–  unsigned	

•  Typical	examples:	
–  short	int	
–  long	int	
–  unsigned	int	

Integer		type	

Type	 Storage	size	
(in	byte)	 Value	range	

char	 1		 -128	to	127	or	0	to	255	
unsigned	char	 1		 0	to	255	
signed	char	 1		 -128	to	127	

int	 2	or	4	 -32,768	to	32,767	or	-2,147,483,648	to	
2,147,483,647	

unsigned	int	 2	or	4	 0	to	65,535	or	0	to	4,294,967,295	
short	 2		 -32,768	to	32,767	
unsigned	
short	 2		 0	to	65,535	

long	 4		 -2,147,483,648	to	2,147,483,647	
unsigned	long	 4		 0	to	4,294,967,295	

Integer		type	

unsigned	char	è	1	byte	è	8	bits		
	 	è	00000000	to	11111111	è	0	to	255	

	
	11111111	è	1×27+	1×26+	1×25+	1×24+	1×23+	1×22+	1×21+	1×20	

	
	

signed	char	è	1	byte	è	8	bits		
	 	è	00000000	to	11111111	è	-128	to	127	

	
	1111111	è	1×26+	1×25+	1×24+	1×23+	1×22+	1×21+	1×20	

	

FloaJng-point		type	

Type	 Storage	size	
(in	byte)	 Value	range	 Precision	

float	 4		 1.2E-38	to	3.4E+38	 6	decimal	places	
double	 8		 2.3E-308	to	1.7E+308	 15	decimal	places	
long	double	 10		 3.4E-4932	to	1.1E+4932	 19	decimal	places	

E or e means “10 to
the power of”

ASCII	Table	

Extended	ASCII	Table	
(American	Standard	Code	for	Informa7on	Interchange)	

Some	Examples	of	Data	Types	

•  int	
		0,		25,		-156,		12345,	-99820	

•  char	
		‘a’,				‘A’,				‘*’,				‘/’,				‘	’	

•  float	
			23.54,		-0.00345,		25.0	
			2.5E12,		1.234e-5	

E or e means “10 to
the power of”

Constants	

Constants

Numeric
Constants

Character
Constants

string single
character

floating-point integer

Integer	Constants	

•  Consists	of	a	sequence	of	digits,	with	possibly	
a	plus	or	a	minus	sign	before	it.	
–  Embedded	spaces,	commas	and	non-digit	characters	are	
not	permiWed	between	digits.	

	

•  Maximum	and	minimum	values	(for	32-bit	
representa7ons)	
			Maximum	::						2147483647								
			Minimum		::			–	2147483648	

	

FloaJng-point	Constants	
•  Can	contain	frac7onal	parts.	

•  Very	large	or	very	small	numbers	can	be	
represented.	
				23000000	can	be	represented	as	2.3e7	
	

•  Two	different	nota7ons:	
1.  Decimal	nota7on	

				25.0,		0.0034,		.84,		-2.234	
2.  Exponen7al	(scien7fic)	nota7on	

				3.45e23,		0.123e-12,		123E2	 e means “10 to
the power of”

Single	Character	Constants	

•  Contains	a	single	character	enclosed	within	a	pair	
of	single	quote	marks	(‘		’).	
–  Examples	::		‘2’,	‘+’,	‘Z’	

•  Some	special	backslash	characters	
			‘\n’ 	new	line	
			‘\t’ 	horizontal	tab	
			‘\’’ 	single	quote	
			‘\”’ 	double	quote	
			‘\\’ 	backslash	
			‘\0’ 	null	

String	Constants	

•  Sequence	of	characters	enclosed	in	double	quotes	
(“	“).	
–  The	characters	may	be	leWers,	numbers,	special	
characters	and	blank	spaces.	

•  Examples:	
			“nice”,		“Good	Morning”,		“3+6”,		“3”,	“C”	
	

•  Differences	from	character	constants:	
–  ‘C’	and	“C”	are	not	equivalent.	
–  ‘C’	has	an	equivalent	integer	value	while	“C”	does	not.	

Variables	

•  It	is	a	data	name	that	can	be	used	to	store	a	
data	value.	

•  Unlike	constants,	a	variable	may	take	different	
values	in	memory	during	execu7on.	

•  Variable	names	follow	the	naming	conven7on	
for	iden7fiers.	
– Examples	::		temp,	speed,	name2,	current	

Example	

int a, b, c;
char x;

a = 3;
b = 50;
c = a – b;
x = ‘d’;

b = 20;
a = a + 1;
x = ‘G’;

Variables

Constants

DeclaraJon	of	Variables	

•  There	are	two	purposes:	
1.  It	tells	the	compiler	what	the	variable	name	is.	
2.  It	specifies	what	type	of	data	the	variable	will	hold.	

•  General	syntax:	
					data-type		variable-list;	
	

•  Examples:	
				int			velocity,	distance;	
				int			a,	b,	c,	d;	
				float		temp;	
				char		flag,	op7on;	

Address	and	Content	

 1349

 1350

 1351

 1352

speed

11101010

int speed;

speed=234;

speed 234
&speed 1350

Binary	of	234	

Every	variable	has	an	address	(in	memory),	and	its	contents.	

Address	and	Content	

•  In	C	terminology,	in	an	expression	
			speed	refers	to	the	contents	of	the	memory	
loca7on.	

 &speed	refers	to	the	address	of	the	memory	
loca7on.	

•  Examples:	
			printf (“%f %f %f”, speed, time, distance);
 scanf (“%f %f”, &speed, &time);

An	Example	

#include <stdio.h>
int main()
 {
 float speed, time, distance;

 scanf (“%f %f”, &speed, &time);
 distance = speed * time;
 printf (“\n The distance traversed
is: \n”, distance);
 return 0;
 }

Address of speed

Content of speed

Assignment	Statement	

•  Used	to	assign	values	to	variables,	using	the	
assignment	operator	(=).	

•  General	syntax:	
										variable_name = expression;
	

•  Examples:	
			velocity = 20;
 b = 15; temp = 12.5;
 A = A + 10;
 v = u + f * t;
 s = u * t + 0.5 * f * t * t;

Advanced	Assignment	Statement	

•  Assignment	during	declara7on	
			int speed = 30;
 char flag = ‘y’;

	

•  Mul7ple	variable	assignment		
			a = b = c = 5;
 flag1 = flag2 = ‘y’;

 speed = flow = 20.0;

Operators	in	Expressions	

Operators

Arithmetic
Operators

Relational
Operators

Logical
Operators

ArithmeJc	Operators	

•  Addi7on	::										+	
•  Subtrac7on	::									–	
•  Division	::		 								/	
•  Mul7plica7on	::				*	
•  Modulus	::		 								%	

X + Y 48

X – Y 2

X * Y 575

X / Y ?

X % Y ??

X=	25; 	Y=23;	

Operator	Precedence	

•  In	decreasing	order	of	priority	
1.  Parentheses	::		()	
2.  Unary	minus	::		–5	
3.  Mul7plica7on,	Division,	and	Modulus	
4.  Addi7on	and	Subtrac7on	

•  For	operators	of	the	same	priority,	
evalua7on	is	from	leY	to	right	as	they	
appear.	

•  Parenthesis	may	be	used	to	change	the	
precedence	of	operator	evalua7on.	

Examples:	ArithmeJc	expressions	

v = u + f * t;			 	è	 		
	
X = x * y / z 	 	è	 		
	
A = a + b – c * d / e	 	è		
	
A = -b * c + d % e 	è		
	

Examples:	ArithmeJc	expressions	

v = u + f * t;			 	è	 	v	=	u+(f*t);	
	
X = x * y / z 	 	è	 	X	=	(x*y)/z	
	
A = a + b – c * d / e	 	è	A	=	((a+b)-((c*d)/e))	
	
A = -b * c + d % e 	è	A	=	(((-b)*c)+(d%e))	
	

Integer	ArithmeJc	

•  When	the	operands	in	an	arithme7c	
expression	are	integers,	the	expression	is	
called	integer	expression,	and	the	opera7on	is	
called	integer	arithme@c.	

•  Integer	arithme7c	always	yields	integer	
values.	

Real	ArithmeJc	

•  Involving	only	real	or	floa7ng-point	operands	
(including	double,	long	double).	

•  Since	floa7ng-point	values	are	rounded	to	the	
number	of	significant	digits	permissible,	the	final	
value	is	an	approxima7on	of	the	final	result.	
	 	A	=	22/7*7*7	=	(((22/7)*7)*7)	=	153.86	
	 	 	 		=(((22*7)/7)*7)	=	154	
	 	 	 		

•  The	modulus	operator	cannot	be	used	with	real	
operands.	

ArithmeJc	–	integer	/real	

•  An	expression	contains	only	integer	operands	
è	Integer	arithme7c	will	be	performed.	
	

•  An	expression	contains	only	real	operands	è	
Real	arithme7c	will	be	performed.	

•  An	expression	contains	integer	and	real	both	
the	operands	è	Real	arithme7c	will	be	
performed.	

Type	casJng	

•  A	faulty	reciprocal	finder	

#include <stdio.h>
int main ()
{
 int n;
 scanf("%d",&n);
 printf("%d\n",1/n);
 return 0;

}

The	division	1/n	is	of	integers	(quo7ent).	
The	format	%d	is	for	prin7ng	integers.	

Type	casJng	

#include <stdio.h>

int main ()
{

 int n;

 scanf("%d",&n);

 printf("%f\n",1.0/n);

 return 0;
}

#include <stdio.h>

int main ()
{

 int n;

 float x;

 scanf("%d",&n);

 x=(float)1/n;
 printf("%f\n",x);

 return 0;

}

Type	casJng	

Integer	to	real	
	int a=10;
 float b;

 b=(float)a;

	
Real	to	integer	

	int a;
 float b=3.14;
 a=(int)b;

	

Real	to	real	
 float b;
 double c=3.14;

 b=(float)c;

	
Real	to	real	
 float b;

 double c;
 c=22.0/7.0;

 b=(float)c;

	

