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Number System
Number Representation

Topics to be Discussed

* How are numeric data items actually stored in
computer memory?

* How much space (memory locations) is allocated for
each type of data?
— int, float, char, etc.

* How are characters and strings stored in memory?
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Number System :: The Basics

* We are accustomed to using the so-called
decimal number system.

— Tendigits:: 0,1,2,3,4,5,6,7,8,9

— Every digit position has a weight which is a power of
10.

— Base or radix is 10.
* Example:
234=2x10% + 3x 10! + 4x10°
250.67 = 2x10%2 + 5x 10! + 0x10° +
6x10?! + 7x10?2

Binary Number System

* Two digits:
— Oand 1.

— Every digit position has a weight which is a
power of 2.

— Base or radix is 2.
* Example:
110= 1x22 + 1x2' + 0x2°
101.01= 1x22 + Ox2? + 1x29 +
O0x2t + 1x22
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Counting with Binary Numbers

0

1

10
11
100
101
110
111
1000

Multiplication and Division with base

Multiplication with 10 (decimal system)

435 x 10 = 4350 Left Shift and add
zero at right end

=  Multiplication with 10 (=2 ) fbinary system)
1101 x 10=11010

Right shift and drop
right most digit or

= Division by 10 (decimal system)

shift after decimal
435/10=43.5

point

= Division by 10 (=2) (binary system)
1101/10=110.1
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Adding two bits

0+0=0 1 1 1 0
0+1 =1 1 0 1 1
1+0 = 1 . 1 1 1.0
1+1 =10 1 1 0 0 1

Binary addition: Another example

The initial carry

in is implicitly O
1 1 0 O (Carries)
1 1 0 1
+ 1 1 0 0
1 1 0 0 1 (Sum)
most significant least significant
bit (MSB) bit (LSB)
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Binary-to-Decimal Conversion

* Each digit position of a binary number has a
weight.
— Some power of 2.
* A binary number:
B=b, b, ,..bby.b b,...b,
Correspnc_)lnding value in decimal:
D=2 b2

i=-m

Examples

1. 101011 = 1x25+ 0x24 + 1x23 + 0x22 + 1x21 + 1x20
=43
(101011), = (43),,

2. .0101 = Ox21+1x22+0x23+ 1x2*4
=.3125
(.0101), = (.3125),,

3. 101.11 = 1x22+0x21+ 1x29+ 1x21 + 1x272
5.75
(101.11), = (5.75),
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Decimal-to-Binary Conversion

* Consider the integer and fractional parts
separately.

* For the integer part,

— Repeatedly divide the given number by 2, and go
on accumulating the remainders, until the number
becomes zero.

— Arrange the remainders in reverse order.

* For the fractional part,

— Repeatedly multiply the given fraction by 2.
* Accumulate the integer part (0 or 1).
* If the integer part is 1, chop it off.
— Arrange the integer parts in the order they are
obtained.

Example 1 :: 239

239
119 ---1

29 -1

-0 (239),0 = (11101111),

-1
1

NNNNDNDNDNDNN
'_\
'
'_\

Programming and Data Structure 6



Pralay Mitra Autumn 2016; CSE@IITKGP

Example 2 :: 64

64
32 -0
(0

o (64),, = (1000000),

N NRNDNDDNDNNDN
o, Np P oD
o

-1

Example 3 :: .634

.634
.268
.536
.072
144

= 1.268
= 0.536
1.072
= 0.144
= 0.288

(.634),, = (.10100......),

X X X X X
N N DNDNDN
1
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Example 4 :: 37.0625

(37),, = (100101),
(.0625),, = (.0001),

(37.0625),, = (100101 . 0001),

Hexadecimal Number System

* A compact way of representing binary numbers.

* 16 different symbols (radix = 16).

0 - 0000 8 = 1000
1 - 0001 9 - 1001
2 - 0010 A > 1010
3 = 0011 B > 1011
4 - 0100 C - 1100
5 = 0101 D - 1101
6 > 0110 E 2> 1110
7 - 0111 F > 1111
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Binary-to-Hexadecimal Conversion

* For the integer part,
— Scan the binary number from right to left.
— Translate each group of four bits into the
corresponding hexadecimal digit.
* Add /eading zeros if necessary.
* For the fractional part,
— Scan the binary number from /eft to right.

— Translate each group of four bits into the
corresponding hexadecimal digit.
* Add trailing zeros if necessary.

Example

1. (1011 0100 0011), = (B43),,

2. (1010100001), = (2A1),

3. (.1000 010), = (.84)

4. (101.0101111), = (5.5E),
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Hexadecimal-to-Binary Conversion

* Translate every hexadecimal digit into its 4-
bit binary equivalent.

 Examples:
(3A5),, = (00111010 0101),
(12.3D),, = (0001 0010.0011 1101),
(1.8),, =

(0001 . 1000),

Unsigned Binary Numbers

* An n-bit binary number
B = b, b,,..b,bb,
» 2" distinct combinations are possible, 0 to 2"-1.

* For example, for n = 3, there are 8 distinct
combinations.

— 000, 001, 010, 011, 100, 101, 110, 111

e Range of numbers that can be represented
n=8 -> 0 to 281 (255)
n=16 = 0 to 26-1(65535)

n=32 => 0 to 232-1(4294967295)
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Signed Integer Representation

* Many of the numerical data items that are used in a
program are signed (positive or negative).
— Question:: How to represent sign?

* Three possible approaches:
— Sign-magnitude representation
— One’s complement representation
— Two’s complement representation

Sign-magnitude Representation

* For an n-bit number representation
— The most significant bit (MSB) indicates sign
0 - positive
1 - negative
— The remaining n-1 bits represent magnitude.

Slgn<

Magnitude

Programming and Data Structure
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Representation and ZERO

* Range of numbers that can be represented:
Maximum :: + (21 —1)
Minimum :: —(2"1-1)

* A problem:

Two different representations of zero.
+0 -> 0000....0
-0 - 1000....0

One’s Complement Representation

e Basicidea:

— Positive numbers are represented exactly as in sign-
magnitude form.

— Negative numbers are represented in 1’s complement
form.

* How to compute the 1’s complement of a
number?
— Complement every bit of the number (10 and 0>1).
— MSB will indicate the sign of the number.
0 - positive
1 > negative

Programming and Data Structure
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Example :: n=4

0000 > +0 1000 > -7
0001 > +1 1001 > -6
0010 > +2 1010 - -5
0011 > +3 1011 > -4
0100 - +4 1100 - -3
0101 > +5 1101 > -2
0110 - +6 1110 = -1
0111 - +7 1111 - -0

To find the representation of -4, first note that
+4 = 0100

-4 1’s complement of 0100 = 1011

One’s Complement Representation

* Range of numbers that can be represented:
Maximum :: + (21 —1)
Minimum :: — (2" —1)
* Aproblem:
Two different representations of zero.
+0 -> 0000....0
-0 > 1111..1
* Advantage of 1’s complement representation
— Subtraction can be done using addition.
— Leads to substantial saving in circuitry.
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Two’s Complement Representation

* Basicidea:
— Positive numbers are represented exactly as in sign-
magnitude form.

— Negative numbers are represented in 2’s complement
form.

* How to compute the 2’s complement of a
number?

— Complement every bit of the number (10 and 0> 1), and
then add one to the resulting number.

— MSB will indicate the sign of the number.
0 > positive
1 - negative

Example :: n=4

0000 - +0 1000 - -8
0001 - +1 1001 > -7
0010 - +2 1010 - -6
0011 - +3 1011 - -5
0100 »> +4 1100 - -4
0101 - +5 1101 > -3
0110 - +6 1110 - -2
0111 > +7 1111 - -1

To find the representation of, say, -4, first note that

+4 = 0100
-4 = 2’s complement of 0100 = 1011+1 = 1100

Programming and Data Structure
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Storage and number system in
Programming

* InC

—short int

* 16 bits = +(21>-1) to -21°
—int

* 32 bits = +(231-1) to -231
—long int

* 64 bits = +(253-1) to -2

Storage and number system in
Programming

* Range of numbers that can be represented:
Maximum :: + (2"1—-1)
Minimum :: — 2!

* Advantage:
— Unique representation of zero.
— Subtraction can be done using addition.
— Leads to substantial saving in circuitry.

* Almost all computers today use the 2’s complement
representation for storing negative numbers.

Programming and Data Structure
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Subtraction Using Addition :: 1’s
Complement

* How to compute A-B?

— Compute the 1’s complement of B (say, B,).
— ComputeR=A+B;

— If the carry obtained after addition is ‘1’

* Add the carry back to R (called end-around carry).
* Thatis, R=R+ 1.

* The result is a positive number.
Else

* The result is negative, and is in 1’'s complement form.

Examplel :: 6-2

A=6 (0110)
B =2 (0010)
6-2=A-B
1’s complement of 2 = 1101
6 : 0110
Assume 4-bit
-2 1101 representations.
e 10011 Since thercle(is ahcarry, itI is
carry 1 added back to the result.
0100 = +4 The result is positive.
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Example2 :: 3-5

1’s complement of 5 = 1010

3 : 0011
-5 : 1010
1101 Assume 4-bit representations.
l Since there is no carry, the
result is negative.
-2

1101 is the 1’s complement of
0010, that is, it represents -2.

Subtraction Using Addition :: 2’s
Complement

e How to compute A—B ?
— Compute the 2’s complement of B (say, B,).
— Compute R=A+B,
— Ignore carry if it is there.

— The result is in 2’s complement form.
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Examplel :: 6-2

2’s complementof2 = 1101 +1 = 1110

6 : 0110

-2 1110
10100

Ignore carry +4

Example2 :: 3-5

2’s complement of 5 = 1010+ 1 = 1011

3 : 0011
-5 1011
1110

-2

Programming and Data Structure
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Example 3 :: -3-5

1100 +1
1010 +1

1101
1011

2’s complement of 3

2’s complement of 5

-3 1101
-5 1011
11000

Ignore carry -8

Floating-point Numbers

* The representations discussed so far applies only to
integers.

— Cannot represent numbers with fractional parts.

* We can assume a decimal point before a 2’s
complement number.

— In that case, pure fractions (without integer parts) can be
represented.

* We can also assume the decimal point somewhere
in between.
— This lacks flexibility.

— Very large and very small numbers cannot be
represented.
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Representation of Floating-Point
Numbers

* A floating-point number F is represented by a
doublet <M,E> :

F=M x BE

* B 2> exponent base (usually 2)
* M - mantissa

* E = exponent

— M is usually represented in 2’s complement form, with
an implied decimal point before it.

* For example,

In decimal,
0.235x 108

In binary,
0.101011 x 20110

Example :: 32-bit representation

24 8

— M represents a 2’s complement fraction
1>M>-1

— E represents the exponent (in 2’s complement form)
127 > E > -128

* Points to note:

— The number of significant digits depends on the number of
bits in M.
* 6 significant digits for 24-bit mantissa.

— The range of the number depends on the number of bits in
E.

* 10% to 10738 for 8-bit exponent.
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Floating point number:
IEEE Standard 754

* Storage Layout

Sign Exponent Fraction /
Mantissa

Single Precision 1[31] 8[30-23] 23[22-00]

Double Precision 1[63] 11 [62-52] 52 [51-00]

Single: SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM
Double: SEEEEEEE  EEEEMMMM MMMMMMMM  MMMMMMMM
MmvmMMMMMM  MMMMMMMM  MMMMMMMM - MMMMMMMM

IEEE Standard 754

1. The sign bit is O for positive, 1 for negative.

The exponent base is two.

3. The exponent field contains 127 plus the true exponent for single-precision, or
1023 plus the true exponent for double precision.

4. The first bit of the mantissa is typically assumed to be 1.f, where fis the field of
fraction bits.

2

* Ranges of Floating-Point Numbers

Since every floating-point number has a corresponding, negated
value (by toggling the sign bit), the ranges above are symmetric around zero.

Approximate

Denormalized Normalized .
Decimal

Single + 27149 o + 2-126 1o + ~10-%485 t0
Precision  (1-2723)x27126 (2-2-23)x21%77 S8

Double  +271074¢t0 + 271022 g +210383t0

Precision  (1-2752)x2-1022 (2-2752)x21028 103083

Programming and Data Structure
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IEEE Standard 754

There are five distinct numerical ranges that single-
precision floating-point numbers are not able to
represent:

1. Negative numbers less than —(2-2723) x 21?7 (negative

overflow)
2. Negative numbers greater than —2-14° (negative underflow)
3. Zero
4. Positive numbers less than 2714° (positive underflow)
5. Positive numbers greater than (2-2-23) x 2127 (positive
overflow)
Special Values
* Zero

-0 and +0 are distinct values, though they both compare as equal.

¢ Denormalized

If the exponent is all Os, but the fraction is non-zero, then the value is a denormalized
number, which now has an assumed leading 0 before the binary point. Thus, this
represents a number (-1)° x 0.f x 27126, where s is the sign bit and fis the fraction. For
double precision, denormalized numbers are of the form (-1)° x 0.f x 271922, From this
you can interpret zero as a special type of denormalized number.

* Infinity
The values +o= and —== are denoted with an exponent of all 1s and a fraction of all Os.
The sign bit distinguishes between negative infinity and positive infinity. Being able to
denote infinity as a specific value is useful because it allows operations to continue past
overflow situations. Operations with infinite values are well defined in IEEE floating
point.

e Not A Number

The value NaN (Not a Number) is used to represent a value that does not represent a
real number. NaN's are represented by a bit pattern with an exponent of all 1s and a
non-zero fraction.
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Representation of Characters

* Many applications have to deal with non-numerical
data.

— Characters and strings.
— There must be a standard mechanism to represent alphanumeric and
other characters in memory.

* Three standards in use:
— Extended Binary Coded Decimal Interchange Code (EBCDIC)
* Used in older IBM machines.
— American Standard Code for Information Interchange (ASCII)
* Most widely used today.

— UNICODE
* Used to represent all international characters.

* Used by Java.

ASCII Code

* Each individual character is numerically encoded into
a unique 7-bit binary code.
— A total of 27 or 128 different characters.

— A character is normally encoded in a byte (8 bits), with the
MSB not been used.

* The binary encoding of the characters follow a
regular ordering.

— Digits are ordered consecutively in their proper numerical
sequence (0 to 9).

— Letters (uppercase and lowercase) are arranged
consecutively in their proper alphabetic order.

Programming and Data Structure
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Some Common ASCII Codes

‘N :: 41 (H) 65 (D) ‘0 :: 30(H) 48 (D)
‘B’ :: 42 (H) 66 (D) ‘1’ 2 31(H) 49 (D)

:: 5A (H) 90 (D) ‘9’ :: 39 (H) 57 (D)

:: 61 (H) 97 (D) :: 28 (H) 40 (D)
:: 62 (H) 98 (D) :: 2B (H) 43 (D)

> 3F(H) 63 (D)
:: 7A (H) 122 (D) :: OA (H) 10 (D)
A0’ :: 00 (H) 00 (D)

Character Strings

* Two ways of representing a sequence of
characters in memory.

— The first location contains the number of characters in
the string, followed by the actual characters.

5 H e I | o

— The characters follow one another, and is terminated
by a special delimiter.

H e | | o 1

Programming and Data Structure
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String Representation in C

* In C, the second approach is used.
— The ‘\0’ character is used as the string delimiter.

* Example:
“Hello” =» He | | o0

an

* A null string “” occupies one byte in memory.
— Only the \0’ character.

Problem 7

Given 2 positive numbers nand r, n>=r, writea C
function to compute the number of combinations("C,)
and the number of permutations("P,).

Permutations formula is P(n,r)=n!/(n-r)!
Combinations formula is C(n,r)=n!/(r!(n-r)!)

Programming and Data Structure
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Problem 8

Scope of variable:
What is the output of the following code snippet?

#include <stdio.h>

int main(){
inti=10;
for(inti=>5; i< 15; i++)
printf(“i is %d\n”, i);
return O;

Problem 9

Scope of variable: What is the output of the following code snippet?

#include <stdio.h>

inta=20;

int sum(int a, int b) {
printf ("value of a in sum() = %d\n", a);
printf ("value of b in sum() = %d\n", b);

return a + b;

}

int main ()

{
inta=10; intb=20; intc=0;
printf ("value of a in main() = %d\n", a);
c=sum( a, b);
printf ("value of c in main() = %d\n", c);
return O;

}

Programming and Data Structure
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Problem 10

Write a C program which display the entered

number in words.

Example:

Input:
Enter a number: 7

Output:
Seven

Problem 11

Write a C program to delete duplicate elements in
an array without using another auxiliary array.

Programming and Data Structure

Example:

Input:
585569821133

Output:
5869213
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Problem 12

Write a C program to print PASCAL's triangle.

1 5 10 10

15 20 15 6 1

I 7 21 35 35 21 7 1

28 56 70 56 28 8 1

Problem 13

Given 2 numbers a and b, write a C program to
compute the Greatest Common Divisor(GCD) of the 2
numbers.

The GCD of 2 numbers is the largest positive integer
that divides the numbers without a remainder.

Example: GCD(2,8)=2; GCD(3,7)=1

Programming and Data Structure
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Problem 14

Given 2 arrays of integers A and B of size n each, write a
C program to calculate the dot product of the 2 arrays.

If A=[a,, a,, 0,,....,0, ;] and
B=[b,, b,, b,,....,b, ],
the dot product of A and B is given by
A.B=[a,*b,+a,*b, + a,*b, + ....... +a,,*b,.

Problem 15

Given a non negative integer n, write a C function to
output the decimal integer(base 10) in its binary
representation (base 2).

Example: Binary representation of
3 is 11
8 is 1000
15 s 1111
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Problem 16

Given two array of sorted numbers A and B, both are of
arbitrary sizes, write a C function named merge_arrays
that merges both the arrays in sorted order and returns
the sorted array C.
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