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Programming and Data Structure 1 

Number System  
Number Representation 

Topics to be Discussed 

• How are numeric data items actually stored in 
computer memory? 

 

• How much space (memory locations) is allocated for 
each type of data? 

– int, float, char, etc. 

 

• How are characters and strings stored in memory? 
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Number System :: The Basics 

• We are accustomed to using the so-called 
decimal number system. 
– Ten digits ::  0,1,2,3,4,5,6,7,8,9 

– Every digit position has a weight which is a power of 
10. 

– Base or radix is 10. 

• Example: 
234 =  2 x 102  +  3 x 101  +  4 x 100 

250.67 =  2 x 102  +  5 x 101  +  0 x 100  +   

   6 x 10-1  +  7 x 10-2 

Binary Number System 

• Two digits: 

– 0 and 1. 

– Every digit position has a weight which is a 
power of 2. 

– Base or radix is 2. 

• Example: 

110 =  1 x 22  +  1 x 21  +  0 x 20 

101.01 =  1 x 22  +  0 x 21  +  1 x 20  +   

    0 x 2-1  +  1 x 2-2 
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Counting with Binary Numbers 

                       0 
                       1 
                     10 
                     11 
                   100 
                   101 
                   110 
                   111 
                 1000 
                     .   

Multiplication and Division with base 

 Multiplication with 10  (decimal system) 

        435  x 10 =  4350 

 

 Multiplication with  10 (=2 ) (binary system) 

       1101 x 10 = 11010 

 

 Division by 10 (decimal system) 

       435 / 10 = 43.5 

 

 Division by 10 (=2) (binary system) 

      1101 / 10 = 110.1 

Left Shift and add 

zero at right end 

Right shift and  drop 

 right most digit  or 

 shift after decimal 

point 
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Adding two bits 

0 + 0 =   0 
0 + 1 =   1 

1 + 0 =   1 

1 + 1 = 10 

carry 

 1 1 1 0  
  1 0 1 1 
+  1 1 1 0 
 1 1 0 0 1 

Carries 

Binary addition: Another example 

 1 1 0 0  (Carries) 
  1 1 0 1  
+  1 1 0 0  
 1 1 0 0 1 (Sum) 

The initial carry 
in is implicitly 0 

most significant 
bit (MSB) 

least significant 
bit (LSB) 
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Binary-to-Decimal Conversion 

• Each digit position of a binary number has a 
weight. 

– Some power of 2. 

• A binary number: 

       B = bn-1 bn-2 …..b1 b0 . b-1 b-2 ….. b-m 

    Corresponding value in decimal: 

       D =     bi 2
i 

i = -m 

n-1 

Examples 

1. 101011    1x25 + 0x24 + 1x23 + 0x22 + 1x21 + 1x20 

    = 43 

  (101011)2 = (43)10 

 

2. .0101        0x2-1 + 1x2-2 + 0x2-3 + 1x2-4 

    = .3125 

  (.0101)2 = (.3125)10 

 

3. 101.11      1x22 + 0x21 + 1x20 + 1x2-1 + 1x2-2 

    5.75 

  (101.11)2 = (5.75)10 



Pralay Mitra Autumn 2016; CSE@IITKGP 

Programming and Data Structure 6 

Decimal-to-Binary Conversion 
• Consider the integer and fractional parts 

separately. 
• For the integer part, 

– Repeatedly divide the given number by 2, and go 
on accumulating the remainders, until the number 
becomes zero. 

– Arrange the remainders in reverse order. 

• For the fractional part, 
– Repeatedly multiply the given fraction by 2. 

• Accumulate the integer part (0 or 1). 
• If the integer part is 1, chop it off. 

– Arrange the integer parts in the order they are 
obtained. 

Example 1  ::  239 

2 239 

2     119   --- 1 

2  59    --- 1 

2      29    --- 1 

2  14    --- 1 

2       7     --- 0 

2   3     --- 1 

2       1     --- 1 

2       0     --- 1 

(239)10 = (11101111)2 
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Example 2  ::  64 

2  64 

2      32    --- 0 

2  16    --- 0 

2        8    --- 0 

2    4    --- 0 

2        2    --- 0 

2    1    --- 0 

2        0    --- 1 

(64)10 = (1000000)2 

Example 3  ::  .634 

.634  x  2   =   1.268 

.268  x  2   =   0.536 

.536  x  2   =   1.072 

.072  x  2   =   0.144 

.144  x  2   =   0.288 

: 

: 

(.634)10 = (.10100……)2 
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Example 4  ::  37.0625 

(37)10  =  (100101)2 

(.0625)10  =  (.0001)2 

 

(37.0625)10  =  (100101 . 0001)2 

Hexadecimal Number System 

• A compact way of representing binary numbers. 
 

• 16 different symbols (radix = 16). 
 

    0    0000 8    1000 
    1    0001 9    1001 
    2    0010 A    1010 
    3    0011 B    1011 
    4    0100 C    1100 
    5    0101 D    1101 
    6    0110 E    1110 
    7    0111 F    1111 
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Binary-to-Hexadecimal Conversion 

• For the integer part, 
– Scan the binary number from right to left. 

– Translate each group of four bits into the 
corresponding hexadecimal digit. 
• Add leading zeros if necessary. 

• For the fractional part, 
– Scan the binary number from left to right. 

– Translate each group of four bits into the 
corresponding hexadecimal digit. 
• Add trailing zeros if necessary. 

 

Example 

1. (1011 0100 0011)2   =   (B43)16 

2. (10 1010 0001)2       =   (2A1)16 

3. (.1000 010)2             =   (.84)16 

4. (101 . 0101 111)2     =   (5.5E)16 



Pralay Mitra Autumn 2016; CSE@IITKGP 

Programming and Data Structure 10 

Hexadecimal-to-Binary Conversion 

• Translate every hexadecimal digit into its 4-
bit binary equivalent. 

• Examples: 

    (3A5)16      =   (0011 1010 0101)2 

    (12.3D)16   =   (0001 0010 . 0011 1101)2 

    (1.8)16        =   (0001 . 1000)2 

Unsigned Binary Numbers 

• An n-bit binary number 
   B  =  bn-1bn-2 …. b2b1b0 

• 2n distinct combinations are possible, 0 to 2n-1. 

• For example, for n = 3, there are 8 distinct 
combinations. 
– 000, 001, 010, 011, 100, 101, 110, 111 

• Range of numbers that can be represented 
    n=8    0  to  28-1  (255) 

    n=16  0  to  216-1 (65535) 

    n=32  0  to  232-1 (4294967295) 
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Signed Integer Representation 

• Many of the numerical data items that are used in a 
program are signed (positive or negative). 

– Question:: How to represent sign? 

 

• Three possible approaches: 

– Sign-magnitude representation 

– One’s complement representation 

– Two’s complement representation 

Sign-magnitude Representation 

• For an n-bit number representation 

– The most significant bit (MSB) indicates sign 

   0    positive 

   1    negative 

– The remaining n-1 bits represent magnitude. 

b0 b1 bn-2 bn-1 

Magnitude 
Sign 
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Representation and ZERO 

• Range of numbers that can be represented: 

     Maximum  ::  + (2n-1 – 1) 

     Minimum   ::   (2n-1 – 1) 

• A problem: 

     Two different representations of zero. 

    +0      0 000….0 

    -0       1 000….0 

One’s Complement Representation 

• Basic idea: 
– Positive numbers are represented exactly as in sign-

magnitude form. 

– Negative numbers are represented in 1’s complement 
form. 

 

• How to compute the 1’s complement of a 
number? 
– Complement every bit of the number (10 and 01). 

– MSB will indicate the sign of the number. 

   0    positive 

   1    negative 
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Example  ::  n=4 
0000    +0 

0001    +1 

0010    +2 

0011    +3 

0100    +4 

0101    +5 

0110    +6 

0111    +7 

1000    -7 

1001    -6 

1010    -5 

1011    -4 

1100    -3 

1101    -2 

1110    -1 

1111    -0 

 To find the representation of -4, first note that 

        +4  =  0100 

        -4   =  1’s complement of 0100  =  1011 

One’s Complement Representation 

• Range of numbers that can be represented: 
     Maximum  ::  + (2n-1 – 1) 

     Minimum   ::   (2n-1 – 1) 

• A problem: 
     Two different representations of zero. 

    +0      0 000….0 

    -0       1 111….1 

• Advantage of 1’s complement representation 
– Subtraction can be done using addition. 

– Leads to substantial saving in circuitry. 
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Two’s Complement Representation 

• Basic idea: 
– Positive numbers are represented exactly as in sign-

magnitude form. 
– Negative numbers are represented in 2’s complement 

form. 
 

• How to compute the 2’s complement of a 
number? 
– Complement every bit of the number (10 and 01), and 

then add one to the resulting number. 
– MSB will indicate the sign of the number. 

   0    positive 
   1    negative 

Example  ::  n=4 
0000    +0 

0001    +1 

0010    +2 

0011    +3 

0100    +4 

0101    +5 

0110    +6 

0111    +7 

1000    -8 

1001    -7 

1010    -6 

1011    -5 

1100    -4 

1101    -3 

1110    -2 

1111    -1 

 
To find the representation of, say, -4, first note that 

        +4  =  0100 

        -4   =  2’s complement of 0100  =  1011+1  =  1100 
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Storage and number system in 
Programming 

• In C 

– short int 

• 16 bits      + (215-1)  to  -215 

– int 

• 32 bits      + (231-1)  to  -231 

– long int 

• 64 bits      + (263-1)  to  -263 

 

Storage and number system in 
Programming 

• Range of numbers that can be represented: 
     Maximum  ::  + (2n-1 – 1) 

     Minimum   ::   2n-1 

 

• Advantage: 

–  Unique representation of zero. 

–  Subtraction can be done using addition. 

–  Leads to substantial saving in circuitry. 

 

• Almost all computers today use the 2’s complement 
representation for storing negative numbers. 
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Subtraction Using Addition :: 1’s 
Complement 

• How to compute A – B ? 

– Compute the 1’s complement of B (say, B1). 

– Compute R = A + B1  

– If the carry obtained after addition is ‘1’ 

• Add the carry back to R  (called end-around carry). 

• That is, R = R + 1. 

• The result is a positive number. 

    Else 

• The result is negative, and is in 1’s complement form. 

 

Example 1  ::  6 – 2 

1’s complement of 2  =  1101 

  6   ::   0110 

 -2   ::   1101 

          1 0011 

                    1 

             0100      +4 

End-around 

carry 

Assume 4-bit 

representations. 

Since there is a carry, it is 

added back to the result. 

The result is positive. 

R 

B1 

A 

A = 6  (0110) 
B = 2  (0010) 
6 – 2 = A - B 
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Example 2  ::  3 – 5 

1’s complement of 5  =  1010 

 

  3   ::   0011 

 -5   ::   1010 

             1101                         

 

                    

Assume 4-bit representations. 

Since there is no carry, the 

result is negative. 

1101 is the 1’s complement of 

0010, that is, it represents –2. 

A 

B1 

R 

-2 

Subtraction Using Addition :: 2’s 
Complement 

• How to compute A – B ? 

 
– Compute the 2’s complement of B (say, B2). 

 

– Compute R = A + B2 

  

– Ignore carry if it is there. 

 

– The result is in 2’s complement form. 
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Example 1  ::  6 – 2 

2’s complement of 2  =  1101 + 1  =  1110 

 

  6   ::   0110 

 -2   ::   1110 

          1 0100 

                    

              

A 

B2 

R 

Ignore carry 
+4 

Example 2  ::  3 – 5 

2’s complement of 5  =  1010 + 1  =  1011 

 

  3   ::   0011 

 -5   ::   1011 

             1110                       

 

                    

A 

B2 

R 

-2 
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Example 3  ::  -3 – 5 

2’s complement of 3  =  1100 + 1  =  1101 

2’s complement of 5  =  1010 + 1  =  1011 

 

 

 -3   ::   1101 

 -5   ::   1011 

          1 1000 

                    

              Ignore carry -8 

Floating-point Numbers 

• The representations discussed so far applies only to 
integers. 
– Cannot represent numbers with fractional parts. 

 

• We can assume a decimal point before a 2’s 
complement number. 
– In that case, pure fractions (without integer parts) can be 

represented. 

 

• We can also assume the decimal point somewhere 
in between. 
– This lacks flexibility. 

– Very large and very small numbers cannot be 
represented. 
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Representation of Floating-Point 
Numbers 

• A floating-point number F is represented by a 
doublet  <M,E> : 
    F  =  M  x  BE 

• B    exponent base (usually 2) 
• M  mantissa 
• E   exponent 

– M is usually represented in 2’s complement form, with 
an implied decimal point before it. 
 

• For example,  
    In decimal, 

 0.235 x 106 

    In binary, 
   0.101011 x 20110 

Example  ::  32-bit representation 
 

 
 

– M represents a 2’s complement fraction 

    1  >  M  >  -1 

– E represents the exponent (in 2’s complement form) 

   127  >  E  >  -128 

• Points to note: 
– The number of significant digits depends on the number of 

bits in M. 

• 6 significant digits for 24-bit mantissa. 

– The range of the number depends on the number of bits in 
E. 

• 1038  to  10-38  for 8-bit exponent. 

M E 

24 8 
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Floating point number:   
IEEE Standard 754 

• Storage Layout 

 
Sign Exponent Fraction / 

Mantissa 

Single Precision 1 [31] 8 [30–23] 23 [22–00] 

Double Precision 1 [63] 11 [62–52] 52 [51–00] 

Single:  SEEEEEEE   EMMMMMMM     MMMMMMMM    MMMMMMMM  
Double:  SEEEEEEE   EEEEMMMM          MMMMMMMM    MMMMMMMM  
 MMMMMMMM    MMMMMMMM    MMMMMMMM    MMMMMMMM 

IEEE Standard 754 

• Ranges of Floating-Point Numbers 
 Since every floating-point number has a corresponding, negated 
value (by toggling the sign bit), the ranges above are symmetric around zero. 

 

Denormalized Normalized 
Approximate 
Decimal 

Single 
Precision 

± 2−149 to 
(1−2−23)×2−126 

± 2−126 to 
(2−2−23)×2127 

± ≈10−44.85 to 
≈1038.53 

Double 
Precision 

± 2−1074 to 
(1−2−52)×2−1022 

± 2−1022 to 
(2−2−52)×21023 

± ≈10−323.3 to 
≈10308.3 

1. The sign bit is 0 for positive, 1 for negative. 
2. The exponent base is two. 
3. The exponent field contains 127 plus the true exponent for single-precision, or 

1023 plus the true exponent for double precision. 
4. The first bit of the mantissa is typically assumed to be 1.f, where f is the field of 

fraction bits. 



Pralay Mitra Autumn 2016; CSE@IITKGP 

Programming and Data Structure 22 

IEEE Standard 754 

There are five distinct numerical ranges that single-
precision floating-point numbers are not able to 
represent: 

 
1. Negative numbers less than −(2−2−23) × 2127 (negative 

overflow) 

2. Negative numbers greater than −2−149 (negative underflow) 

3. Zero 

4. Positive numbers less than 2−149 (positive underflow) 

5. Positive numbers greater than (2−2−23) × 2127 (positive 
overflow) 

 

Special Values 

• Zero  
−0 and +0 are distinct values, though they both compare as equal. 
 

• Denormalized  
If the exponent is all 0s, but the fraction is non-zero, then the value is a denormalized 
number, which now has an assumed leading 0 before the binary point. Thus, this 
represents a number (−1)s × 0.f × 2−126, where s is the sign bit and f is the fraction. For 
double precision, denormalized numbers are of the form (−1)s × 0.f × 2−1022. From this 
you can interpret zero as a special type of denormalized number. 
 

• Infinity  
The values +∞ and −∞ are denoted with an exponent of all 1s and a fraction of all 0s. 
The sign bit distinguishes between negative infinity and positive infinity. Being able to 
denote infinity as a specific value is useful because it allows operations to continue past 
overflow situations. Operations with infinite values are well defined in IEEE floating 
point. 
 

• Not A Number  
The value NaN (Not a Number) is used to represent a value that does not represent a 
real number. NaN's are represented by a bit pattern with an exponent of all 1s and a 
non-zero fraction.  
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Representation of Characters 

• Many applications have to deal with non-numerical 
data. 
– Characters and strings. 

– There must be a standard mechanism to represent alphanumeric and 
other characters in memory. 

 

• Three standards in use: 
– Extended Binary Coded Decimal Interchange Code (EBCDIC) 

• Used in older IBM machines. 

– American Standard Code for Information Interchange (ASCII) 

• Most widely used today. 

– UNICODE 

• Used to represent all international characters. 

• Used by Java. 

ASCII Code 

• Each individual character is numerically encoded into 
a unique 7-bit binary code. 
– A total of 27 or 128 different characters. 

– A character is normally encoded in a byte (8 bits), with the 
MSB not been used. 

 

• The binary encoding of the characters follow a 
regular ordering. 
– Digits are ordered consecutively in their proper numerical 

sequence (0 to 9). 

– Letters (uppercase and lowercase) are arranged 
consecutively in their proper alphabetic order. 
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Some Common ASCII Codes 

‘A’  ::  41 (H)   65 (D) 

‘B’  ::  42 (H)   66 (D) 

……….. 

‘Z’  ::  5A (H)  90 (D) 

 

‘a’  ::  61 (H)   97 (D) 

‘b’  ::  62 (H)   98 (D) 

……….. 

‘z’  ::  7A (H)  122 (D) 

 

‘0’  ::  30 (H)   48 (D) 

‘1’  ::  31 (H)   49 (D) 

……….. 

‘9’  ::  39 (H)   57 (D) 

 

‘(‘   ::  28 (H)  40 (D) 

‘+’  ::  2B (H)  43 (D) 

‘?’  ::   3F (H)  63 (D) 

‘\n’ ::  0A (H)  10 (D) 

‘\0’ ::   00 (H)  00 (D) 

 

Character Strings 

• Two ways of representing a sequence of 
characters in memory. 

– The first location contains the number of characters in 
the string, followed by the actual characters. 

 

 

– The characters follow one another, and is terminated 
by a special delimiter. 

  

o e H 5 l l 

 l e H o l 



Pralay Mitra Autumn 2016; CSE@IITKGP 

Programming and Data Structure 25 

String Representation in C 

• In C, the second approach is used. 

– The ‘\0’ character is used as the string delimiter. 

• Example: 

“Hello”        

 

• A null string “” occupies one byte in memory. 

– Only the ‘\0’ character. 

‘\0’ l e H o l 

Problem 7 

Given 2 positive numbers n and r, n>=r , write a C 
function to compute the number of combinations(nCr) 
and the number of permutations(nPr). 

 

Permutations formula is P(n,r)=n!/(n-r)! 

Combinations formula is C(n,r)=n!/(r!(n-r)!) 
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Problem 8 

Scope of variable: 

What is the output of the following code snippet? 

 

#include <stdio.h> 

 

int main(){ 

 int i = 10; 

 for(int i = 5; i < 15; i++) 

  printf(“i is %d\n”, i); 

  return 0; 

}  

Scope of variable: What is the output of the following code snippet? 

 

#include <stdio.h> 

int a = 20; 

int sum(int a, int b) {  

 printf ("value of a in sum() = %d\n",  a); 

 printf ("value of b in sum() = %d\n",  b);  

 return a + b; 

} 

int main ()  

{ 

 int a = 10;  int b = 20;  int c = 0; 

  printf ("value of a in main() = %d\n",  a); 

   c = sum( a, b); 

   printf ("value of c in main() = %d\n",  c); 

   return 0; 

} 

 

Problem 9 



Pralay Mitra Autumn 2016; CSE@IITKGP 

Programming and Data Structure 27 

Problem 10 

Write a C program which display the entered 
number in words. 

Example:  
 
Input:  
Enter a number: 7 
 
Output:  
Seven 

Problem 11 

Write a C program to delete duplicate elements in 
an array without using another auxiliary array. 

Example:  
 
Input:  
5 8 5 5 6 9 8 2 1 1 3 3 
 
Output:  
5 8 6 9 2 1 3 
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Problem 12 

Write a C program to print PASCAL’s triangle. 

Problem 13 

Given 2 numbers a and b, write a C program to 
compute the Greatest Common Divisor(GCD) of the 2 
numbers. 

 

The GCD of 2 numbers is the largest positive integer 
that divides the numbers without a remainder. 

  Example: GCD(2,8)=2;  GCD(3,7)=1 
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Problem 14 

Given 2 arrays of integers A and B of size n each, write a 
C program to calculate the dot product of the 2 arrays. 

 

If A=[a0, a1, a2,….,an-1] and   

   B= [b0, b1, b2,….,bn-1],  

   the dot product of A and B is given by  

   A.B=[a0*b0 + a1*b1 + a2*b2 + ……. + an-1*bn-1] 

Problem 15 

Given a non negative integer n, write a C function to 
output the decimal integer(base 10) in its binary 
representation (base 2). 

 

Example: Binary representation of 

 3  is  11 

 8  is  1000 

 15  is  1111 
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Problem 16 

Given two array of sorted numbers A and B, both are of 
arbitrary sizes, write a C function named merge_arrays 
that merges both the arrays in sorted order and returns 
the sorted array C. 


