
Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 1

Number System
Number Representation

Topics to be Discussed

• How are numeric data items actually stored in
computer memory?

• How much space (memory locations) is allocated for
each type of data?

– int, float, char, etc.

• How are characters and strings stored in memory?

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 2

Number System :: The Basics

• We are accustomed to using the so-called
decimal number system.
– Ten digits :: 0,1,2,3,4,5,6,7,8,9

– Every digit position has a weight which is a power of
10.

– Base or radix is 10.

• Example:
234 = 2 x 102 + 3 x 101 + 4 x 100

250.67 = 2 x 102 + 5 x 101 + 0 x 100 +

 6 x 10-1 + 7 x 10-2

Binary Number System

• Two digits:

– 0 and 1.

– Every digit position has a weight which is a
power of 2.

– Base or radix is 2.

• Example:

110 = 1 x 22 + 1 x 21 + 0 x 20

101.01 = 1 x 22 + 0 x 21 + 1 x 20 +

 0 x 2-1 + 1 x 2-2

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 3

Counting with Binary Numbers

 0
 1
 10
 11
 100
 101
 110
 111
 1000
 .

Multiplication and Division with base

 Multiplication with 10 (decimal system)

 435 x 10 = 4350

 Multiplication with 10 (=2) (binary system)

 1101 x 10 = 11010

 Division by 10 (decimal system)

 435 / 10 = 43.5

 Division by 10 (=2) (binary system)

 1101 / 10 = 110.1

Left Shift and add

zero at right end

Right shift and drop

 right most digit or

 shift after decimal

point

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 4

Adding two bits

0 + 0 = 0
0 + 1 = 1

1 + 0 = 1

1 + 1 = 10

carry

 1 1 1 0
 1 0 1 1
+ 1 1 1 0
 1 1 0 0 1

Carries

Binary addition: Another example

 1 1 0 0 (Carries)
 1 1 0 1
+ 1 1 0 0
 1 1 0 0 1 (Sum)

The initial carry
in is implicitly 0

most significant
bit (MSB)

least significant
bit (LSB)

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 5

Binary-to-Decimal Conversion

• Each digit position of a binary number has a
weight.

– Some power of 2.

• A binary number:

 B = bn-1 bn-2 …..b1 b0 . b-1 b-2 ….. b-m

 Corresponding value in decimal:

 D =  bi 2
i

i = -m

n-1

Examples

1. 101011  1x25 + 0x24 + 1x23 + 0x22 + 1x21 + 1x20

 = 43

 (101011)2 = (43)10

2. .0101  0x2-1 + 1x2-2 + 0x2-3 + 1x2-4

 = .3125

 (.0101)2 = (.3125)10

3. 101.11  1x22 + 0x21 + 1x20 + 1x2-1 + 1x2-2

 5.75

 (101.11)2 = (5.75)10

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 6

Decimal-to-Binary Conversion
• Consider the integer and fractional parts

separately.
• For the integer part,

– Repeatedly divide the given number by 2, and go
on accumulating the remainders, until the number
becomes zero.

– Arrange the remainders in reverse order.

• For the fractional part,
– Repeatedly multiply the given fraction by 2.

• Accumulate the integer part (0 or 1).
• If the integer part is 1, chop it off.

– Arrange the integer parts in the order they are
obtained.

Example 1 :: 239

2 239

2 119 --- 1

2 59 --- 1

2 29 --- 1

2 14 --- 1

2 7 --- 0

2 3 --- 1

2 1 --- 1

2 0 --- 1

(239)10 = (11101111)2

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 7

Example 2 :: 64

2 64

2 32 --- 0

2 16 --- 0

2 8 --- 0

2 4 --- 0

2 2 --- 0

2 1 --- 0

2 0 --- 1

(64)10 = (1000000)2

Example 3 :: .634

.634 x 2 = 1.268

.268 x 2 = 0.536

.536 x 2 = 1.072

.072 x 2 = 0.144

.144 x 2 = 0.288

:

:

(.634)10 = (.10100……)2

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 8

Example 4 :: 37.0625

(37)10 = (100101)2

(.0625)10 = (.0001)2

(37.0625)10 = (100101 . 0001)2

Hexadecimal Number System

• A compact way of representing binary numbers.

• 16 different symbols (radix = 16).

 0  0000 8  1000
 1  0001 9  1001
 2  0010 A  1010
 3  0011 B  1011
 4  0100 C  1100
 5  0101 D  1101
 6  0110 E  1110
 7  0111 F  1111

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 9

Binary-to-Hexadecimal Conversion

• For the integer part,
– Scan the binary number from right to left.

– Translate each group of four bits into the
corresponding hexadecimal digit.
• Add leading zeros if necessary.

• For the fractional part,
– Scan the binary number from left to right.

– Translate each group of four bits into the
corresponding hexadecimal digit.
• Add trailing zeros if necessary.

Example

1. (1011 0100 0011)2 = (B43)16

2. (10 1010 0001)2 = (2A1)16

3. (.1000 010)2 = (.84)16

4. (101 . 0101 111)2 = (5.5E)16

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 10

Hexadecimal-to-Binary Conversion

• Translate every hexadecimal digit into its 4-
bit binary equivalent.

• Examples:

 (3A5)16 = (0011 1010 0101)2

 (12.3D)16 = (0001 0010 . 0011 1101)2

 (1.8)16 = (0001 . 1000)2

Unsigned Binary Numbers

• An n-bit binary number
 B = bn-1bn-2 …. b2b1b0

• 2n distinct combinations are possible, 0 to 2n-1.

• For example, for n = 3, there are 8 distinct
combinations.
– 000, 001, 010, 011, 100, 101, 110, 111

• Range of numbers that can be represented
 n=8  0 to 28-1 (255)

 n=16  0 to 216-1 (65535)

 n=32  0 to 232-1 (4294967295)

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 11

Signed Integer Representation

• Many of the numerical data items that are used in a
program are signed (positive or negative).

– Question:: How to represent sign?

• Three possible approaches:

– Sign-magnitude representation

– One’s complement representation

– Two’s complement representation

Sign-magnitude Representation

• For an n-bit number representation

– The most significant bit (MSB) indicates sign

 0  positive

 1  negative

– The remaining n-1 bits represent magnitude.

b0 b1 bn-2 bn-1

Magnitude
Sign

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 12

Representation and ZERO

• Range of numbers that can be represented:

 Maximum :: + (2n-1 – 1)

 Minimum ::  (2n-1 – 1)

• A problem:

 Two different representations of zero.

 +0  0 000….0

 -0  1 000….0

One’s Complement Representation

• Basic idea:
– Positive numbers are represented exactly as in sign-

magnitude form.

– Negative numbers are represented in 1’s complement
form.

• How to compute the 1’s complement of a
number?
– Complement every bit of the number (10 and 01).

– MSB will indicate the sign of the number.

 0  positive

 1  negative

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 13

Example :: n=4
0000  +0

0001  +1

0010  +2

0011  +3

0100  +4

0101  +5

0110  +6

0111  +7

1000  -7

1001  -6

1010  -5

1011  -4

1100  -3

1101  -2

1110  -1

1111  -0

 To find the representation of -4, first note that

 +4 = 0100

 -4 = 1’s complement of 0100 = 1011

One’s Complement Representation

• Range of numbers that can be represented:
 Maximum :: + (2n-1 – 1)

 Minimum ::  (2n-1 – 1)

• A problem:
 Two different representations of zero.

 +0  0 000….0

 -0  1 111….1

• Advantage of 1’s complement representation
– Subtraction can be done using addition.

– Leads to substantial saving in circuitry.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 14

Two’s Complement Representation

• Basic idea:
– Positive numbers are represented exactly as in sign-

magnitude form.
– Negative numbers are represented in 2’s complement

form.

• How to compute the 2’s complement of a
number?
– Complement every bit of the number (10 and 01), and

then add one to the resulting number.
– MSB will indicate the sign of the number.

 0  positive
 1  negative

Example :: n=4
0000  +0

0001  +1

0010  +2

0011  +3

0100  +4

0101  +5

0110  +6

0111  +7

1000  -8

1001  -7

1010  -6

1011  -5

1100  -4

1101  -3

1110  -2

1111  -1

To find the representation of, say, -4, first note that

 +4 = 0100

 -4 = 2’s complement of 0100 = 1011+1 = 1100

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 15

Storage and number system in
Programming

• In C

– short int

• 16 bits  + (215-1) to -215

– int

• 32 bits  + (231-1) to -231

– long int

• 64 bits  + (263-1) to -263

Storage and number system in
Programming

• Range of numbers that can be represented:
 Maximum :: + (2n-1 – 1)

 Minimum ::  2n-1

• Advantage:

– Unique representation of zero.

– Subtraction can be done using addition.

– Leads to substantial saving in circuitry.

• Almost all computers today use the 2’s complement
representation for storing negative numbers.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 16

Subtraction Using Addition :: 1’s
Complement

• How to compute A – B ?

– Compute the 1’s complement of B (say, B1).

– Compute R = A + B1

– If the carry obtained after addition is ‘1’

• Add the carry back to R (called end-around carry).

• That is, R = R + 1.

• The result is a positive number.

 Else

• The result is negative, and is in 1’s complement form.

Example 1 :: 6 – 2

1’s complement of 2 = 1101

 6 :: 0110

 -2 :: 1101

 1 0011

 1

 0100  +4

End-around

carry

Assume 4-bit

representations.

Since there is a carry, it is

added back to the result.

The result is positive.

R

B1

A

A = 6 (0110)
B = 2 (0010)
6 – 2 = A - B

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 17

Example 2 :: 3 – 5

1’s complement of 5 = 1010

 3 :: 0011

 -5 :: 1010

 1101

Assume 4-bit representations.

Since there is no carry, the

result is negative.

1101 is the 1’s complement of

0010, that is, it represents –2.

A

B1

R

-2

Subtraction Using Addition :: 2’s
Complement

• How to compute A – B ?

– Compute the 2’s complement of B (say, B2).

– Compute R = A + B2

– Ignore carry if it is there.

– The result is in 2’s complement form.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 18

Example 1 :: 6 – 2

2’s complement of 2 = 1101 + 1 = 1110

 6 :: 0110

 -2 :: 1110

 1 0100

A

B2

R

Ignore carry
+4

Example 2 :: 3 – 5

2’s complement of 5 = 1010 + 1 = 1011

 3 :: 0011

 -5 :: 1011

 1110

A

B2

R

-2

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 19

Example 3 :: -3 – 5

2’s complement of 3 = 1100 + 1 = 1101

2’s complement of 5 = 1010 + 1 = 1011

 -3 :: 1101

 -5 :: 1011

 1 1000

 Ignore carry -8

Floating-point Numbers

• The representations discussed so far applies only to
integers.
– Cannot represent numbers with fractional parts.

• We can assume a decimal point before a 2’s
complement number.
– In that case, pure fractions (without integer parts) can be

represented.

• We can also assume the decimal point somewhere
in between.
– This lacks flexibility.

– Very large and very small numbers cannot be
represented.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 20

Representation of Floating-Point
Numbers

• A floating-point number F is represented by a
doublet <M,E> :
 F = M x BE

• B  exponent base (usually 2)
• M  mantissa
• E  exponent

– M is usually represented in 2’s complement form, with
an implied decimal point before it.

• For example,
 In decimal,

 0.235 x 106

 In binary,
 0.101011 x 20110

Example :: 32-bit representation

– M represents a 2’s complement fraction

 1 > M > -1

– E represents the exponent (in 2’s complement form)

 127 > E > -128

• Points to note:
– The number of significant digits depends on the number of

bits in M.

• 6 significant digits for 24-bit mantissa.

– The range of the number depends on the number of bits in
E.

• 1038 to 10-38 for 8-bit exponent.

M E

24 8

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 21

Floating point number:
IEEE Standard 754

• Storage Layout

Sign Exponent Fraction /

Mantissa

Single Precision 1 [31] 8 [30–23] 23 [22–00]

Double Precision 1 [63] 11 [62–52] 52 [51–00]

Single: SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM
Double: SEEEEEEE EEEEMMMM MMMMMMMM MMMMMMMM
 MMMMMMMM MMMMMMMM MMMMMMMM MMMMMMMM

IEEE Standard 754

• Ranges of Floating-Point Numbers
 Since every floating-point number has a corresponding, negated
value (by toggling the sign bit), the ranges above are symmetric around zero.

Denormalized Normalized
Approximate
Decimal

Single
Precision

± 2−149 to
(1−2−23)×2−126

± 2−126 to
(2−2−23)×2127

± ≈10−44.85 to
≈1038.53

Double
Precision

± 2−1074 to
(1−2−52)×2−1022

± 2−1022 to
(2−2−52)×21023

± ≈10−323.3 to
≈10308.3

1. The sign bit is 0 for positive, 1 for negative.
2. The exponent base is two.
3. The exponent field contains 127 plus the true exponent for single-precision, or

1023 plus the true exponent for double precision.
4. The first bit of the mantissa is typically assumed to be 1.f, where f is the field of

fraction bits.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 22

IEEE Standard 754

There are five distinct numerical ranges that single-
precision floating-point numbers are not able to
represent:

1. Negative numbers less than −(2−2−23) × 2127 (negative

overflow)

2. Negative numbers greater than −2−149 (negative underflow)

3. Zero

4. Positive numbers less than 2−149 (positive underflow)

5. Positive numbers greater than (2−2−23) × 2127 (positive
overflow)

Special Values

• Zero
−0 and +0 are distinct values, though they both compare as equal.

• Denormalized
If the exponent is all 0s, but the fraction is non-zero, then the value is a denormalized
number, which now has an assumed leading 0 before the binary point. Thus, this
represents a number (−1)s × 0.f × 2−126, where s is the sign bit and f is the fraction. For
double precision, denormalized numbers are of the form (−1)s × 0.f × 2−1022. From this
you can interpret zero as a special type of denormalized number.

• Infinity
The values +∞ and −∞ are denoted with an exponent of all 1s and a fraction of all 0s.
The sign bit distinguishes between negative infinity and positive infinity. Being able to
denote infinity as a specific value is useful because it allows operations to continue past
overflow situations. Operations with infinite values are well defined in IEEE floating
point.

• Not A Number
The value NaN (Not a Number) is used to represent a value that does not represent a
real number. NaN's are represented by a bit pattern with an exponent of all 1s and a
non-zero fraction.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 23

Representation of Characters

• Many applications have to deal with non-numerical
data.
– Characters and strings.

– There must be a standard mechanism to represent alphanumeric and
other characters in memory.

• Three standards in use:
– Extended Binary Coded Decimal Interchange Code (EBCDIC)

• Used in older IBM machines.

– American Standard Code for Information Interchange (ASCII)

• Most widely used today.

– UNICODE

• Used to represent all international characters.

• Used by Java.

ASCII Code

• Each individual character is numerically encoded into
a unique 7-bit binary code.
– A total of 27 or 128 different characters.

– A character is normally encoded in a byte (8 bits), with the
MSB not been used.

• The binary encoding of the characters follow a
regular ordering.
– Digits are ordered consecutively in their proper numerical

sequence (0 to 9).

– Letters (uppercase and lowercase) are arranged
consecutively in their proper alphabetic order.

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 24

Some Common ASCII Codes

‘A’ :: 41 (H) 65 (D)

‘B’ :: 42 (H) 66 (D)

………..

‘Z’ :: 5A (H) 90 (D)

‘a’ :: 61 (H) 97 (D)

‘b’ :: 62 (H) 98 (D)

………..

‘z’ :: 7A (H) 122 (D)

‘0’ :: 30 (H) 48 (D)

‘1’ :: 31 (H) 49 (D)

………..

‘9’ :: 39 (H) 57 (D)

‘(‘ :: 28 (H) 40 (D)

‘+’ :: 2B (H) 43 (D)

‘?’ :: 3F (H) 63 (D)

‘\n’ :: 0A (H) 10 (D)

‘\0’ :: 00 (H) 00 (D)

Character Strings

• Two ways of representing a sequence of
characters in memory.

– The first location contains the number of characters in
the string, followed by the actual characters.

– The characters follow one another, and is terminated
by a special delimiter.

o e H 5 l l

 l e H o l

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 25

String Representation in C

• In C, the second approach is used.

– The ‘\0’ character is used as the string delimiter.

• Example:

“Hello” 

• A null string “” occupies one byte in memory.

– Only the ‘\0’ character.

‘\0’ l e H o l

Problem 7

Given 2 positive numbers n and r, n>=r , write a C
function to compute the number of combinations(nCr)
and the number of permutations(nPr).

Permutations formula is P(n,r)=n!/(n-r)!

Combinations formula is C(n,r)=n!/(r!(n-r)!)

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 26

Problem 8

Scope of variable:

What is the output of the following code snippet?

#include <stdio.h>

int main(){

 int i = 10;

 for(int i = 5; i < 15; i++)

 printf(“i is %d\n”, i);

 return 0;

}

Scope of variable: What is the output of the following code snippet?

#include <stdio.h>

int a = 20;

int sum(int a, int b) {

 printf ("value of a in sum() = %d\n", a);

 printf ("value of b in sum() = %d\n", b);

 return a + b;

}

int main ()

{

 int a = 10; int b = 20; int c = 0;

 printf ("value of a in main() = %d\n", a);

 c = sum(a, b);

 printf ("value of c in main() = %d\n", c);

 return 0;

}

Problem 9

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 27

Problem 10

Write a C program which display the entered
number in words.

Example:

Input:
Enter a number: 7

Output:
Seven

Problem 11

Write a C program to delete duplicate elements in
an array without using another auxiliary array.

Example:

Input:
5 8 5 5 6 9 8 2 1 1 3 3

Output:
5 8 6 9 2 1 3

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 28

Problem 12

Write a C program to print PASCAL’s triangle.

Problem 13

Given 2 numbers a and b, write a C program to
compute the Greatest Common Divisor(GCD) of the 2
numbers.

The GCD of 2 numbers is the largest positive integer
that divides the numbers without a remainder.

 Example: GCD(2,8)=2; GCD(3,7)=1

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 29

Problem 14

Given 2 arrays of integers A and B of size n each, write a
C program to calculate the dot product of the 2 arrays.

If A=[a0, a1, a2,….,an-1] and

 B= [b0, b1, b2,….,bn-1],

 the dot product of A and B is given by

 A.B=[a0*b0 + a1*b1 + a2*b2 + ……. + an-1*bn-1]

Problem 15

Given a non negative integer n, write a C function to
output the decimal integer(base 10) in its binary
representation (base 2).

Example: Binary representation of

 3 is 11

 8 is 1000

 15 is 1111

Pralay Mitra Autumn 2016; CSE@IITKGP

Programming and Data Structure 30

Problem 16

Given two array of sorted numbers A and B, both are of
arbitrary sizes, write a C function named merge_arrays
that merges both the arrays in sorted order and returns
the sorted array C.

