Number System Number Representation

Topics to be Discussed

- How are numeric data items actually stored in computer memory?
- How much space (memory locations) is allocated for each type of data?
 - int, float, char, etc.
- · How are characters and strings stored in memory?

Number System :: The Basics

- We are accustomed to using the so-called decimal number system.
 - Ten digits :: 0,1,2,3,4,5,6,7,8,9
 - Every digit position has a weight which is a power of 10.
 - Base or radix is 10.

• Example:

 $234 = 2 \times 10^{2} + 3 \times 10^{1} + 4 \times 10^{0}$ 250.67 = 2 × 10² + 5 × 10¹ + 0 × 10⁰ + 6 × 10⁻¹ + 7 × 10⁻²

Binary Number System

- Two digits:
 - 0 and 1.
 - Every digit position has a weight which is a power of 2.
 - Base or radix is 2.
- Example:

 $110 = 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$ $101.01 = 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2}$

Counting with Binary Numbers

Multiplication and Division with base

- Multiplication with 10 (=2) (binary system) 1101 x 10 = 11010
- Division by 10 (decimal system)
 435 / 10 = 43.5
- Division by 10 (=2) (binary system) 1101 / 10 = 110.1

Right shift and drop right most digit or shift after decimal point

Adding two bits

Binary addition: Another example

Binary-to-Decimal Conversion

- Each digit position of a binary number has a weight.
 - Some power of 2.
- A binary number:

 $B = b_{n-1} b_{n-2} \dots b_1 b_0 \dots b_{-1} b_{-2} \dots b_{-m}$ Corresponding value in decimal: $D = \sum_{i = -m}^{n-1} b_i 2^i$

Examples

1. $101011 \rightarrow 1x2^{5} + 0x2^{4} + 1x2^{3} + 0x2^{2} + 1x2^{1} + 1x2^{0}$ = 43 $(101011)_{2} = (43)_{10}$ 2. $.0101 \rightarrow 0x2^{-1} + 1x2^{-2} + 0x2^{-3} + 1x2^{-4}$ = .3125 $(.0101)_{2} = (.3125)_{10}$ 3. $101.11 \rightarrow 1x2^{2} + 0x2^{1} + 1x2^{0} + 1x2^{-1} + 1x2^{-2}$

5. 101.11 **-** $1x2^{2} + 0x2^{2} + 1x2^{2} + 1x2^{2} + 1x2^{2}$ 5.75 $(101.11)_{2} = (5.75)_{10}$

Programming and Data Structure

Decimal-to-Binary Conversion

- Consider the integer and fractional parts separately.
- For the integer part,
 - Repeatedly divide the given number by 2, and go on accumulating the remainders, until the number becomes zero.
 - Arrange the remainders *in reverse order*.
- For the fractional part,
 - Repeatedly multiply the given fraction by 2.
 - Accumulate the integer part (0 or 1).
 - If the integer part is 1, chop it off.
 - Arrange the integer parts in the order they are obtained.

Example 1 :: 239

 $(239)_{10} = (11101111)_2$

Example 2 :: 64

 $(64)_{10} = (1000000)_2$

Example 3 :: .634

 $(.634)_{10} = (.10100....)_2$

Example 4 :: 37.0625

 $(37)_{10} = (100101)_2$ $(.0625)_{10} = (.0001)_2$

 $(37.0625)_{10} = (100101 . 0001)_2$

Hexadecimal Number System

- A compact way of representing binary numbers.
- 16 different symbols (radix = 16).

0	\rightarrow	0000	8	\rightarrow	1000
1	\rightarrow	0001	9	\rightarrow	1001
2	\rightarrow	0010	А	\rightarrow	1010
3	\rightarrow	0011	В	\rightarrow	1011
4	\rightarrow	0100	С	\rightarrow	1100
5	\rightarrow	0101	D	\rightarrow	1101
6	\rightarrow	0110	Ε	\rightarrow	1110
7	\rightarrow	0111	F	\rightarrow	1111

Binary-to-Hexadecimal Conversion

- For the integer part,
 - Scan the binary number from *right to left*.
 - Translate each group of four bits into the corresponding hexadecimal digit.
 - Add *leading* zeros if necessary.

For the fractional part,

- Scan the binary number from *left to right*.
- Translate each group of four bits into the corresponding hexadecimal digit.
 - Add *trailing* zeros if necessary.

Example

- 1. $(\underline{1011} \ \underline{0100} \ \underline{0011})_2 = (B43)_{16}$
- 2. $(\underline{10} \ \underline{1010} \ \underline{0001})_2 = (2A1)_{16}$
- 3. $(.\underline{1000} \ \underline{010})_2 = (.84)_{16}$
- 4. $(\underline{101} . \underline{0101} \underline{111})_2 = (5.5E)_{16}$

Hexadecimal-to-Binary Conversion

- Translate every hexadecimal digit into its 4bit binary equivalent.
- Examples:

 $(3A5)_{16} = (0011 \ 1010 \ 0101)_2$ $(12.3D)_{16} = (0001 \ 0010 \ . \ 0011 \ 1101)_2$ $(1.8)_{16} = (0001 \ . \ 1000)_2$

Unsigned Binary Numbers

- An n-bit binary number
 - $B = b_{n-1}b_{n-2} \dots b_2b_1b_0$
 - 2ⁿ distinct combinations are possible, 0 to 2ⁿ-1.
- For example, for n = 3, there are 8 distinct combinations.
 - 000, 001, 010, 011, 100, 101, 110, 111
- Range of numbers that can be represented
 - $n=8 \rightarrow 0$ to $2^{8}-1$ (255)
 - $n=16 \rightarrow 0$ to $2^{16}-1$ (65535)
 - $n=32 \rightarrow 0$ to $2^{32}-1$ (4294967295)

Signed Integer Representation

- Many of the numerical data items that are used in a program are signed (positive or negative).
 - Question:: How to represent sign?
- Three possible approaches:
 - Sign-magnitude representation
 - One's complement representation
 - Two's complement representation

Sign-magnitude Representation

- For an n-bit number representation
 - The most significant bit (MSB) indicates sign
 - $0 \rightarrow \text{positive}$
 - 1 \rightarrow negative
 - The remaining n-1 bits represent magnitude.

Representation and ZERO

Range of numbers that can be represented:

```
Maximum :: + (2^{n-1} - 1)
Minimum :: - (2^{n-1} - 1)
```

• A problem:

Two different representations of zero.

```
\begin{array}{rrr} +0 \rightarrow 0 \ 000....0 \\ -0 \rightarrow 1 \ 000....0 \end{array}
```

One's Complement Representation

- Basic idea:
 - Positive numbers are represented exactly as in signmagnitude form.
 - Negative numbers are represented in 1's complement form.
- How to compute the 1's complement of a number?
 - Complement every bit of the number $(1 \rightarrow 0 \text{ and } 0 \rightarrow 1)$.
 - MSB will indicate the sign of the number.
 - $0 \rightarrow \text{positive}$
 - 1 \rightarrow negative

Example :: n=4

$0000 \rightarrow +0$	1000 → -7			
0001 \rightarrow +1	1001 → -6			
0010 → +2	1010 → -5			
0011 → +3	1011 → -4			
0100 → +4	1100 → -3			
0101 → +5	1101 → -2			
0110 → +6	1110 → -1			
0111 → +7	1111 → -0			
To find the representation of -4, first note that				
+4 = 0100				

-4 = 1's complement of 0100 = 1011

One's Complement Representation

Range of numbers that can be represented:

Maximum :: $+ (2^{n-1} - 1)$ Minimum :: $- (2^{n-1} - 1)$

- A problem:
 - Two different representations of zero.

```
+0 → 0 000....0
```

- -0 → 1 111....1
- Advantage of 1's complement representation
 - Subtraction can be done using addition.
 - Leads to substantial saving in circuitry.

Two's Complement Representation

• Basic idea:

- Positive numbers are represented exactly as in signmagnitude form.
- Negative numbers are represented in 2's complement form.
- How to compute the 2's complement of a number?
 - Complement every bit of the number $(1 \rightarrow 0 \text{ and } 0 \rightarrow 1)$, and then *add one* to the resulting number.
 - MSB will indicate the sign of the number.
 - $0 \rightarrow \text{positive}$
 - 1 \rightarrow negative

Example :: n=4

0000 → +0	1000 → -8
0001 → +1	1001 → -7
0010 → +2	1010 → -6
0011 → +3	1011 → -5
0100 → +4	1100 → -4
0101 → +5	1101 → -3
0110 → +6	1110 → -2
0111 → +7	1111 → -1

To find the representation of, say, -4, first note that

+4 = 0100

-4 = 2's complement of 0100 = 1011+1 = 1100

Storage and number system in Programming

In C
short int

16 bits → + (2¹⁵-1) to -2¹⁵

- int

32 bits → + (2³¹-1) to -2³¹

- long int

64 bits → + (2⁶³-1) to -2⁶³

Storage and number system in Programming

- Range of numbers that can be represented:
 - Maximum :: $+ (2^{n-1} 1)$ Minimum :: -2^{n-1}
- Advantage:
 - Unique representation of zero.
 - Subtraction can be done using addition.
 - Leads to substantial saving in circuitry.
- Almost all computers today use the 2's complement representation for storing negative numbers.

Subtraction Using Addition :: 1's Complement

• How to compute A – B?

- Compute the 1's complement of B (say, B_1).
- Compute $R = A + B_1$
- If the carry obtained after addition is '1'
 - Add the carry back to R (called *end-around carry*).
 - That is, R = R + 1.
 - The result is a positive number.

Else

• The result is negative, and is in 1's complement form.

Example 1 :: 6 – 2

A = 6 (0110) B = 2 (0010) 6 - 2 = A - B

1's complement of 2 = 1101

6 ::	0110	Α
-2 ::	1101	B ₁
End-around	1 0011	R
carry	1	
	0100	→ +4

Assume 4-bit representations.

Since there is a carry, it is added back to the result.

The result is positive.

Example 2 :: 3 – 5

1's complement of 5 = 1010

Assume 4-bit representations.

Since there is no carry, the result is negative.

1101 is the 1's complement of 0010, that is, it represents -2.

Subtraction Using Addition :: 2's Complement

- How to compute A B?
 - Compute the 2's complement of B (say, B_2).
 - Compute $R = A + B_2$
 - Ignore carry if it is there.
 - The result is in 2's complement form.

Example 1 :: 6 – 2

2's complement of 2 = 1101 + 1 = 1110

Example 2 :: 3 – 5

2's complement of 5 = 1010 + 1 = 1011

Example 3 :: -3 – 5

2's complement of 3 = 1100 + 1 = 1101 2's complement of 5 = 1010 + 1 = 1011

Floating-point Numbers

- The representations discussed so far applies only to integers.
 - Cannot represent numbers with fractional parts.
- We can assume a decimal point before a 2's complement number.
 - In that case, pure fractions (without integer parts) can be represented.
- We can also assume the decimal point somewhere in between.
 - This lacks flexibility.
 - Very large and very small numbers cannot be represented.

Representation of Floating-Point Numbers

- A floating-point number F is represented by a doublet <M,E> :
 - $F = M \times B^{E}$
 - B \rightarrow exponent base (usually 2)
 - M → mantissa
 - E \rightarrow exponent
 - M is usually represented in 2's complement form, with an implied decimal point before it.

• For example,

In decimal, 0.235 x 10⁶ In binary, 0.101011 x 2⁰¹¹⁰

Example :: 32-bit representation

- M represents a 2's complement fraction
 1 > M > -1
- E represents the exponent (in 2's complement form) 127 > E > -128

• Points to note:

- The number of *significant digits* depends on the number of bits in M.
 - 6 significant digits for 24-bit mantissa.
- The *range* of the number depends on the number of bits in E.
 - 10^{38} to 10^{-38} for 8-bit exponent.

Floating point number: IEEE Standard 754

• Storage Layout

	Sign	Exponent	Fraction / Mantissa
Single Precision	1 [31]	8 [30–23]	23 [22–00]
Double Precision	1 [63]	11 [62–52]	52 [51-00]

IEEE Standard 754

- 1. The sign bit is 0 for positive, 1 for negative.
- 2. The exponent base is two.
- 3. The exponent field contains 127 plus the true exponent for single-precision, or 1023 plus the true exponent for double precision.
- 4. The first bit of the mantissa is typically assumed to be 1.*f*, where *f* is the field of fraction bits.

Ranges of Floating-Point Numbers

Since every floating-point number has a corresponding, negated value (by toggling the sign bit), the ranges above are symmetric around zero.

	Denormalized	Normalized	Approximate Decimal
Single	$\pm 2^{-149}$ to	$\pm 2^{-126}$ to	± ≈10 ^{-44.85} to
Precision	(1-2 ⁻²³)×2 ⁻¹²⁶	(2-2 ⁻²³)×2 ¹²⁷	≈10 ^{38.53}
Double	$\pm 2^{-1074}$ to	$\pm 2^{-1022}$ to	± ≈10 ^{-323.3} to
Precision	(1-2 ⁻⁵²)×2 ⁻¹⁰²²	(2-2 ⁻⁵²)×2 ¹⁰²³	≈10 ^{308.3}

IEEE Standard 754

There are five distinct numerical ranges that singleprecision floating-point numbers are **not** able to represent:

- 1. Negative numbers less than $-(2-2^{-23}) \times 2^{127}$ (negative overflow)
- 2. Negative numbers greater than -2⁻¹⁴⁹ (negative underflow)
- 3. Zero
- 4. Positive numbers less than 2⁻¹⁴⁹ (positive underflow)
- 5. Positive numbers greater than $(2-2^{-23}) \times 2^{127}$ (positive overflow)

Special Values

• Zero

-0 and +0 are distinct values, though they both compare as equal.

Denormalized

If the exponent is all 0s, but the fraction is non-zero, then the value is a *denormalized* number, which now has an assumed leading *0* before the binary point. Thus, this represents a number $(-1)^s \times 0.f \times 2^{-126}$, where *s* is the sign bit and *f* is the fraction. For double precision, denormalized numbers are of the form $(-1)^s \times 0.f \times 2^{-1022}$. From this you can interpret zero as a special type of denormalized number.

Infinity

The values $+\infty$ and $-\infty$ are denoted with an exponent of all 1s and a fraction of all 0s. The sign bit distinguishes between negative infinity and positive infinity. Being able to denote infinity as a specific value is useful because it allows operations to continue past overflow situations. *Operations with infinite values are well defined in IEEE floating point.*

Not A Number

The value NaN (*Not a Number*) is used to represent a value that does not represent a real number. NaN's are represented by a bit pattern with an exponent of all 1s and a non-zero fraction.

Representation of Characters

- Many applications have to deal with non-numerical data.
 - Characters and strings.
 - There must be a standard mechanism to represent alphanumeric and other characters in memory.

Three standards in use:

- Extended Binary Coded Decimal Interchange Code (EBCDIC)
 - Used in older IBM machines.
- American Standard Code for Information Interchange (ASCII)
 - Most widely used today.
- UNICODE
 - Used to represent all international characters.
 - Used by Java.

ASCII Code

- Each individual character is numerically encoded into a unique 7-bit binary code.
 - A total of 2⁷ or 128 different characters.
 - A character is normally encoded in a byte (8 bits), with the MSB not been used.
- The binary encoding of the characters follow a regular ordering.
 - Digits are ordered consecutively in their proper numerical sequence (0 to 9).
 - Letters (uppercase and lowercase) are arranged consecutively in their proper alphabetic order.

Some Common ASCII Codes

'A' :: 41 (H) 65 (D)	'0' :: 30 (H) 48 (D)
'B' :: 42 (H) 66 (D)	'1':: 31 (H) 49 (D)
'Z' :: 5A (H) 90 (D)	'9':: <mark>39</mark> (H) 57(D)
'a' :: 61 (H) 97 (D)	'(' :: 28 (H) 40 (D)
'b' :: 62 (H) 98 (D)	'+' :: 2B (H) 43 (D)
	'?' :: 3F (H) 63 (D)
'z' :: 7A (H) 122 (D)	′∖n′ :: <mark>0A (H)</mark> 10 (D)
	'\0' :: 00 (H) 00 (D)

Character Strings

- Two ways of representing a sequence of characters in memory.
 - The first location contains the number of characters in the string, followed by the actual characters.

 The characters follow one another, and is terminated by a special delimiter.

String Representation in C

- In C, the second approach is used.
 - The 0^{\prime} character is used as the string delimiter.
- Example: "Hello" → H e I I o \\0'
- A null string "" occupies one byte in memory.
 - Only the '\0' character.

Problem 7

Given 2 positive numbers *n* and *r*, *n*>=*r*, write a C function to compute the number of combinations(${}^{n}C_{r}$) and the number of permutations(${}^{n}P_{r}$).

Permutations formula is P(n,r)=n!/(n-r)! Combinations formula is C(n,r)=n!/(r!(n-r)!)

```
Scope of variable:
What is the output of the following code snippet?
```

```
#include <stdio.h>
```

```
int main(){
    int i = 10;
    for(int i = 5; i < 15; i++)
        printf("i is %d\n", i);
    return 0;
}</pre>
```

Problem 9

Scope of variable: What is the output of the following code snippet?

```
#include <stdio.h>
int a = 20;
int sum(int a, int b) {
    printf ("value of a in sum() = %d\n", a);
    printf ("value of b in sum() = %d\n", b);
    return a + b;
}
int main ()
{
    int a = 10; int b = 20; int c = 0;
    printf ("value of a in main() = %d\n", a);
        c = sum( a, b);
        printf ("value of c in main() = %d\n", c);
        return 0;
}
```

Write a C program which display the entered number in words.

Example:

Input: Enter a number: 7

Output: Seven

Problem 11

Write a C program to delete duplicate elements in an array without using another auxiliary array.

Example:

Input: 5 8 5 5 6 9 8 2 1 1 3 3

Output: 5869213

Programming and Data Structure

Write a C program to print PASCAL's triangle.

Problem 13

Given 2 numbers *a* and *b*, write a C program to compute the Greatest Common Divisor(GCD) of the 2 numbers.

The GCD of 2 numbers is the largest positive integer that divides the numbers without a remainder. Example: GCD(2,8)=2; GCD(3,7)=1

Given 2 arrays of integers *A* and *B* of size *n* each, write a C program to calculate the dot product of the 2 arrays.

If $A = [a_0, a_1, a_2, ..., a_{n-1}]$ and $B = [b_0, b_1, b_2, ..., b_{n-1}]$, the dot product of A and B is given by $A.B = [a_0^*b_0 + a_1^*b_1 + a_2^*b_2 + + a_{n-1}^*b_{n-1}]$

Problem 15

Given a non negative integer *n*, write a C function to output the decimal integer(base 10) in its binary representation (base 2).

Example: Binary representation of

3	is	11
8	is	1000
15	is	1111

Given two array of sorted numbers A and B, both are of arbitrary sizes, write a C function named *merge_arrays* that merges both the arrays in sorted order and returns the sorted array C.