Number System
 Number Representation

Topics to be Discussed

- How are numeric data items actually stored in computer memory?
- How much space (memory locations) is allocated for each type of data?
- int, float, char, etc.
- How are characters and strings stored in memory?

Number System :: The Basics

- We are accustomed to using the so-called decimal number system.
- Ten digits :: 0,1,2,3,4,5,6,7,8,9
- Every digit position has a weight which is a power of 10.
- Base or radix is 10 .
- Example:

$$
\begin{aligned}
& 234=2 \times 10^{2}+3 \times 10^{1}+4 \times 10^{0} \\
& 250.67=2 \times 10^{2}+5 \times 10^{1}+0 \times 10^{0}+ \\
& 6 \times 10^{-1}+7 \times 10^{-2}
\end{aligned}
$$

Binary Number System

- Two digits:
- 0 and 1.
- Every digit position has a weight which is a power of 2.
- Base or radix is 2.
- Example:
$110=1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}$
$101.01=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+$

$$
0 \times 2^{-1}+1 \times 2^{-2}
$$

Counting with Binary Numbers

$$
\begin{array}{r}
0 \\
1 \\
10 \\
11 \\
100 \\
101 \\
110 \\
111 \\
1000
\end{array}
$$

Multiplication and Division with base

- Multiplication with 10 (decimal system)

Left Shift and add zero at right end

- Multiplication with 10 (=2) (binary system)

$$
1101 \times 10=11010
$$

- Division by 10 (decimal system)

$$
435 / 10=43.5
$$

Right shift and drop right most digit or shift after decimal point

- Division by 10 (=2) (binary system)
$1101 / 10=110.1$

Adding two bits

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=10
\end{aligned}
$$

Binary addition: Another example

Binary-to-Decimal Conversion

- Each digit position of a binary number has a weight.
- Some power of 2.
- A binary number:

$$
B=b_{n-1} b_{n-2} \ldots . . b_{1} b_{0} \cdot b_{-1} b_{-2} \ldots . . b_{-m}
$$

Corresponding value in decimal:

$$
D=\sum_{i=-m} b_{i} 2^{i}
$$

Examples

1. $101011 \Rightarrow 1 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$

$$
=43
$$

$$
(101011)_{2}=(43)_{10}
$$

2. $.0101 \Rightarrow 0 \times 2^{-1}+1 \times 2^{-2}+0 \times 2^{-3}+1 \times 2^{-4}$

$$
=.3125
$$

$$
(.0101)_{2}=(.3125)_{10}
$$

3. $101.11 \Rightarrow 1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+1 \times 2^{-1}+1 \times 2^{-2}$
5.75

$$
(101.11)_{2}=(5.75)_{10}
$$

Decimal-to-Binary Conversion

- Consider the integer and fractional parts separately.
- For the integer part,
- Repeatedly divide the given number by 2, and go on accumulating the remainders, until the number becomes zero.
- Arrange the remainders in reverse order.
- For the fractional part,
- Repeatedly multiply the given fraction by 2.
- Accumulate the integer part (0 or 1).
- If the integer part is 1 , chop it off.
- Arrange the integer parts in the order they are obtained.

Example 1 :: 239

2	239		
2	119	--1	
2	59	--1	
2	29	--1	
2	14	--1	
2	7	--0	
2	3	--1	
2	1	--1	
2	0	--1	$(239)_{10}=(11101111)_{2}$

Example 2 :: 64

2	64	
2	32	--0
2	16	--0
2	8	--0
2	4	--0
2	2	--0
2	1	--0
2	0	--1

$$
(64)_{10}=(1000000)_{2}
$$

Example 3 :: . 634

$$
\begin{aligned}
& .634 \times 2=1.268 \\
& .268 \times 2=0.536 \\
& .536 \times 2=1.072 \\
& .072 \times 2=0.144 \\
& .144 \times 2=0.288
\end{aligned} \quad(.634)_{10}=(.10100 \ldots \ldots)_{2}
$$

Example 4 :: 37.0625

$(37)_{10}=(100101)_{2}$
$(.0625)_{10}=(.0001)_{2}$
$(37.0625)_{10}=(100101.0001)_{2}$

Hexadecimal Number System

- A compact way of representing binary numbers.
- 16 different symbols (radix = 16).

$0 \rightarrow 0000$	$8 \rightarrow 1000$
$1 \rightarrow 0001$	$9 \rightarrow 1001$
$2 \rightarrow 0010$	$A \rightarrow 1010$
$3 \rightarrow 0011$	$B \rightarrow 1011$
$4 \rightarrow 0100$	$C \rightarrow 1100$
$5 \rightarrow 0101$	$D \rightarrow 1101$
$6 \rightarrow 0110$	$E \rightarrow 1110$
$7 \rightarrow 0111$	$F \rightarrow 1111$

Binary-to-Hexadecimal Conversion

- For the integer part,
- Scan the binary number from right to left.
- Translate each group of four bits into the corresponding hexadecimal digit.
- Add leading zeros if necessary.
- For the fractional part,
- Scan the binary number from left to right.
- Translate each group of four bits into the corresponding hexadecimal digit.
- Add trailing zeros if necessary.

Example

1. $(\underline{1011} \underline{0100} \underline{0011})_{2}=(\mathrm{B} 43)_{16}$
2. $(\underline{10} 10100001)_{2}=(2 \mathrm{~A} 1)_{16}$
3. $(. \underline{1000} \underline{010})_{2}=(.84)_{16}$
4. $(\underline{101} \cdot \underline{0101} \underline{111})_{2}=(5.5 \mathrm{E})_{16}$

Hexadecimal-to-Binary Conversion

- Translate every hexadecimal digit into its 4bit binary equivalent.
- Examples:
$(3 A 5)_{16}=(00111010 \underline{0101})_{2}$
$(12.3 \mathrm{D})_{16}=(\underline{0001} \underline{0010} \cdot \underline{0011} \underline{1101})_{2}$
$(1.8)_{16}=(\underline{0001} \cdot \underline{1000})_{2}$

Unsigned Binary Numbers

- An n -bit binary number

$$
B=b_{n-1} b_{n-2} \ldots b_{2} b_{1} b_{0}
$$

- 2^{n} distinct combinations are possible, 0 to $2^{n}-1$.
- For example, for $n=3$, there are 8 distinct combinations.
- 000, 001, 010, 011, 100, 101, 110, 111
- Range of numbers that can be represented

$$
\begin{array}{lll}
\mathrm{n}=8 & \rightarrow & 0 \text { to } 2^{8}-1(255) \\
\mathrm{n}=16 & \rightarrow & 0 \text { to } 2^{16}-1(65535) \\
\mathrm{n}=32 & \rightarrow & 0 \text { to } 2^{32}-1(4294967295)
\end{array}
$$

Signed Integer Representation

- Many of the numerical data items that are used in a program are signed (positive or negative).
- Question:: How to represent sign?
- Three possible approaches:
- Sign-magnitude representation
- One's complement representation
- Two's complement representation

Sign-magnitude Representation

- For an n-bit number representation
- The most significant bit (MSB) indicates sign
$0 \rightarrow$ positive
$1 \rightarrow$ negative
- The remaining $\mathrm{n}-1$ bits represent magnitude.

Representation and ZERO

- Range of numbers that can be represented:

Maximum :: $+\left(2^{n-1}-1\right)$
Minimum :: $-\left(2^{n-1}-1\right)$

- A problem:

Two different representations of zero.

$$
\begin{aligned}
& +0 \rightarrow 0000 \ldots . \ldots \\
& -0 \rightarrow 1000 \ldots .0
\end{aligned}
$$

One's Complement Representation

- Basic idea:
- Positive numbers are represented exactly as in signmagnitude form.
- Negative numbers are represented in 1's complement form.
- How to compute the 1's complement of a number?
- Complement every bit of the number ($1 \rightarrow 0$ and $0 \rightarrow 1$).
- MSB will indicate the sign of the number.
$0 \rightarrow$ positive
$1 \rightarrow$ negative

$$
\begin{array}{ll}
& \text { Example }: \because n=4 \\
0000 \rightarrow+0 & 1000 \rightarrow-7 \\
0001 \rightarrow+1 & 1001 \rightarrow-6 \\
0010 \rightarrow+2 & 1010 \rightarrow-5 \\
0011 \rightarrow+3 & 1011 \rightarrow-4 \\
0100 \rightarrow+4 & 1100 \rightarrow-3 \\
0101 \rightarrow+5 & 1101 \rightarrow-2 \\
0110 \rightarrow+6 & 1110 \rightarrow-1 \\
0111 \rightarrow+7 & 1111 \rightarrow-0
\end{array}
$$

To find the representation of -4 , first note that

```
+4 = 0100
```

$-4=1$'s complement of $0100=1011$

One's Complement Representation

- Range of numbers that can be represented:

Maximum :: + $\left(2^{\mathrm{n}-1}-1\right)$
Minimum :: $-\left(2^{n-1}-1\right)$

- A problem:

Two different representations of zero.

$$
\begin{aligned}
& +0 \rightarrow 0000 \ldots 0 \\
& -0 \rightarrow 111 \ldots . . .1
\end{aligned}
$$

- Advantage of 1's complement representation
- Subtraction can be done using addition.
- Leads to substantial saving in circuitry.

Two's Complement Representation

- Basic idea:
- Positive numbers are represented exactly as in signmagnitude form.
- Negative numbers are represented in 2's complement form.
- How to compute the 2's complement of a number?
- Complement every bit of the number $(1 \rightarrow 0$ and $0 \rightarrow 1)$, and then add one to the resulting number.
- MSB will indicate the sign of the number.
$0 \rightarrow$ positive
$1 \rightarrow$ negative

Example $:: \mathbf{n}=\mathbf{4}$	
$0000 \rightarrow+0$	$1000 \rightarrow-8$
$0001 \rightarrow+1$	$1001 \rightarrow-7$
$0010 \rightarrow+2$	$1010 \rightarrow-6$
$0011 \rightarrow+3$	$1011 \rightarrow-5$
$0100 \rightarrow+4$	$1100 \rightarrow-4$
$0101 \rightarrow+5$	$1101 \rightarrow-3$
$0110 \rightarrow+6$	$1110 \rightarrow-2$
$0111 \rightarrow+7$	$1111 \rightarrow-1$

To find the representation of, say, -4 , first note that
$+4=0100$
$-4=2$'s complement of $0100=1011+1=1100$

Storage and number system in Programming

- In C
- short int
- 16 bits $\rightarrow+\left(2^{15}-1\right)$ to -2^{15}
- int
- 32 bits $\rightarrow+\left(2^{31}-1\right)$ to -2^{31}
- long int
- 64 bits $\rightarrow+\left(2^{63}-1\right)$ to -2^{63}

Storage and number system in Programming

- Range of numbers that can be represented:

Maximum :: $+\left(2^{n-1}-1\right)$
Minimum :: -2^{n-1}

- Advantage:
- Unique representation of zero.
- Subtraction can be done using addition.
- Leads to substantial saving in circuitry.
- Almost all computers today use the 2's complement representation for storing negative numbers.

Subtraction Using Addition :: 1's Complement

- How to compute A - B ?
- Compute the 1's complement of B (say, B_{1}).
- Compute R = A + B_{1}
- If the carry obtained after addition is ' 1 '
- Add the carry back to R (called end-around carry).
- That is, $\mathrm{R}=\mathrm{R}+1$.
- The result is a positive number.

Else

- The result is negative, and is in 1's complement form.

Example 1 :: 6-2

$$
\begin{aligned}
& A=6(0110) \\
& B=2(0010) \\
& 6-2=A-B
\end{aligned}
$$

1's complement of $2=1101$

Example 2 :: 3-5

1's complement of $5=1010$

3 :: 0011

Assume 4-bit representations.
Since there is no carry, the result is negative.
1101 is the 1 's complement of 0010, that is, it represents $\mathbf{- 2}$.

Subtraction Using Addition :: 2's Complement

- How to compute A - B ?
- Compute the 2's complement of B (say, B_{2}).
- Compute $\mathrm{R}=\mathrm{A}+\mathrm{B}_{2}$
- Ignore carry if it is there.
- The result is in 2's complement form.

Example 1 :: 6-2

2's complement of $2=1101+1=1110$

Example 2 :: 3-5

2's complement of $5=1010+1=1011$

$$
\begin{array}{ccccc}
3 & :: & 0011 & \mathrm{~A} \\
-5 & :: & 1011 & \mathrm{~B}_{2}
\end{array}
$$

$$
1110 \quad R
$$

-2

Example 3 :: -3-5

2's complement of $3=1100+1=1101$
2 's complement of $5=1010+1=1011$

Floating-point Numbers

- The representations discussed so far applies only to integers.
- Cannot represent numbers with fractional parts.
- We can assume a decimal point before a 2's complement number.
- In that case, pure fractions (without integer parts) can be represented.
- We can also assume the decimal point somewhere in between.
- This lacks flexibility.
- Very large and very small numbers cannot be represented.

Representation of Floating-Point Numbers

- A floating-point number F is represented by a doublet <M,E>:
$F=M \times B^{E}$
- $\mathrm{B} \rightarrow$ exponent base (usually 2)
- $\mathrm{M} \rightarrow$ mantissa
- E \rightarrow exponent
- M is usually represented in 2's complement form, with an implied decimal point before it.
- For example,

In decimal, 0.235×10^{6}
In binary, $0.101011 \times 2{ }^{0110}$

Example :: 32-bit representation

- M represents a 2's complement fraction
$1>M>-1$
- E represents the exponent (in 2's complement form)
$127>E>-128$
- Points to note:
- The number of significant digits depends on the number of bits in M.
- 6 significant digits for 24-bit mantissa.
- The range of the number depends on the number of bits in E.
- 10^{38} to 10^{-38} for 8 -bit exponent.

Floating point number: IEEE Standard 754

- Storage Layout

	Sign	Exponent	Fraction / Mantissa
Single Precision	$1[31]$	$8[30-23]$	$23[22-00]$
Double Precision	$1[63]$	$11[62-52]$	$52[51-00]$

IEEE Standard 754

1. The sign bit is 0 for positive, 1 for negative.
2. The exponent base is two.
3. The exponent field contains 127 plus the true exponent for single-precision, or 1023 plus the true exponent for double precision.
4. The first bit of the mantissa is typically assumed to be $1 . f$, where f is the field of fraction bits.

- Ranges of Floating-Point Numbers

Since every floating-point number has a corresponding, negated value (by toggling the sign bit), the ranges above are symmetric around zero.

	Denormalized	Normalized	Approximate Decimal
Single	$\pm 2^{-149}$ to	$\pm 2^{-126}$ to	$\pm \approx 10^{-44.85}$ to
Precision	$\left(1-2^{-23}\right) \times 2^{-126}$	$\left(2-2^{-23}\right) \times 2^{127}$	$\approx 10^{38.53}$
Double	$\pm 2^{-1074}$ to	$\pm 2^{-1022}$ to	$\pm \approx 10^{-323.3}$ to
Precision	$\left(1-2^{-52}\right) \times 2^{-1022}$	$\left(2-2^{-52}\right) \times 2^{1023}$	$\approx 10^{308.3}$

IEEE Standard 754

There are five distinct numerical ranges that singleprecision floating-point numbers are not able to represent:

```
1. Negative numbers less than \(-\left(2-2^{-23}\right) \times 2^{127}\) (negative overflow)
```

2. Negative numbers greater than -2^{-149} (negative underflow)
3. Zero
4. Positive numbers less than 2^{-149} (positive underflow)
5. Positive numbers greater than $\left(2-2^{-23}\right) \times 2^{127}$ (positive overflow)

Special Values

- Zero
-0 and +0 are distinct values, though they both compare as equal.
- Denormalized

If the exponent is all 0 s , but the fraction is non-zero, then the value is a denormalized number, which now has an assumed leading 0 before the binary point. Thus, this represents a number $(-1)^{5} \times 0 . f \times 2^{-126}$, where s is the sign bit and f is the fraction. For double precision, denormalized numbers are of the form $(-1)^{s} \times 0 . f \times 2^{-1022}$. From this you can interpret zero as a special type of denormalized number.

- Infinity

The values $+\infty$ and $-\infty$ are denoted with an exponent of all 1 s and a fraction of all 0 s . The sign bit distinguishes between negative infinity and positive infinity. Being able to denote infinity as a specific value is useful because it allows operations to continue past overflow situations. Operations with infinite values are well defined in IEEE floating point.

- Not A Number

The value NaN (Not a Number) is used to represent a value that does not represent a real number. NaN's are represented by a bit pattern with an exponent of all 1 s and a non-zero fraction.

Representation of Characters

- Many applications have to deal with non-numerical data.
- Characters and strings.
- There must be a standard mechanism to represent alphanumeric and other characters in memory.
- Three standards in use:
- Extended Binary Coded Decimal Interchange Code (EBCDIC)
- Used in older IBM machines.
- American Standard Code for Information Interchange (ASCII)
- Most widely used today.
- UNICODE
- Used to represent all international characters.
- Used by Java.

ASCII Code

- Each individual character is numerically encoded into a unique 7-bit binary code.
- A total of 2^{7} or 128 different characters.
- A character is normally encoded in a byte (8 bits), with the MSB not been used.
- The binary encoding of the characters follow a regular ordering.
- Digits are ordered consecutively in their proper numerical sequence (0 to 9).
- Letters (uppercase and lowercase) are arranged consecutively in their proper alphabetic order.

Some Common ASCII Codes

Character Strings

- Two ways of representing a sequence of characters in memory.
- The first location contains the number of characters in the string, followed by the actual characters.

5 Hello

- The characters follow one another, and is terminated by a special delimiter.

```
H e l l o l
```


String Representation in C

- In C, the second approach is used.
- The ' $\backslash 0^{\prime}$ character is used as the string delimiter.
- Example:
"Hello" $\Rightarrow \quad$ H \mathbf{e} I \mathbf{I} o '0'
- A null string """ occupies one byte in memory.
- Only the '\0' character.

Problem 7

Given 2 positive numbers n and $r, n>=r$, write a C function to compute the number of combinations $\left({ }^{n} C_{r}\right)$ and the number of permutations $\left({ }^{n} P_{r}\right)$.

Permutations formula is $P(n, r)=n!/(n-r)$!
Combinations formula is $C(n, r)=n!/(r!(n-r)!)$

Problem 8

Scope of variable:
What is the output of the following code snippet?

```
#include <stdio.h>
int main(){
    int i = 10;
    for(int i= 5; i < 15; i++)
        printf("}\textrm{i}\mathrm{ is %d\n", i);
    return 0;
}
```


Problem 9

Scope of variable: What is the output of the following code snippet?

```
#include <stdio.h>
int a = 20;
int sum(int a, int b) {
    printf ("value of a in sum() = %d\n", a);
    printf ("value of b in sum() = %d\n", b);
    return a + b;
}
int main ()
{
    int a = 10; int b = 20; int c = 0;
    printf ("value of a in main() = %d\n", a);
    c=sum( a, b);
    printf ("value of c in main() = %d\n", c);
    return 0;
}
```


Problem 10

Write a C program which display the entered number in words.

Example:

Input:
Enter a number: 7

Output:

Seven

Problem 11

Write a C program to delete duplicate elements in an array without using another auxiliary array.

Example:

Input:
585569821133

Output:
5869213

Problem 12

Write a C program to print PASCAL's triangle.

Problem 13

Given 2 numbers \boldsymbol{a} and \boldsymbol{b}, write a C program to compute the Greatest Common Divisor(GCD) of the 2 numbers.

The GCD of 2 numbers is the largest positive integer that divides the numbers without a remainder.

Example: $\operatorname{GCD}(2,8)=2 ; \operatorname{GCD}(3,7)=1$

Problem 14

Given 2 arrays of integers \boldsymbol{A} and \boldsymbol{B} of size \boldsymbol{n} each, write a C program to calculate the dot product of the 2 arrays.

If $\boldsymbol{A}=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}\right]$ and $\boldsymbol{B}=\left[b_{0}, b_{1}, b_{2}, \ldots, b_{n-1}\right]$,
the dot product of A and B is given by
$A . B=\left[a_{0}{ }^{*} b_{0}+a_{1}{ }^{*} b_{1}+a_{2}{ }^{*} b_{2}+\ldots \ldots .+a_{n-1} * b_{n-1}\right]$

Problem 15

Given a non negative integer n, write a C function to output the decimal integer(base 10) in its binary representation (base 2).

Example: Binary representation of
3 is 11
8 is 1000

15 is 1111

Problem 16

Given two array of sorted numbers A and B, both are of arbitrary sizes, write a C function named merge_arrays that merges both the arrays in sorted order and returns the sorted array C.

